首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used positron emission tomography and [11C]flumazenil to analyze the benzodiazepine receptor binding in symptomatic and asymptomatic carriers of the Huntington's disease gene. We found an inverse relationship between [11C]flumazenil and [11C]raclopride binding in the putamen of symptomatic patients, and interpret this result as GABA receptor upregulation.  相似文献   

2.
Purpose: The purpose of the present investigation was to quantify alterations in GABAA receptor density in vivo in rats subjected to amygdala kindling. Methods: The GABAA receptor density was quantified by conducting a [11C]flumazenil (FMZ) positron emission tomography (PET) study according to the full saturation method, in which each animal received a single injection of FMZ to fully saturate the GABAA receptors. Subsequently, the concentration‐time curves of FMZ in blood [using high‐pressure liquid chromatography with UV detector (HPLC‐UV) or high‐performance liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS)] and brain (with PET‐scanning) were analyzed by population modeling using a pharmacokinetic model, containing expressions to describe the time course of FMZ in blood and brain. Results: The GABAA receptor density (Bmax) in kindled rats was decreased by 36% compared with controls. This is consistent with a reduction of 28% in electroencephalography (EEG) effect of midazolam in the same animal model, suggesting that a reduced number of GABAA receptors underlies the decreased efficacy of midazolam. Furthermore, receptor affinity (KD) was not changed, but the total volume of distribution in the brain (VBr), is increased to 178% of control after kindling, which might indicate an alteration in the transport of FMZ across the blood–brain barrier. Conclusions: Both the GABAA receptor density (Bmax), and possibly also the blood–brain barrier transport of FMZ (VBr) are altered after kindling. Furthermore, this study indicates the feasibility of conducting PET studies for quantifying moderate changes in GABAA receptor density in a rat model of epilepsy in vivo.  相似文献   

3.
OBJECTIVES: To analyze interictal patterns of thalamic nuclei glucose metabolism and benzodiazepine receptor binding in patients with medically intractable temporal lobe epilepsy (TLE) using high-resolution 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET. BACKGROUND: Structural and glucose metabolic abnormalities of the thalamus are considered important in the pathophysiology of TLE. The differential involvement of various thalamic nuclei in humans is not known. METHODS: Twelve patients with TLE underwent volumetric MRI, FDG and FMZ PET, and prolonged video-EEG monitoring. Normalized values and asymmetries of glucose metabolism and FMZ binding were obtained in three thalamic regions (dorsomedial nucleus [DMN], pulvinar, and lateral thalamus [LAT]) defined on MRI and copied to coregistered, partial-volume-corrected FDG and FMZ PET images. Hippocampal and amygdaloid FMZ binding asymmetries and thalamic volumes also were measured. RESULTS: The DMN showed significantly lower glucose metabolism and FMZ binding on the side of the epileptic focus. The LAT showed bilateral hypermetabolism and increased FMZ binding. There was a significant correlation between the FMZ binding asymmetries of the DMN and amygdala. The PET abnormalities were associated with a significant volume loss of the thalamus ipsilateral to the seizure focus. CONCLUSIONS: Decreased [11C]flumazenil (FMZ) binding and glucose metabolism of the dorsomedial nucleus (DMN) are common and have strong lateralization value for the seizure focus in human temporal lobe epilepsy. Decreased benzodiazepine receptor binding can be due to neuronal loss, as suggested by volume loss, but also may indicate impaired gamma-aminobutyric acid (GABA)ergic transmission in the DMN, which has strong reciprocal connections with other parts of the limbic system. Increased glucose metabolism and FMZ binding in the lateral thalamus could represent an upregulation of GABA-mediated inhibitory circuits.  相似文献   

4.
5.
The ability to study multiple physiologic processes of the brain simultaneously within the same subject would provide a new means to explore the interactions between neurotransmitter systems in vivo. Currently, examination of two distinct neuropharmacologic measures with positron emission tomography (PET) necessitates performing two separate scans spaced in time to allow for radionuclide decay. The authors present results from a dual-tracer PET study protocol using a single dynamic-scan acquisition where the injections of two tracers are offset by several minutes. Kinetic analysis is used to estimate neuropharmacologic parameters for both tracers simultaneously using a combined compartmental model configuration. This approach results in a large reduction in total study time of nearly 2 hours for carbon-11-labeled tracers. As multiple neuropharmacologic measures are obtained at nearly the same time, interventional protocols involving a pair of dual-tracer scans become feasible in a single PET session. Both computer simulations and actual human PET studies were performed using combinations of three different tracers: [11C]flumazenil, N-[11C]methylpiperidinyl propionate, and [ 11 C]dihydrotetrabenazine. Computer simulations of tracer-injection separations of 10 to 30 minutes showed the feasibility of the approach for separations down to 15 to 20 minutes or less. Dual-tracer PET studies were performed in 32 healthy volunteers using injection separations of 10, 15, or 20 minutes. Model parameter estimates for each tracer were similar to those obtained from previously performed single-injection studies. Voxel-by-voxel parametric images were of good quality for injections spaced by 20 minutes and were nearly as good for 15-minute separations, but were degraded noticeably for some model parameters when injections were spaced by only 10 minutes. The authors conclude that dual-tracer single-scan PET is feasible, yields accurate estimates of multiple neuropharmacologic measures, and can be implemented with a number of different radiotracer pairs.  相似文献   

6.
Regional cerebral [11C]3-O-methyl-D-glucose ([11C]MeG) uptake kinetics have been measured in five insulin-dependent diabetic patients and four normal controls using positron emission tomography (PET). Concomitant measurement of regional cerebral blood volume and CBF enabled corrections for the presence of intravascular [11C]MeG signal in cerebral regions of interest to be carried out, and regional cerebral [11C]MeG unidirectional extraction fractions to be computed. Four of the five diabetic subjects were studied with their fasting plasma glucose level clamped at a normoglycaemic level (4 mM), and four were studied at hyperglycaemic plasma glucose levels (mean 13 mM). The four diabetic subjects whose fasting plasma glucose levels were clamped at a normoglycaemic level of 4 mM had mean fasting whole-brain, cortical, and white matter [11C]MeG extraction fractions of 15, 15, and 16%, respectively, values similar to those found for the four normal controls (whole brain, 14%; cortex, 13%; white matter, 17%). Mean regional cerebral [11C]MeG extraction fractions were significantly reduced in diabetic subjects during hyperglycaemia whether their plasma insulin levels were undetectable or whether they were raised by continuous intravenous insulin infusion. Such a reduction in [11C]MeG extraction under hyperglycaemic conditions can be explained entirely in terms of increased competition between [11C]MeG and D-glucose for the passive facilitated transport carrier system for hexoses across the blood-brain barrier (BBB). It is concluded that the number and affinity of D-glucose carriers present in the BBB are within normal limits in treated insulin-dependent diabetic subjects. In addition, insulin appears to have no effect on the transport of D-glucose across the BBB.  相似文献   

7.
BACKGROUND: Evidence from neuroimaging post-mortem, and genetic studies suggests that bipolar disorder (BD) is associated with abnormalities of the serotonin-transporter (5-HTT) system. Because of various limitations of these studies, however, it has remained unclear whether 5-HTT binding is abnormal in unmedicated BD-subjects. This study used PET and [(11)C]DASB, a radioligand that afforded higher sensitivity and specificity for the 5-HTT than previously available radioligands, to compare 5-HTT binding between BD and control subjects. METHODS: The 5-HTT binding-potential (BP) was assessed in 18 currently-depressed, unmedicated BD-subjects and 37 healthy controls using PET and [(11)C]DASB. RESULTS: In BD, the mean 5-HTT BP was increased in thalamus, dorsal cingulate cortex (DCC), medial prefrontal cortex and insula and decreased in the brainstem at the level of the pontine raphe-nuclei. Anxiety ratings correlated positively with 5-HTT BP in insula and DCC, and BP in these regions was higher in subjects manifesting pathological obsessions and compulsions relative to BD-subjects lacking such symptoms. Subjects with a history of suicide attempts showed reduced 5-HTT binding in the midbrain and increased binding in anterior cingulate cortex versus controls and to BD-subjects without attempts. CONCLUSIONS: This is the first study to report abnormalities in 5-HTT binding in unmedicated BD-subjects. The direction of abnormality in the brainstem was opposite to that found in the cortex, thalamus, and striatum. Elevated 5-HTT binding in the cortex may be related to anxiety symptoms and syndromes associated with BD.  相似文献   

8.
9.
In vivo measurements of regional brain tissue/tumor pH (rpH) have been accomplished in 9 patients with primary or metastatic brain tumors using [11C]dimethyloxazolidinedione [( 11C]DMO) and positron emission tomography. Tumor rpH values ranged from 6.88 to 7.26, whereas gray matter and white matter rpH values ranged from 6.74 to 7.09 and from 6.77 to 7.03, respectively. Our results, which are consistent with reported [14C]DMO autoradiographic measurements of brain and tumor pH, suggest that the pH microenvironment of brain tumors is not more "acidic" than that of normal gray or white matter.  相似文献   

10.
Positron emission tomography (PET) imaging of small striatal brain structures such as the ventral striatum (VST) has been hampered by low spatial resolution causing partial-volume effects. The high-resolution research tomograph (HRRT) is a brain-dedicated PET scanner that has considerably better spatial resolution than its predecessors. However, its superior spatial resolution is associated with a lower signal-to-noise ratio. We evaluated the test–retest reliability of the striatal and thalamic dopamine D2 receptor binding using the HRRT scanner. Seven healthy male volunteers underwent two [11C]raclopride PET scans with a 2.5-hour interval. Dopamine D2 receptor availability was quantified as binding potential (BPND) using the simplified reference tissue model. To evaluate the reproducibility of repeated BPND estimations, absolute variability (VAR) and intraclass correlation coefficients (ICCs) were calculated. VAR values indicated fairly good reproducibility and were 3.6% to 4.5% for the caudate nucleus and putamen and 4.5% to 6.4% for the lateral and medial part of the thalamus. In the VST, the VAR value was 5.8% when the definition was made in the coronal plane. However, the ICC values were only moderate, in the range of 0.34 to 0.66, for all regions except the putamen (0.87). Experimental signal processing methods improved neither ICC nor VAR values significantly.  相似文献   

11.
The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in the pathophysiology of mood and anxiety disorders. Recently, a positron emission tomography (PET) tracer exhibiting high selectivity and specificity for mGluR5, 3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime ([11C]ABP688), was developed. In this work, eight healthy adult male humans were imaged twice to assess within-subject [11C]ABP688 binding variability using PET. In seven of the eight subjects, significantly higher binding was observed during the second (retest) scan. This binding increase could not be definitively explained by differences in ligand injected mass or dose, or changes in metabolism between scans. In addition, this type of systematic binding increase was not observed in a [11C]ABP688 test–retest study performed by our group on anaesthetized baboons. It is therefore possible that the increased binding was because of physiological changes occurring between scans, such as changes in endogenous glutamate levels. If PET imaging with [11C]ABP688 could detect such differences, as preliminary evidence suggests, it could be used to help uncover the role of glutamate in the pathophysiology of brain disorders. However, regardless of its ability to detect endogenous glutamate differences, [11C]ABP688 binding variability could make accurate assessments of drug occupancy or group differences using this ligand difficult.  相似文献   

12.
Cerebral muscarinic cholinergic receptors were imaged and regionally quantified in vivo in humans with the use of [11C]scopolamine and positron emission tomography. Previous studies in experimental animals have suggested the utility of radiolabeled scopolamine for in vivo measurements, on the bases of its maintained pharmacologic specificity following systemic administration and the exclusion of labeled metabolites from the brain. The present studies describe the cerebral distribution kinetics of [11C]scopolamine in normal subjects following intravenous injection. Scopolamine is initially delivered to brain in a perfusion-directed pattern. After 30 to 60 min, activity is lost preferentially from cerebral structures with low muscarinic receptor density including the cerebellum and thalamus. Activity continues to accumulate throughout a 2 h postinjection period in receptor-rich areas including cerebral cortex and the basal ganglia. The late regional concentration of [11C]scopolamine does not, however, accurately parallel known differences in muscarinic receptor numbers in these receptor-rich areas. Tracer kinetic analysis of the data, performed on the basis of a three-compartment model, provides receptor binding estimates in good agreement with prior in vitro measurements. Kinetic analysis confirms significant contributions of ligand delivery and extraction to the late distribution of [11C]scopolamine, reconciling the discrepancy between receptor levels and tracer concentration. Finally, a novel dual-isotope method for rapid chromatographic processing of arterial blood samples in radiotracer studies is presented. The combination of rapid chromatography and compartmental analysis of tracer distribution should have broad utility in future in vivo studies with short-lived radioligands.  相似文献   

13.
Aromatase, the enzyme that in the brain converts testosterone and androstenedione to estradiol and estrone, respectively, is a putative key factor in psychoneuroendocrinology. In vivo assessment of aromatase was performed to evaluate tracer kinetic models and optimal scan duration, for quantitative analysis of the aromatase positron emission tomography (PET) ligand [11C]cetrozole. Anatomical magnetic resonance and 90-min dynamic [11C]cetrozole PET-CT scans were performed on healthy women. Volume of interest (VOI)-based analyses with a plasma-input function were performed using the single-tissue and two-tissue (2TCM) reversible compartment models and plasma-input Logan analysis. Additionally, the simplified reference tissue model (SRTM), Logan reference tissue model (LRTM), and standardized uptake volume ratio model, with cerebellum as reference region, were evaluated. Parametric images were generated and regionally averaged voxel values were compared with VOI-based analyses of the reference tissue models. The optimal reference model was used for evaluation of a decreased scan duration. Differences between the plasma-input- and reference tissue-based methods and comparisons between scan durations were assessed by linear regression. The [11C]cetrozole time–activity curves were best described by the 2TCM. SRTM nondisplaceable binding potential (BPND), with cerebellum as reference region, can be used to estimate [11C]cetrozole binding and generated robust and quantitatively accurate results for a reduced scan duration of 60 min. Receptor parametric mapping, a basis function implementation of SRTM, as well as LRTM, produced quantitatively accurate parametric images, showing BPND at the voxel level. As PET tracer, [11C]cetrozole can be employed for relatively short brain scans to measure aromatase binding using a reference tissue-based approach.  相似文献   

14.
The kinetics and regional distribution of [11C]carfentanil, a mu-selective opiate receptor agonist, and [11C]diprenorphine, a nonselective opiate receptor antagonist, were compared using paired positron emission tomography studies in two normal volunteers. Kinetics of total radioactivity (counts/mCi/pixel) was greater for [11C]diprenorphine than [11C]carfentanil in all regions. [11C]Carfentanil binding (expressed as the total/nonspecific ratio) reached near equilibrium at approximately 40 min, whereas [11C]diprenorphine showed a linear increase until approximately 60 min. Kinetics of specific binding demonstrated significant dissociation of [11C]carfentanil from opiate receptors, whereas little dissociation of [11C]diprenorphine was observed during the 90-min scan session. Regional distributions of [11C]carfentanil and [11C]diprenorphine were qualitatively and quantitatively different: Relative to the thalamus (a region with known predominance of mu-receptors), [11C]diprenorphine displayed greater binding in the striatum and cingulate and frontal cortex compared to [11C]carfentanil, consistent with labeling of additional, non-mu sites by [11C]diprenorphine. We conclude from these studies that [11C]diprenorphine labels other opiate receptor subtypes in addition to the mu sites selectively labeled by [11C]carfentanil. The nonselective nature of diprenorphine potentially limits its usefulness in defining abnormalities of specific opiate receptor subtypes in various diseases. Development of selective tracers for the delta- and kappa-opiate receptor sites, or alternatively use of unlabeled inhibitors to differentially displace mu, delta, and kappa subtypes, will help offset these limitations.  相似文献   

15.
The binding of [11C]diprenorphine to mu, kappa, and delta subsites in cortical and subcortical structures was measured by positron emission tomography in vivo in six patients before and after surgical relief of trigeminal neuralgia pain. The volume of distribution of [11C]diprenorphine binding was significantly increased after thermocoagulation of the relevant trigeminal division in the following areas: prefrontal, insular, perigenual, mid-cingulate and inferior parietal cortices, basal ganglia, and thalamus bilaterally. In addition to the pain relief associated with the surgical procedure, there also was an improvement in anxiety and depression scores. In the context of other studies, these changes in binding most likely resulted from the change in the pain state. The results suggest an increased occupancy by endogenous opioid peptides during trigeminal pain but cannot exclude coexistent down-regulation of binding sites.  相似文献   

16.
BACKGROUND: Research from neuroendocrine challenge and other indirect studies has suggested increased central 5-HT function in chronic fatigue syndrome (CFS) and increased 5-HT1A receptor sensitivity. We assessed brain 5-HT1A receptor binding potential directly using the specific radioligand [11C]WAY-100635 and positron emission tomography (PET). METHODS: We selected 10 patients from a tertiary referral clinic who fulfilled the CDC consensus criteria for CFS. To assemble a homogenous group and avoid confounding effects, we enrolled only subjects who were completely medication-free and did not have current comorbid psychiatric illness. We also scanned 10 healthy control subjects. RESULTS: There was a widespread reduction in 5-HT1A receptor binding potential in CFS relative to control subjects. This was particularly marked in the hippocampus bilaterally, where a 23% reduction was observed. CONCLUSIONS: There is evidence of decreased 5-HT1A receptor number or affinity in CFS. This may be a primary feature of CFS, related to the underlying pathophysiology, or a finding secondary to other processes, such as previous depression, other biological changes or the behavioral consequences of CFS.  相似文献   

17.
The positron emitter 11C (20 minutes half-life) permits the labeling of chlorpromazine (CPZ) and the study of its distribution in humans by external counting. Trace amounts of 11C-CPZ were injected intravenously into 22 schizophrenic patients all untreated for several months with neuroleptics. The brain uptake was 6.04 +/- 1.6% of the injected dose 15 minutes after the injection, and it remained constant for 45 minutes. By positron emission tomography, the drug distribution was shown to be in the gray matter, and such structures as the cortex, caudate nucleus, thalamus and putamen could be identified. This new methodology will be helpful in studying specific receptors in humans in a noninvasive way.  相似文献   

18.
S-[11C]Nomifensine (S-[11C]NMF) is a positron-emitting tracer suitable for positron emission tomography, which binds to both dopaminergic and noradrenergic reuptake sites in the striatum and the thalamus. Modelling of the cerebral distribution of this drug has been hampered by the rapid appearance of glucuronide metabolites in the plasma, which do not cross the blood--brain barrier. To date, [11C]NMF uptake has simply been expressed as regional versus nonspecific cerebellar activity ratios. We have calculated a "free" NMF input curve from red cell activity curves, using the fact that the free drug rapidly equilibrates between red cells and plasma, while glucuronides do not enter red cells. With this free [11C]NMF input function, all regional cerebral uptake curves could be fitted to a conventional two-compartment model, defining tracer distribution in terms of [11C]NMF regional volume of distribution. Assuming that the cerebellar volume of distribution of [11C]NMF represents the nonspecific volume of distribution of the tracer in striatum and thalamus, we have calculated an equilibrium partition coefficient for [11C]NMF between freely exchanging specific and nonspecific compartments in these regions, representing its "binding potential" to dopaminergic or noradrenergic uptake sites (or complexes). This partition coefficient was lower in the striatum when the racemate rather than the active S-enantiomer of [11C]NMF was administered. In the striatum of patients suffering from Parkinson's disease and multiple-system atrophy, the specific compartmentation of S-[11C]NMF was significantly decreased compared with that of age-matched volunteers.  相似文献   

19.
A tracer kinetic procedure was developed for the measurement of monoamine oxidase type B (MAO-B) activity using L-[11C]deprenyl and positron emission tomography (PET). The kinetic model consisted of two tissue compartments with irreversible binding to the second compartment (three rate constants). In addition, a blood volume component was included. Special attention was given to the accurate measurement of the plasma and whole blood input functions. The method was applied to the measurement of the dose-response curve of a reversible MAO-B inhibitor (Ro 19-6327). From the results, it followed that the rate constant for irreversible binding (k3) appeared to be a better index of MAO-B activity than the net influx constant Ki. Furthermore, regional analysis demonstrated that Ki, but not k3, was flow dependent. This implies that full kinetic analysis is required for an accurate assessment of MAO-B activity.  相似文献   

20.
Iodobenzamide (IMB) labeled with either [11C] or [125I] was studied in mice and baboons. Pharmacological studies demonstrated an in vivo binding profile compatible with D2 dopamine receptors. Mouse biodistribution studies with both [11C]IMB and [125I]IMB showed a similar brain distribution of radioactivity. Mouse [125I]IMB studies with amphetamine and reserpine pretreatment suggested that IMB may be less susceptible to endogenous dopamine competition for D2 receptor binding in vivo as compared to raclopride. Preliminary baboon studies showed haloperidol competition for IMB binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号