首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine. Caffeine as a non-selective adenosine A1/A2A receptor antagonist affects dopaminergic and serotonergic transmissions. The aim of the present study was to determine the changes in DA and 5-HT release in the mouse striatum induced by MDMA and caffeine after their chronic administration. To find out whether caffeine aggravates MDMA neurotoxicity, the content of DA and 5-HT, density of brain DAT and SERT, and oxidative damage of nuclear DNA were determined. Furthermore, the effect of caffeine on MDMA-induced changes in striatal dynorphin and enkephalin and on behavior was assessed. The DA and 5-HT release was determined with in vivo microdialysis, and the monoamine contents were measured by HPLC with electrochemical detection. DNA damage was assayed with the alkaline comet assay. DAT and SERT densities were determined by immunohistochemistry, while prodynorphin (PDYN) and proenkephalin were determined by quantitative PCR reactions. The behavioral changes were measured by the open-field (OF) test and novel object recognition (NOR) test. Caffeine potentiated MDMA-induced DA release while inhibiting 5-HT release in the mouse striatum. Caffeine also exacerbated the oxidative damage of nuclear DNA induced by MDMA but diminished DAT decrease in the striatum and worsened a decrease in SERT density produced by MDMA in the frontal cortex. Neither the striatal PDYN expression, increased by MDMA, nor exploratory and locomotor activities of mice, decreased by MDMA, were affected by caffeine. The exploration of novel object in the NOR test was diminished by MDMA and caffeine. Our data provide evidence that long-term caffeine administration has a powerful influence on functions of dopaminergic and serotonergic neurons in the mouse brain and on neurotoxic effects evoked by MDMA.  相似文献   

2.
1. This study was prompted by recent deaths that have occurred after recreational administration of the substituted amphetamine para-methoxyamphetamine (PMA). Because relatively little is known regarding its mechanism(s) of action, its effects on physiological, behavioural and neurochemical parameters were compared with the well known effects of 3,4-methylenedioxymethamphetamine (MDMA). 2. Equivalent doses of PMA (5-20 mg/kg) produced greater hypothermia than MDMA at an ambient temperature of 20 degrees C. At 30 degrees C, PMA continued to evoke hypothermia except the highest dose where hyperthermia ensued. MDMA altered body temperature only at the highest dose where hyperthermia also resulted. 3. At both 20 and 30 degrees C, MDMA stimulated locomotor activity whereas PMA had modest effects and then, only at high doses. 4. In vivo chronoamperometry was used to measure the effect of MDMA and PMA on release, and inhibition of uptake, of serotonin (5-HT) and dopamine (DA) in the dorsal striatum of anaesthetised rats. As expected, MDMA evoked release of DA and inhibited uptake of both DA and 5-HT. By contrast, PMA was a relatively weak releasing agent and did not inhibit DA uptake. However, PMA potently inhibited uptake of 5-HT. 5. Taken together these data suggest that the acute adverse effects of PMA are more likely to be associated with alterations in serotonergic rather than dopaminergic neurotransmission.  相似文献   

3.
Growing concerns surround the risk of fetal exposure to 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Prior animal studies using neonatal rats administered MDMA from postnatal days (P) 11-20 (a period approximating third trimester brain development in humans) have demonstrated long-lasting decrements in serotonin (5-HT) and learning; however, no studies have examined the acute post-MDMA response of the brain at this early age. Specifically, it is of interest whether MDMA administration to neonatal rats produces the expected depletion of monoamines and whether the brain exhibits any ameliorative response to the pharmacologic insult. In the current study, this model was employed to determine whether forebrain and brainstem dopamine (DA) and 5-HT neurochemistry were altered 24 h after the last injection (P21), and whether brain-derived neurotrophic factor (BDNF) was upregulated in response to MDMA exposure. All forebrain structures examined (frontal cortex, hippocampus, and striatum) showed significant MDMA-induced reductions in 5-HT and its metabolite, 5-HIAA, and significant increases in the DA metabolite, HVA, as well as DA turnover (HVA/DA). In the brainstem, there were significant increases in 5-HIAA, HVA and DA turnover. BDNF was significantly increased (19-38%) in all forebrain structures and in the brainstem in MDMA-exposed neonates versus saline controls. These data suggest that MDMA exposure to the developing rat brain from P11-20 produces similar alterations in serotonin and dopamine neurochemistry to those observed from adult administrations. In addition, a compensatory increase in BDNF was observed and may be the brains ameliorative response to minimize MDMA effects. This is the first report demonstrating that MDMA exposure results in increased levels of BDNF and that such increases are correlated with changes in monoamine levels. Future research is needed to elucidate any deleterious effects MDMA-induced increases in trophic activity might have on the developing brain and to examine earlier gestational exposure periods in order to assess the risk throughout pregnancy.  相似文献   

4.
Recreational use of methylenedioxymethamphetamine (MDMA) has dramatically increased among juveniles and young adults of child-bearing age, and the potential for fetal exposure has increased. For this reason, it is surprising that comparatively few studies have assessed the long-term impact of early MDMA exposure on serotonin (5-HT) and dopamine (DA) neurotransmitter systems. The purpose of this study was to determine whether repeated exposure to MDMA during the preweanling period would cause long-term changes in 5-HT and DA functioning. Rats were treated with saline or 20 mg/kg MDMA (two injections per day) from postnatal day (PD) 11-20. At PD 90, rats were killed, and their dorsal striatum, prefrontal cortex, and hippocampus were removed. 5-HT and DA content, as well as their metabolites, were measured using HPLC. In addition, cAMP-dependent protein kinase A (PKA) activity and agonist-stimulated [35S]GTPgammaS binding was assayed using tissue homogenates from each brain region. Results indicated that early MDMA exposure caused a decrease in PKA activity and 5-HT content in the prefrontal cortex and hippocampus while increasing the efficacy of 5-HT1A receptors as measured by agonist-stimulated [35S]GTPgammaS binding. Additionally, DA content was reduced in the dorsal striatum and prefrontal cortex. These data indicate that early MDMA exposure has long-term effects on the 5-HT and DA neurotransmitter systems that may be mediated, at least partially, by changes in 5-HT1A receptor sensitivity.  相似文献   

5.
H S Pan  R Y Wang 《Brain research》1991,543(1):56-60
The mechanism of action of systemically administered (+/-)-MDMA (3,4-methylenedioxymethamphetamine) on spontaneously active neurons in the medial prefrontal cortex (mPFc) of chloral hydrate anesthetized rats was examined using standard single unit extracellular recording techniques. Intravenously administered MDMA dose-dependently decreased the firing rates of the majority of mPFc neurons in control rats. In contrast, in rats that were pretreated with p-chlorophenylalanine (PCPA), which depletes the brain serotonin (5-hydroxytryptamine, 5-HT) content by inhibiting tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of 5-HT, MDMA was largely ineffective in inhibiting the firing of mPFc cells. In PCPA-treated animals, the administration of 5-hydroxytryptophan (5-HTP), which presumably restored the brain 5-HT content, but not L-DOPA, reinstated MDMA's inhibitory action in PCPA-treated rats. In rats that were pretreated with alpha-methyl-p-tyrosine (AMPT), which depletes the brain dopamine (DA) content by inhibiting tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of DA, MDMA inhibited the firing of all of the mPFc cells. MDMA's effect on mPFc neurons was reversed by 5-HT receptor antagonists such as granisetron and metergoline. These results strongly suggest that MDMA exerts its action on mPFc cells indirectly by releasing endogenous 5-HT.  相似文献   

6.
MDMA (3,4-methylenedioxymethamphetamine), also known as ecstasy, is a popular drug often taken in environments rich in audio and visual stimulation, such as clubs and dance parties. The present experiments were conducted to test the notion that auditory stimulation influences the rewarding effects of MDMA. In Experiment 1, a conditioned place preference (CPP) procedure was conducted in which rats received MDMA (1.5mg/kg, s.c.) in a distinctive environment accompanied by music (65-75dB), white noise (70dB), or no added sound. Animals were pretreated with saline on alternating days in an alternate environment. Results revealed CPP in animals exposed to white noise during MDMA trials. For Experiment 2, rats from Experiment 1 had access to operant levers that delivered intravenous MDMA (0.5mg/kg/inj) or saline (0.1ml) on alternate days in the presence or absence of the same types of auditory stimuli as previously experienced. After three each of MDMA and non-reinforced (saline) sessions, animals were tested for NAcc DA and 5-HT responses to MDMA (1.5mg/kg) or saline under the same stimulus conditions. Findings revealed that NAcc DA and 5-HT increased after an MDMA injection, and both DA and 5-HT were significantly highest in animals exposed to music during the test session. These results indicate that paired sensorial stimuli can engage the same systems activated during drug use and enhance neurochemical and behavioral responses to MDMA administration.  相似文献   

7.
The development of the serotonergic (5HT) and dopaminergic (DA) systems may contribute to the onset of psychotic disorders during late adolescence and early adulthood. Previous studies in our laboratory have suggested that these systems may compete for functional territory on neurons during development, as lesions of the serotonergic system at postnatal day 5 (P5) result in an increase in the density of dopaminergic fibers in rat medial prefrontal cortex (mPFC). In the present study, the dopaminergic system of P5 rats was lesioned with intracisternal injections of 6-hydroxydopamine (6-OHDA). Quantification of serotonin-immunoreactivity (5HT-IR) in mPFC at adulthood (P70) revealed a significant decrease in fiber density within layers II and III of the Cg3 subdivision of mPFC in lesioned rats compared to sham controls. We propose that the decrease in serotonergic fibers in mPFC in response to a neonatal depletion of dopamine may be due to the loss of a trophic effect of this system on 5HT neurons and/or fibers during development. Taken together with previous findings, our data suggest that there may be an "inverse trophic" relationship between the cortical DA and 5HT systems whereby dopamine facilitates the ingrowth of 5HT fibers, while serotonin suppresses the ingrowth of DA fibers. We present a model based on neurotrophic interactions at the cortical and brainstem levels that could potentially explain these unexpected results.  相似文献   

8.
The effects of aniracetam on extracellular levels of dopamine (DA), serotonin (5-HT) and their metabolites were examined in five brain regions in freely moving stroke-prone spontaneously hypertensive rats (SHRSP) using in vivo microdialysis. Basal DA release in SHRSP was uniformly lower in all regions tested than that in age-matched control Wistar Kyoto rats. 3,4-Dihydroxyphenylacetic acid and homovanillic acid levels were altered in the basolateral amygdala, dorsal hippocampus and prefrontal cortex of SHRSP. While basal 5-HT release decreased in the striatum and increased in the basolateral amygdala, there was no associated change in 5-hydroxyindoleacetic acid levels. Systemic administration of aniracetam to SHRSP enhanced both DA and 5-HT release with partly associated change in their metabolite levels in the prefrontal cortex, basolateral amygdala and dorsal hippocampus, but not in the striatum and nucleus accumbens shell, in a dose-dependent manner (30 and/or 100 mg/kg p.o.). Microinjection (1 and 10 ng) of aniracetam or its metabolites (N-anisoyl-GABA and 2-pyrrolidinone) into the nucleus accumbens shell produced no turning behavior. These findings indicate that SHRSP have a dopaminergic hypofunction throughout the brain and that aniracetam elicits a site-specific activation in mesocorticolimbic dopaminergic and serotonergic pathways in SHRSP, possibly via nicotinic acetylcholine receptors in the ventral tegmental area and raphe nuclei. The physiological roles in the aniracetam-sensitive brain regions may closely link with their clinical efficacy towards emotional disturbances appearing after cerebral infarction.  相似文献   

9.
The purpose of this study was to determine whether the regional brain biogenic amine levels in adult rats were altered by pre- and post-natal exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). Pregnant rats were daily orally exposed to 70 mg/kg per day of 2,4-D from gestation day (GD) 16 to post-partum day (PPD) 23. After weaning, the pups were assigned to one of two subgroups: T1 fed with untreated diet up to post-natal day (PND) 90 and T2 (maintained with 2,4-D diet up to PND 90). In addition, we wanted to know the effect of 2,4-D on lateralization in the monoamine systems of the basal ganglia of these adult rats and whether there was any correlation with the behavioral developmental pattern previously reported by us. In this study the content of noradrenaline (NA) was significantly increased in substantia nigra (SN) while it decreased in cerebellum in male and female rats of T2 group. The decreased dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovallinic acid (HVA) contents in cerebellum, midbrain, ventral tegmental area (VTA) and prefrontal cortex (PFc) showed an alteration in the mesocorticolimbic system. However, an increase of DA in SN and of DOPAC and HVA in nucleus accumbens (NAc) in both sexes and of DA and DOPAC (only in females) in striatum was detected. The contents of serotonin (5-hydroxytryptamine, 5-HT) were significantly increased in both sexes in PFc, striatum (St), midbrain, SN and cerebellum. Variations of any monoamine levels in NAc and VTA were determined. T1 rats were irreversibly altered: a diminution in DA and/or DOPAC levels in PFc, midbrain, VTA and cerebellum was determined. Indolamines of these rats were increased in both sexes in PFc and St. There was also a large increase in 5-HT levels in midbrain of male rats. Although no changes in the dopaminergic system with respect to their control values in any side of these brain structures were observed, DA and DOPAC levels were found to be decreased in the right side with respect to the left side in striata and accumbens nuclei in T2 female rats supporting the behavioral rotation previously registered by us in these rats. In addition, the increased 5-HT content detected in both the right and left striata observed in this study could be the answer to the behaviors observed and to the early alterations in dopamine in basal ganglia by 2,4-D in neonatal exposed rats, mediated by a serotonergic modulation on the dopaminergic system.  相似文献   

10.
The mechanism of action of systemitically administered(±)-MDMA (3, 4-methylenedioxymethamphetamine) on spontaneously active neurons in the medial prefrontal cortex (mPFc) of chloral hydrate anesthetized rats was examined using standard single unit extracellular recording techniques. Intravenously administered MDMA dose-dependently decreased the firing rates of the majority of mPFc neurons in control rats. In contrast, in rats that were pretreated withp-chlorophenylalanine (PCPA), which depletes the brain serotonin (5-hydroxytryptamine, 5-HT) content by inhibiting tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of 5-HT, MDMA was largely ineffective in inhibiting the firing of mPFc cells. In PCPA-treated animals, the administration of 5-hydroxytryptophan (5-HTP), which presumably restored the brain 5-HT content, but notl-DOPA, reinstated MDMA's inhibitory action in PCPA-treated rats. In rats that were pretreated withα-methyl-p-tyrosine (AMPT), which depletes the brain dopamine (DA) content by inhibiting tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of DA, MDMA inhibited the firing of all of the mPFc cells. MDMA's effect on mPFc neurons was reversed by 5-HT receptor antagonists such as granisetron and metergoline. These results strongly suggest that MDMA exerts its action on mPFc cells indirectly by releasing endogenous 5-HT.  相似文献   

11.
1. The ability of N-ethyl (MDEA) and N-butyl (MDBA) analogues of 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') to induce acute behavioural changes and increases in body temperature, and to cause serotonergic neurotoxicity, was assessed in young adult male Wistar rats. The in vitro ability of MDMA analogues to evoke presynaptic monoamine release from crude rat forebrain synaptosomal preparations pre-labelled with [3H]5-HT or [3H]DA was also measured. 2. In behavioural experiments, acute MDMA and MDEA (20 mg/kg, i.p.) significantly increased rat open-field locomotion scores, decreased open-field rearing, and induced stereotypy, Straub tail and head weaving. MDBA did not produce any of these behaviours. 3. After repeated dosing (8 x 20 mg/kg, i.p., twice daily for 4 days), MDMA > MDEA > MDBA > or = saline at decreasing forebrain [3H]paroxetine binding levels and concentrations of 5-HT and 5-HIAA at 14 days post-treatment. None of the analogues caused any long-term changes in dopamine or noradrenaline concentrations in the forebrain. 4. Acute MDMA and MDEA (20 mg/kg, i.p.) produced significant acute increases in rat aural temperature compared with saline-treated animals, while 20 mg/kg MDBA caused no significant effects. 5. MDA, MDMA and MDEA were equipotent at inducing [3H]5-HT release from frontal cortex/hippocampal synaptosomes, while MDBA only evoked a significant release at 100 microM concentrations. The potency order for inducing [3H]DA release from striatal synaptosomes was MDA > MDMA > MDEA = MDBA. 6. This study shows that large N-alkyl substitution decreases the ability of MDMA analogues to evoke presynaptic 5-HT and DA release, induce acute hyperthermia, hyperlocomotion and behavioural changes, and cause long-term serotonergic neurotoxicity. 7. The structure-activity relationship data presented here indicate that the neurotoxic damage caused by substituted amphetamines requires a combination of acute hyperthermia and increased neurotransmitter release. Induction of one of these effects in isolation is not sufficient to cause serotonergic nerve terminal degradation.  相似文献   

12.
Damage to serotonin (5-HT) terminals following doses of 3,4-methylenedioxymethamphetamine (MDMA) is well documented, and this toxicity is thought to be related to dopamine release that is potentiated by the 5-HT(2A/2C) agonist effects of the drug. Although MDMA and methamphetamine (METH) have some similar dopaminergic activities, they differ in their 5-HT agonistic properties. It is reasoned that the study of the resultant toxicity following equimolar doses of MDMA and METH on both dopamine and 5-HT terminals should offer a comparison of the ability of these drugs to induce neurotoxicity. In order to measure the toxic effects to the brain, rats were given equimolar doses of MDMA (40 mg/kg/day) and METH (32 mg/kg/day) in subcutaneously implanted osmotic minipumps for a period of 5 days, and in-vitro autoradiography using [3H]-paroxetine, [3H]-mazindol, [3H]-methylspiperone, and [3H]-flunitrazepam, was performed on brain sections. The results showed that METH was more toxic to 5-HT terminals than MDMA in forebrain regions, including the anterior cingulate, caudate nucleus, nucleus accumbens, and septum. METH was also more toxic than MDMA to dopamine terminals in the habenula, and posterior retrosplenial cortex. Therefore, we find that METH was more toxic to 5-HT and dopamine terminals in specific brain regions in both pre and post-synaptic sites following continuous equimolar dosing.  相似文献   

13.
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is an amphetamine derivative widely abused by young adults. Although many studies have reported that relatively high doses of MDMA deplete serotonin (5-HT) content and decrease the availability of serotonin transporters (5-HTT), limited evidence is available as to the adaptive mechanisms taking place in gene expression levels in the brain following a dosing regimen of MDMA comparable to human consumption. In order to further clarify this issue, we used quantitative PCR to study the long-term changes induced by acute administration of MDMA (5 mg/kg × 3) in the expression of genes related to serotonergic and dopaminergic systems, as well as those related to cellular toxicity in the cortex, hippocampus, striatum, and brain stem of rats. Seven days after MDMA administration, we found a significantly lower expression of the 5-HTT (Slc6a4) and the vesicular monoamine transporter (Slc18a2) genes in the brain stem area. In the hippocampus, monoamine oxidase B (Maob) and tryptophan hydroxylase 2 (Tph2) gene expressions were increased. In the striatum, tyrosine hydroxylase (Th) expression was decreased, and a lower expression of α-synuclein (Snca) was observed in the cortex. In contrast, no significant changes were observed in the genes considered to be biomarkers of toxicity including the glial fibrillary acidic protein (Gfap) and the heat-shock 70 kD protein 1A (Hspa1a) in any of the structures assayed. These results suggest that MDMA promotes adaptive changes in genes related to serotonergic and dopaminergic functionality, but not in genes related to neurotoxicity.  相似文献   

14.
The present study evaluated, via a combined electrophysiological and dialysis approach, the potential influence of serotonin (5-HT)(2C) as compared to 5-HT(2A) and 5-HT(2B) receptors on dopaminergic, adrenergic, and serotonergic transmission in frontal cortex (FCX). Whereas the selective 5-HT(2A) antagonist MDL100,907 failed to modify extracellular levels of dopamine (DA), noradrenaline (NA) or 5-HT simultaneously quantified in single dialysate samples of freely-moving rats, the 5-HT(2B)/5-HT(2C) antagonist SB206,553 dose-dependently increased levels of DA and NA without affecting those of 5-HT. This action was attributable to 5-HT(2C) receptor blockade inasmuch as the selective 5-HT(2C) antagonist SB242,084 likewise increased FCX levels of DA and NA, whereas the selective 5-HT(2B) antagonist SB204,741 was ineffective. Further, the preferential 5-HT(2C) receptor agonist Ro60-0175 dose-dependently depressed FCX levels of DA. The suppressive influence of 5-HT(2C) receptors on DA release was also expressed on mesolimbic and nigrostriatal dopaminergic pathways, in that levels of DA in nucleus accumbens and striatum were likewise reduced by Ro60-0175 and elevated, though less markedly, by SB206,553. In line with the above findings, Ro60-0175 dose-dependently decreased the firing rate of ventrotegmental dopaminergic and locus coeruleus (LC) adrenergic perikarya, whereas their activity was dose-dependently enhanced by SB206,553. Furthermore, SB206,553 transformed the firing pattern of ventrotegmental dopaminergic neurons into a burst mode. In contrast to SB206,553, MDL100,907 had little affect on the firing rate of dopaminergic or adrenergic neurons. In conclusion, as compared to 5-HT(2A) and 5-HT(2B) receptors, 5-HT(2C) receptors exert a tonic, suppressive influence on the activity of mesocortical - as well as mesolimbic and nigrostriatal - dopaminergic pathways, likely via indirect actions expressed at the level of their cell bodies. Frontocortical adrenergic, but not serotonergic, transmission is also tonically suppressed by 5-HT(2C) receptors.  相似文献   

15.
16.
Repeated administration of methylenedioxymethamphetamine (MDMA) to rats results in long-term depletion of serotonin (5-hydroxytryptamine; 5-HT) in several brain regions. Because of the apparent role of 5-HT in morphine-induced antinociception, the present experiment was designed to determine the effects of repeated MDMA injections on morphine-induced analgesia. Rats (n = 48) received 8 s.c. injections (one every 12 h for 4 days) of MDMA (20 mg/kg) or saline (1.0 ml/kg). Two weeks after the last injection, the groups were divided into 4 subgroups that received either saline, or morphine 2.5, 3.55 or 5.0 mg/kg (s.c.). Nociception was assayed before and after saline or morphine administration by the method of tail immersion in warm water (55 degrees C). The day after analgesia testing, the animals were sacrificed, brains and spinal cords removed and 5-HT, norepinephrine (NE) and dopamine (DA) levels in various brain and spinal cord regions were assayed. The analgesic effect of morphine was enhanced in rats that had received repeated MDMA injections. MDMA selectively depleted 5-HT in the cortex, hippocampus, striatum, brainstem and in the cervical portion of spinal cord. However, 5-HT levels were not changed in the thoracic and lumbar segments of the spinal cord. Thus, a functional consequence of repeated MDMA administration in rats was to enhance morphine-induced antinociception in association with reductions in brain and cervical spinal cord 5-HT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Neonatal exposure to 3,4-methylenedioxymethamphetamine (MDMA) produces long-term learning and memory deficits and increased anxiety-like behavior. The mechanism underlying these behavioral changes is unknown but we hypothesized that it involves perturbations to the serotonergic system as this is the principle mode of action of MDMA in the adult brain. During development 5-HT is a neurotrophic factor involved in neurogenesis, synaptogenesis, migration, and target region specification. We have previously showed that MDMA exposure (4×10 mg/kg/day) from P11-20 (analogous to human third trimester exposure) induces ~50% decreases in hippocampal 5-HT throughout treatment. To determine whether MDMA-induced 5-HT changes are determinative, we tested if these changes could be prevented by treatment with a selective serotonin reuptake inhibitor (citalopram: CIT). In a series of experiments we evaluated the effects of different doses and dose regimens of CIT on MDMA-induced 5-HT depletions in three brain regions (hippocampus, entorhinal cortex, and neostriatum) at three time-points (P12, P16, P21) during the treatment interval (P11-20) known to induce behavioral alterations when animals are tested as adults. We found that 5 mg/kg CIT administered twice daily significantly attenuated MDMA-induced 5-HT depletions in all three regions at all three ages but that the protection was not complete at all ages. Striatal dopamine was unaffected. We also found increases in hippocampal NGF and plasma corticosterone following MDMA treatment on P16 and P21, respectively. No changes in BDNF were observed. CIT treatment may be a useful means of interfering with MDMA-induced 5-HT reductions and thus permit tests of the hypothesis that the drug's cognitive and/or anxiety effects are mediated through early disruptions to 5-HT dependent developmental processes.  相似文献   

18.
Male Wistar rats were isolated either immediately after weaning or in adulthood. Then they were decapitated at the last day of the 1st, 3rd, 6th, 9th, 12th and 15th week of isolation and the levels of NA, DA and 5-HT on whole brains except cerebellum were assayed simultaneously by fluorimetric procedure. When isolation was started immediately after weaning, isolated rats had significantly higher level of brain NA than that of control grouped rats at the 6th and 9th week of isolation and then the brain NA level was reduced to control level, on the other hand when isolation was started in adulthood, brain NA level did not change significantly between the two groups. Brain DA level in isolated rats increased significantly both at the 9th week in post-weaning rats and at the 12th week in young-adult rats. Brain 5-HT level did not change significantly by isolation either immediately after weaning nor in adulthood. As for regional distribution of monoamine levels, rats isolated for nine weeks at weaning had significantly increased NA and DA levels in the situs that the cell bodies of noradrenergic and dopaminergic neurons were located. Namely, it was found that different effect of isolation on the level of brain NA occurred by the difference of age when social isolation had been started, and these data were confirmed by repeated study.  相似文献   

19.
The effect of repeated administration of either methamphetamine (MA), 3,4-methylenedioxymethamphetamine (MDMA) or vehicle on the extracellular concentrations of glutamate (GLU), aspartate, taurine, dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), was studied in awake, freely moving rats using in vivo microdialysis. MA (7.5 mg/kg, i.p.) administered every 2 h for a total of 3 injections, increased the extracellular concentration of GLU in the anteromedial striatum. By contrast, neither vehicle nor MDMA (9.2 and 13.8 mg/kg) increased GLU efflux following repeated administration. Both MA and MDMA increased the extracellular concentration of DA in the striatum. However, the cumulative increase in DA was significantly greater in the MDMA treated animals as compared to the MA group. The concentrations of DA, serotonin (5-HT) and their metabolites were determined in the striatum 7 days following the repeated administration of MA, MDMA and vehicle. MA, but not MDMA or vehicle, decreased the concentration of DA in the striatum. Conversely, MDMA (13.8 mg/kg) decreased the concentration of 5-HT, whereas MA, MDMA (9.2 mg/kg) and vehicle had no effect on striatal 5-HT content. These data are suggestive that the long-term (7 day) DA neurotoxicity produced by the repeated administration of MA is mediated, in part, by a delayed increase in extracellular concentrations of GLU. In contrast, repeated administration of MDMA, at a dose which produced a long-term (7 day) depletion of striatal 5-HT content, had no effect on GLU efflux in the striatum.  相似文献   

20.
We examined the effects of pressure ejected 3, 4-methylenedioxymethamphetamine (MDMA) from a micropipette on direct chemically stimulated release, and on electrically stimulated serotonin (5-HT) or dopamine (DA) release in the caudate putamen (CPu), nucleus accumbens (NAc), substantia nigra pars reticulata (SNr), and the dorsal raphé nucleus (DRN) brain slices of rat, using fast cyclic voltammetry (FCV). MDMA is electroactive, oxidising at +1100 mV. When the anodic input waveform was reduced from +1.4 to +1.0 volt, MDMA was not electroactive. Using this waveform, pressure ejection of MDMA did not release 5-HT or DA in brain slices prepared from any of the nuclei studied. MDMA significantly potentiated electrically stimulated 5-HT release in the SNr and DA release in CPu. In the DRN or in the NAc, MDMA was without effect on peak electrically stimulated 5-HT or DA release. The rates of neurotransmitter uptake, expressed as t(1/2), were in all cases significantly decreased after MDMA. The results indicate that MDMA, unlike (+)amphetamine, is not as a releaser of DA or 5-HT, it is a potent inhibitor of both DA and 5-HT uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号