首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PURPOSE: Smith-Magenis syndrome (SMS) is a complex disorder that includes mental retardation, craniofacial and skeletal anomalies, and behavioral abnormalities. We report the molecular and genotype-phenotype analyses of 31 patients with SMS who carry 17p11.2 deletions or mutations in the RAI1 gene. METHODS: Patients with SMS were evaluated by fluorescence in situ hybridization and/or sequencing of RAI1 to identify 17p11.2 deletions or intragenic mutations, respectively, and were compared for 30 characteristic features of this disorder by the Fisher exact test. RESULTS: In our cohort, 8 of 31 individuals carried a common 3.5 Mb deletion, whereas 10 of 31 individuals carried smaller deletions, two individuals carried larger deletions, and one individual carried an atypical 17p11.2 deletion. Ten patients with nondeletion harbored a heterozygous mutation in RAI1. Phenotypic comparison between patients with deletions and patients with RAI1 mutations show that 21 of 30 SMS features are the result of haploinsufficiency of RAI1, whereas cardiac anomalies, speech and motor delay, hypotonia, short stature, and hearing loss are associated with 17p11.2 deletions rather than RAI1 mutations (P<.05). Further, patients with smaller deletions show features similar to those with RAI1 mutations. CONCLUSION: Although RAI1 is the primary gene responsible for most features of SMS, other genes within 17p11.2 contribute to the variable features and overall severity of the syndrome.  相似文献   

3.
Background: Smith–Magenis syndrome (SMS) (OMIM No 182290) is a mental retardation syndrome characterised by behavioural abnormalities, including self injurious behaviours, sleep disturbance, and distinct craniofacial and skeletal anomalies. It is usually associated with deletion involving 17p11.2 and is estimated to occur in 1/25 000 births. Heterozygous frameshift mutations leading to protein truncation in retinoic acid induced 1 gene (RAI1) have been identified in individuals with phenotypic features consistent with SMS. RAI1 lies within the 17p11.2 locus, but these patients did not have 17p11.2 deletions. Objective: Analysis of four individuals with features consistent with SMS for variations in RAI1, using a polymerase chain reaction and sequencing strategy. None of these patients carry 17p11.2 deletions. Results: Two patients had small deletions in RAI1 resulting in frameshift and premature truncation of the protein. Missense mutations were identified in the other two. Orthologs across other genomes showed that these missense mutations occurred in identically conserved regions of the gene. The mutations were de novo, as all parental samples were normal. Several polymorphisms were also observed, including new and reported SNPs. The patients'' clinical features differed from those found in 17p11.2 deletion by general absence of short stature and lack of visceral anomalies. All four patients had developmental delay, reduced motor and cognitive skills, craniofacial and behavioural anomalies, and sleep disturbance. Seizures, not previously thought to be associated with RAI1 mutations, were observed in one patient of the cohort. Conclusions: Haploinsufficiency of the RAI1 gene is associated with most features of SMS, including craniofacial, behavioural, and neurological signs and symptoms.  相似文献   

4.
Smith-Magenis syndrome (SMS) is a mental retardation syndrome with distinctive behavioral characteristics, dysmorphic features, and congenital anomalies usually associated with an interstitial deletion of chromosome 17p11.2. While high quality G-banding will identify most SMS patients, fluorescent in situ hybridization (FISH) is the recommended test for confirmation of an SMS diagnosis. Recently, haploinsufficiency of the RAI1 gene due to deletion or mutation was determined to be the likely cause of SMS. All diagnostic FISH probes available commercially contain the FLII gene and are approximately 580 kb centromeric to RAI1. We present two patients with SMS who have interstitial deletions at 17p11.2 but are not deleted for currently available commercial FISH probes that include FLII; both patients have deletions that are demonstrated with probes containing the RAI1 gene. We recommend that for diagnostic accuracy, all future FISH tests for SMS be performed with probes containing the RAI1 gene, as some atypical deletions in the region critical to the SMS phenotype will otherwise be missed.  相似文献   

5.
6.
Smith-Magenis syndrome   总被引:1,自引:0,他引:1  
  相似文献   

7.
Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to approximately 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients.  相似文献   

8.
Chromosomal rearrangements causing microdeletions and microduplications are a major cause of congenital malformation and mental retardation. Because they are not visible by routine chromosome analysis, high resolution whole-genome technologies are required for the detection and diagnosis of small chromosomal abnormalities. Recently, array-comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) have been useful tools for the identification and mapping of deletions and duplications at higher resolution and throughput. Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome caused by deletion or mutation of the retinoic acid induced 1 (RAI1) gene and is often associated with a chromosome 17p11.2 deletion. We report here on the clinical and molecular analysis of a 10-year-old girl with SMS and moyamoya disease (occlusion of the circle of Willis). We have employed a combination of aCGH, FISH, and MLPA to characterize an approximately 6.3 Mb deletion spanning chromosome region 17p11.2-p13.1 in this patient, with the proximal breakpoint within the RAI1 gene. Further, investigation of the genomic architecture at the breakpoint intervals of this large deletion documented the presence of palindromic repeat elements that could potentially form recombination substrates leading to unequal crossover.  相似文献   

9.
10.
Smith–Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients.  相似文献   

11.
《Genetics in medicine》2007,9(10):690-694
PurposeAutosomal dominant CHARGE syndrome (OMIM no. 214800) is characterized by choanal atresia or cleft lip or palate, ocular colobomas, cardiovascular malformations, retardation of growth, ear anomalies, and deafness, and is caused by mutations in the CHD7 gene. Here, we describe the outcome of a molecular genetic analysis in 18 Finnish and 56 German patients referred for molecular confirmation of the clinical diagnosis of suspected CHARGE syndrome.MethodsQuantitative real-time polymerase chain reaction or multiplex ligation-dependent probe amplification assays did not reveal deletions in mutation negative cases, suggesting that larger CHD7 deletions are not a major cause of CHARGE syndrome.ResultsIn this group of 74 patients, we found mutations in 30 cases. 22 mutations were novel, including 11 frameshift, 5 nonsense, 3 splice-site, and 3 missense mutations. One de novo frameshift mutation was found in the last exon and is expected to result in a minimally shortened CHD7 polypeptide. Because the mutation is associated with a typical CHARGE syndrome phenotype, it may indicate the presence of an as yet unknown functional domain in the very carboxyterminal end of CHD7.ConclusionsOur mutation detection rate of 40.5% is reflective of screening an unselected sample population referred for CHD7 testing based on suspected clinical diagnosis of CHARGE syndrome and not for having met strict clinical criteria for this disorder.  相似文献   

12.
13.
We have identified nine novel intragenic mutations of the PAX6 gene in 30 patients with aniridia. One patient with Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR syndrome) had deletion of 11p and had lost the paternal PAX6 allele. Two patients had small deletions: a frameshift that should result in early termination of the PAX6 protein, and a frameshift that leads to a termination-site change and run-on into the 3' untranslated region (UTR). The other 27 patients had single base-pair mutations. Four had splicing defects; three had IVS6+1G>A, which was at a mutation hotspot in the PAX6 gene; 10 had premature termination (four 1024C>T [R203X], also at a mutation hotspot); and six had missense mutations. Missense mutation A321T (1378G>A) was a polymorphic change; the other five missense mutations were L46R, C52R, I56T, G73D, and I87K. These five codons are in the PAX6 paired domain and are highly conserved throughout the entire paired family. Seven patients had a mutation in the normal stop codon (TAA). This change leads to run-on into the 3' UTR and is also at a mutation hotspot. All 30 mutations should result in PAX6 haploinsufficiency. No correlation was observed between mutation sites and phenotypes.  相似文献   

14.
Chromosome 1q41‐q42 deletions have recently been associated with a recognizable neurodevelopmental syndrome of early childhood (OMIM 612530). Within this group, a predominant phenotype of developmental delay (DD), intellectual disability (ID), epilepsy, distinct dysmorphology, and brain anomalies on magnetic resonance imaging/computed tomography has emerged. Previous reports of patients with de novo deletions at 1q41‐q42 have led to the identification of an evolving smallest region of overlap which has included several potentially causal genes including DISP1, TP53BP2, and FBXO28. In a recent report, a cohort of patients with de novo mutations in WDR26 was described that shared many of the clinical features originally described in the 1q41‐q42 microdeletion syndrome (MDS). Here, we describe a novel germline FBXO28 frameshift mutation in a 3‐year‐old girl with intractable epilepsy, ID, DD, and other features which overlap those of the 1q41‐q42 MDS. Through a familial whole‐exome sequencing study, we identified a de novo FBXO28 c.972_973delACinsG (p.Arg325GlufsX3) frameshift mutation in the proband. The frameshift and resulting premature nonsense mutation have not been reported in any genomic database. This child does not have a large 1q41‐q42 deletion, nor does she harbor a WDR26 mutation. Our case joins a previously reported patient also in whom FBXO28 was affected but WDR26 was not. These findings support the idea that FBXO28 is a monogenic disease gene and contributes to the complex neurodevelopmental phenotype of the 1q41‐q42 gene deletion syndrome.  相似文献   

15.
Smith-Magenis syndrome (SMS; OMIM 182290) is a neurodevelopmental disorder characterized by a well-defined pattern of anomalies. The majority of cases are due to a common deletion in chromosome 17p11.2 that includes the RAI1 gene. In children with SMS, autistic-like behaviors and symptoms start to emerge around 18 months of age. This study included 26 individuals (15 females and 11 males), with a confirmed deletion (del 17p11.2). Parents/caregivers were asked to complete the Social Responsiveness Scale (SRS) and the Social Communication Questionnaire (SCQ) both current and lifetime versions. The results suggest that 90% of the sample had SRS scores consistent with autism spectrum disorders. Moreover, females showed more impairment in total T-scores (P?=?0.02), in the social cognition (P?=?0.01) and autistic mannerisms (P?=?0.002) subscales. The SCQ scores are consistent to show that a majority of individuals may meet criteria for autism spectrum disorders at some point in their lifetime. These results suggest that SMS needs to be considered in the differential diagnosis of autism spectrum disorders but also that therapeutic interventions for autism are likely to benefit individuals with SMS. The mechanisms by which the deletion of RAI1 and contiguous genes cause psychopathology remain unknown but they provide a solid starting point for further studies of gene-brain-behavior interactions in SMS and autism spectrum disorders.  相似文献   

16.
Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome associated with an interstitial deletion of chromosome 17p11.2. SMS is thought to be a contiguous gene syndrome caused by haploinsufficiency of one or more genes in the associated deletion region. To date, no gene has been reported to contribute to the characteristics seen in the SMS phenotype. To expedite the search for the SMS causative genes, we have reduced the SMS critical region to approximately 950kb by analyzing 11 patient samples carrying 17p11.2 deletions. In addition, we have re-evaluated the frequency with which different 17p11.2 deletions naturally occur, showing evidence that homologous recombination likely takes place between low copy repeats at a higher frequency than previously reported.  相似文献   

17.
Holt‐Oram syndrome (HOS) is an autosomal dominant syndrome that comprises upper limb and cardiac defects. The gene responsible for HOS, TBX5, was isolated and many mutations have been identified in HOS patients. We analyzed 11 Chinese HOS patients (7 from three families and 4 sporadic cases) for TBX5 mutation by single strand conformation polymorphisms (SSCPs). Three SSCP changes were detected in two of the three familial cases and one sporadic case. Sequence analysis identified three novel, heterozygous mutations in TBX5: a frameshift mutation caused by one base deletion [C416del] in one family, a mis‐sense mutation (Gln49Lys) induced by a base substitution (C145A) in another family, and the other mis‐sense mutation (Ile54Thr) by T161C in one sporadic case. The patients with the frameshift mutations had severer clinical manifestations that involved aplasia/hypoplasia of the arm and thumbs, while those with the mis‐sense mutations presented with milder anomalies such as absent or hypoplastic thumbs but without arm abnormalities. These observations may support a genotype‐phenotype correlation in HOS patients with TBX5 mutation. Am. J. Med. Genet. 92:237–240, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

18.
Smith-Magenis syndrome (SMS) is a clinically recognisable contiguous gene syndrome ascribed to interstitial deletions of chromosome 17p11.2. Patients have a phase shift of their circadian rhythm of melatonin with a paradoxical diurnal secretion of the hormone. Serum melatonin levels and day-night behaviour were studied in nine SMS children (aged 4 to 17 years) given acebutolol, a selective β1-adrenergic antagonist (10 mg/kg early in the morning). Cardiac examination, serum melatonin, motor activity recordings, and sleep diaries were monitored before and after drug administration. The present study shows that a single morning dose of acebutolol suppressed the inappropriate secretion of melatonin in SMS. A significant improvement of inappropriate behaviour with increased concentration, delayed sleep onset, increased hours of sleep, and delayed waking were also noted. These results suggest that β1-adrenergic antagonists help to manage hyperactivity, enhance cognitive performance, and reduce sleep disorders in SMS.


Keywords: Smith-Magenis syndrome; circadian rhythms; melatonin  相似文献   

19.
Sotos syndrome is an overgrowth syndrome characterized by distinctive facial features and intellectual disability caused by haploinsufficiency of the NSD1 gene. Genotype–phenotype correlations have been observed, with major anomalies seen more frequently in patients with 5q35 deletions than those with point mutations in NSD1. Though endocrine features have rarely been described, transient hyperinsulinemic hypoglycemia (HI) of the neonatal period has been reported as an uncommon presentation of Sotos syndrome. Eight cases of 5q35 deletions and one patient with an intragenic NSD1 mutation with transient HI have been reported. Here, we describe seven individuals with HI caused by NSD1 gene mutations with three having persistent hyperinsulinemic hypoglycemia. These patients with persistent HI and Sotos syndrome caused by NSD1 mutations, further dispel the hypothesis that HI is due to the deletion of other genes in the deleted 5q35 region. These patients emphasize that NSD1 haploinsufficiency is sufficient to cause HI, and suggest that Sotos syndrome should be considered in patients presenting with neonatal HI. Lastly, these patients help extend the phenotypic spectrum of Sotos syndrome to include HI as a significant feature.  相似文献   

20.
Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome associated with del(17)(p11.2p11.2). The phenotype is variable even in patients with deletions of the same size. RAI1 has been recently suggested as a major gene for majority of the SMS phenotypes, but its role in the full spectrum of the phenotype remains unclear. Df(11)17/+ mice contain a heterozygous deletion in the mouse region syntenic to the SMS common deletion, and exhibit craniofacial abnormalities, seizures and marked obesity, partially reproducing the SMS phenotype. To further study the genetic basis for the phenotype, we constructed three lines of mice with smaller deletions [Df(11)17-1, Df(11)17-2 and Df(11)17-3] using retrovirus-mediated chromosome engineering to create nested deletions. Both craniofacial abnormalities and obesity have been observed, but the penetrance of the craniofacial phenotype was markedly reduced when compared with Df(11)17/+ mice. Overt seizures were not observed. Phenotypic variation has been observed in mice with the same deletion size in the same and in different genetic backgrounds, which may reflect the variation documented in the patients. These results indicate that the smaller deletions contain the gene(s), most likely Rai1, causing craniofacial abnormalities and obesity. However, genes or regulatory elements in the larger deletion, which are not located in the smaller deletions, as well as genes located elsewhere, also influence penetrance and expressivity of the phenotype. Our mouse models refined the genomic region important for a portion of the SMS phenotype and provided a basis for further molecular analysis of genes associated with SMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号