首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin and development of the supraspinal catecholaminergic (CA) innervation of the spinal cord was studied in representative species of the three amphibian orders (Anura: Xenopus laevis and Rana perezi; Urodela: Pleurodeles waltl; Gymnophiona: Dermophis mexicanus). Using retrograde dextran amine tracing in combination with tyrosine hydroxylase (TH)-immunohistochemistry, we showed that only four brain centers contribute to the CA innervation of the adult spinal cord: (1) the ventrolateral component of the posterior tubercle, (2) the periventricular nucleus of the zona incerta, (3) the locus coeruleus, and (4) the nucleus of the solitary tract (except for gymnophionans). The pattern observed is largely similar in all amphibian species studied. The development of the CA innervation of the spinal cord was studied with in vitro double labeling methods in Xenopus laevis tadpoles. At stage 40/41, the first CA neurons projecting to the spinal cord were found to originate in the posterior tubercle. At stage 43, spinal projections were found from the periventricular nucleus of the zona incerta and the locus coeruleus, whereas spinal projections from the nucleus of the solitary tract were not observed before stage 53. These results demonstrate a temporal sequence in the appearance of the CA cell groups projecting to the anuran spinal cord, organized along a rostrocaudal gradient.  相似文献   

2.
Immunohistochemical studies with antibodies against tyrosine hydroxylase, dopamine, and noradrenaline have revealed that the spinal cord of anuran, urodele, and gymnophionan (apodan) amphibians is abundantly innervated by catecholaminergic (CA) fibers and terminals. Because intraspinal cells occur in all three orders of amphibians CA, it is unclear to what extent the CA innervation of the spinal cord is of supraspinal origin. In a previous study, we showed that many cell groups throughout the forebrain and brainstem project to the spinal cord of two anurans (the green frog, Rana perezi, and the clawed toad, Xenopus laevis), a urodele (the Iberian ribbed newt, Pleurodeles waltl), and a gymnophionan (the Mexican caecilian, Dermophis mexicanus). To determine the exact site of origin of the supraspinal CA innervation of the amphibian spinal cord, retrograde tracing techniques were combined with immunohistochemistry for tyrosine hydroxylase in the same sections. The double-labeling experiments demonstrated that four brain centers provide CA innervation to the amphibian spinal cord: 1.) the ventrolateral component of the posterior tubercle in the mammillary region, 2.) the periventricular nucleus of the zona incerta in the ventral thalamus, 3.) the locus coeruleus, and 4.) the nucleus of the solitary tract. This pattern holds for all three orders of amphibians, except for the CA projection from the nucleus of the solitary tract in gymnophionans. There are differences in the strength of the projections (based on the number of double-labeled cells), but in general, spinal functions in amphibians are controlled by CA innervation from brain centers that can easily be compared with their counterparts in amniotes. The organization of the CA input to the spinal cord of amphibians is largely similar to that described for mammals. Nevertheless, by using a segmental approach of the CNS, a remarkable difference was observed with respect to the diencephalic CA projections.  相似文献   

3.
A combined immunohistochemical and retrograde tracing approach was used to characterize the catecholaminergic innervation of the optic tectum (TeO), the major target of retinal projections in many avian species. Giemsa counterstaining was employed to determine precisely the laminar localization of immunoreactive fibers and presumptive terminals. The TeO of the pigeon is densely innervated by fibers immunoreactive for tyrosine hydroxylase (TH), which are most heavily distributed to the superficial layers of its dorsal and anterior portions. Within the dorsal-anterior tectum, TH-immunoreactive processes are particularly dense in retinorecipient layers 4 and 7 and in layer 5a. As in the mammalian superior colliculus, the bulk of the catecholaminergic innervation of the pigeon TeO reflects inputs, presumably noradrenergic, originating in the locus coeruleus and nucleus subcoeruleus. However, the catecholaminergic innervation of the pigeon TeO shows several features distinct from those reported for the mammalian superior colliculus. These include an input from a pretectal TH-positive cell group unknown in mammals and the presence of residual TH immunoreactivity after administration of the noradrenergic neurotoxin DSP-4. Moreover, the pattern of TH-immunoreactive fibers in pigeon TeO, indicates more laminar and regional specialization within this structure than has been reported for the catecholaminergic innervation of the superior colliculus in mammals. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The distribution of amygdaloid axons in the various brainstem dopaminergic, noradrenergic, and adrenergic cell groups was examined. This was accomplished by means of the Phaseolus vulgaris leucoagglutinin lectin (PHA-L) anterograde tracing technique combined with glucose-oxidase immunocytochemistry to catecholamine markers (i.e., tyrosine hydroxylase, dopamine beta hydroxylase, and phenylethanolamine N-methyltransferase). Injections of PHA-L in the medial part of the central amygdaloid nucleus resulted in axonal and terminal labeling in most catecholamine cell groups in the brainstem. Amygdaloid terminals appeared to contract catecholaminergic cells in several brainstem regions. The most heavily innervated catecholaminergic cells were the A9 (lateral) and A8 dopaminergic cell groups and the C2/A2 adrenergic/noradrenergic cell groups in the nucleus of the solitary tract. The medial part of the A9 and adjacent A10 dopaminergic cell groups was moderately innervated. A moderate innervation by amygdaloid terminals was observed on rostral locus coeruleus noradrenergic cells (A6 rostral) and adrenergic cells of the rostral ventrolateral medulla (C1). Noradrenergic cells of the A5, main body of the locus coeruleus (A6), A7, and subcoeruleus were sparsely innervated. Amygdaloid axons were not observed on noradrenergic neurons of the A4 cell group, area postrema, and A1 cells of the ventrolateral medulla. The results demonstrate that the amygdala primarily innervates the dopaminergic cells of midbrain (i.e., A8 and lateral A9 cells) and the adrenergic cells (C2) and noradrenergic (A2) cells in the nucleus of the solitary tract. The possible functional significance of amygdaloid innervation of catecholaminergic cells is discussed.  相似文献   

5.
Development of the noradrenergic fiber innervation of the rat hippocampus by the locus coeruleus was examined immunohistochemically in fixed tissue from animals aged 4 days through 55 days postnatal. The presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) immunoreactive cells and fibers was evaluated in sections of hippocampus and locus coeruleus. Large, multipolar TH- and DBH-positive cells with long beaded fibers were visible within locus coeruleus at all ages; no immunopositive cell bodies were found in hippocampus. In hippocampal sections from mature animals (PN55), the highest density of DBH-stained fibers was found in stratum lucidum of CA3 and in the hilus and inner molecular layer of the dentate gyrus. Whereas similar patterns of fiber positivity were found at PN21 and PN10 (although with somewhat reduced density of immunopositive fibers), the pattern was quite different at PN4. Although fiber staining was relatively sparse at PN4, relative density of DBH fibers was highest in stratum radiatum of CAI and subiculum. This change in staining pattern suggests that noradrenergic function in hippocampus may change as the rat matures. Double immunofluorescence techniques showed an overlap of DBH and TH positive fibers in all hippocampal regions at all ages. DBH immunostaining appeared to be somewhat more sensitive than the TH staining. These data made it impossible to confirm the presence of significant numbers of nonnoradrenergic, catecholamine-containing fibers in hippocampus. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Nerve fibers immunoreactive for enzymes synthesizing catecholamines were examined in the central autonomic nucleus, a column of sympathetic preganglionic neurons, in the filefish Stephanolepis cirrhifer. Varicose nerve fibers immunoreactive for tyrosine hydroxylase were densely distributed in the rostral part, sometimes in contact with perikarya but were sparse in the caudal part of this nucleus. Fluorescent double labeling distinguished noradrenergic nerve fibers immunoreactive for both tyrosine hydroxylase and dopamine beta hydroxylase, and dopaminergic fibers immunoreactive only for tyrosine hydroxylase. In the brainstem, catecholaminergic neurons were observed in the locus coeruleus, the caudal dorsomedial reticular zone of the medulla, and the area postrema. Double labeling of tyrosine hydroxylase and dopamine beta hydroxylase showed that the neurons in the locus coeruleus were all noradrenergic, and those in the caudal dorsomedial medulla were mostly noradrenergic, whereas the area postrema contained both noradrenergic and dopaminergic neurons. No catecholaminergic neurons were found in the ventral region of the brainstem. After application of DiI to the central autonomic nucleus, retrogradely labeled neurons were seen in the caudal dorsomedial medulla but not in the locus coeruleus or the area postrema. These findings suggest that the sympathetic preganglionic neurons of the filefish may receive noradrenergic axonal projections from neurons in the caudal dorsomedial medulla. In the light of previous studies, inputs of these catecholaminergic fibers to the central autonomic nucleus may be involved in regulation of sympathetic activity of peripheral organs, together with serotoninergic and peptidergic inputs to this nucleus.  相似文献   

7.
The localization of catecholamines (CA) in the brain of Apteronotus leptorhynchus was studied with immunohistochemical techniques using antibodies to the enzymes tyrosine hydroxylase (TH), dopamine B-hydroxylase (DBH), phenylethanolamine-N-methyltransferase (PNMT), and the neurotransmitter dopamine (DA). Telencephalic TH and DA immunoreactive (ir) neurons were located in the following structures: olfactory bulb, area ventralis telencephali partes ventralis, centralis, dorsalis, and intermediate. Diencephalic TH ir neurons were distributed in: nucleus preopticus periventricularis pars anterior, floor of preoptic recess, n. suprachiasmaticus, n. preopticus periventricularis pars posterior, n. anterior periventricularis, area ventralis lateralis, rostral region of posterior periventricular nucleus (paraventricular organ of other authors), periventricular nucleus of posterior tuberculum, n. recessus lateralis, n. tuberis lateralis pars anterior, and n. tuberis posterior. Although most diencephalic TH ir structures were also DAir, the posterior periventricular nucleus, n. recessus lateralis pars medialis, n. recessus posterioris, and ventral region of nucleus lateralis tuberis pars anterior showed differences in the distribution of TH and DA immunoreactivity. The rhombencephalic structures contained cell groups with different combinations of catecholamines as follows: TH and DBH ir neurons in the isthmic tegmentum (locus coeruleus); TH and DBH ir cells in the rostral medullary tegmentum ventral to VIIth nerve; TH and PNMT ir cells in the sensory nucleus of the vagus nerve; TH, DBH, and PNMT ir cells in the dorsal medullary tegmentum, TH and DBH ir cells in the dorsomedian postobecular region, ventral to the descending trigeminal tract and lateral to the central canal at medullospinal levels. This study shows that: (1) with few exceptions TH and DA ir coincides, (2) gymnotiforms possess similar DBH ir rhombencephalic groups, but additional telencephalic and rhombencephalic TH ir groups, and PNMT ir cells that were not reported previously in teleosts, and (3) the presence of CAergic fibers in the electrosensory system supports findings of their modulatory function in communication and aggression.  相似文献   

8.
Cladistians are a group of basal nonteleost actinopterygian fishes that represent an interesting group for the study of primitive brain features, most likely present in the ancestral Osteichthyes. We have investigated the catecholaminergic (CA) systems in the brain of two representative cladistian species, the bichir Polypterus senegalus and the reedfish Erpetoichthys calabaricus, by means of antibodies against tyrosine hydroxylase (TH; the first enzyme in the synthesis of catecholamines) and dopamine (DA). Double immunohistofluorescence was performed for simultaneous detection of TH with nitric oxide synthase, choline acetyltransferase, calbindin, calretinin, and serotonin, aiming to accurately establish the localization of the CA neurons and to assess possible interactions between these neuroactive substances. All forebrain CA groups of cladistians are dopaminergic, whereas noradrenergic cells are located within the rhombencephalon. Distinct groups of DA immunoreactive (DA-ir) cells were observed in the olfactory bulb, subpallium, and preoptic area of the telencephalon. Hypothalamic groups were detected in the suprachiasmatic nucleus, retrotuberal and retromamillary areas and, in particular, the paraventricular organ showed immunoreactivity to dopamine but not to TH. Diencephalic DA-ir groups were detected in the prethalamus, posterior tubercle, and pretectum. A small DA-ir cell population was observed in the midbrain tegmentum only in Polypterus. CA cell groups were also located in the locus coeruleus, solitary tract nucleus, and area postrema within the rhombencephalon, the spinal cord, and the retina. The comparison of these results with other vertebrates, using a neuromeric analysis, shows highly conserved traits in all vertebrates studied but also evidences particular characteristics of actinopterygian fishes.  相似文献   

9.
In developmental stages of the clawed toad, Xenopus laevis, we describe the ontogeny of descending supraspinal connections, catecholaminergic projections in particular, by means of retrograde tracing techniques with dextran amines. Already at embryonic stages (stage 40), spinal projections from the reticular formation, raphe nuclei, Mauthner neurons, vestibular nuclei, the locus coeruleus, the interstitial nucleus of the medial longitudinal fasciculus, the posterior tubercle, and the periventricular nucleus of the zona incerta are well developed. At the beginning of the premetamorphic period (stage 46), spinal projections arise from the suprachiasmatic nucleus, the torus semicircularis, the pretectal region, and the ventral telencephalon. After stage 48, tectospinal and cerebellospinal projections develop, with spinal projections from the preoptic area following at stage 51. Rubrospinal projections are present at stage 50. During the prometamorphic period, spinal projections arise in the nucleus of the solitary tract, the lateral line nucleus, and the mesencephalic trigeminal nucleus. With in vitro double-labeling methods, based on retrograde tracing of dextran amines in combination with tyrosine hydroxylase (TH) immunohistochemistry, we show that at stage 40/41, catecholaminergic (CA) neurons in the posterior tubercle are the first to project to the spinal cord. Subsequently, at stage 43, new projections arise in the periventricular nucleus of the zona incerta and the locus coeruleus. The last CA projection to the spinal cord originates from neurons in the nucleus of the solitary tract at the beginning of prometamorphosis (stage 53). Our data show a temporal, rostrocaudal sequence in the development of the CA cell groups projecting to the spinal cord. Moreover, the early appearance of CA fibers, preterminals and terminal-like structures in dorsal, intermediate, and ventral zones of the embryonic spinal cord, suggests an important role for catecholamines during development in nociception, autonomic functions, and motor control at the spinal level.  相似文献   

10.
This report describes the distribution of noradrenergic cells in the brainstem and the pattern of terminal varicosities in the spinal cord of monkey using the immunocytochemical localization of dopamine-beta-hydroxylase (DBH). Using two separate and equally reliable techniques, retrograde transport of the antibody to DBH and a double-labeling method, the cells of origin of noradrenergic fibers in the spinal cord have been identified. The results of these studies indicate that 79% of all noradrenergic cells with axons projecting to the spinal cord are located in the nucleus subcoeruleus and nucleus locus coeruleus. Other pontine noradrenergic cell groups contribute the remainder of the fibers to the cord. No medullary cells contribute to the noradrenergic innervation of the spinal cord.  相似文献   

11.
Parkinson's disease is a neurodegenerative disorder where dopamine neurons in the substantia nigra of ventral mesencephalon undergo degeneration. In addition to the loss of dopamine neurons, noradrenaline neurons in the locus coeruleus degenerate, actually to a higher extent than the dopamine neurons. The interaction between these two nuclei is yet not fully known, hence this study was undertaken to investigate the role of locus coeruleus during development of dopamine neurons utilizing the intraocular grafting model. Fetal ventral mesencephalon and locus coeruleus were implanted either as single grafts or co-grafts, placed in direct contact or at a distance. The results revealed that the direct attachment of locus coeruleus to ventral mesencephalon enhanced graft volume and number of tyrosine hydroxylase (TH)-positive neurons in ventral mesencephalic grafts. Cell counts of subpopulations of TH-positive neurons also immunoreactive for aldehyde dehydrogenase 1-A1 (ALDH1) or calbindin, revealed improved survival of ALDH1/TH-positive neurons. However, the number of calbindin/TH-positive neurons was not affected. High density of dopamine-β-hydroxylase (DBH)-positive innervation in the ventral mesencephalon placed adjacent to locus coeruleus was correlated to the improved survival. Ventral mesencephalic tissue, implanted at a distance to locus coeruleus, did not demonstrate improved survival, although DBH-positive nerve fibers were detected. In conclusion, the direct contact of locus coeruleus resulting in dense noradrenergic innervation of ventral mesencephalon is beneficial for the survival of ventral mesencephalic grafts. Thus, when trying to rescue dopamine neurons in Parkinson's disease, improving the noradrenergic input to the substantia nigra might be worth considering.  相似文献   

12.
Oscine birds are among the few animal groups that have vocal learning, and their brains contain a specialized system for song learning and production. We describe here the immunocytochemical distribution of dopamine-β-hydroxylase (DBH), a noradrenergic marker, in the brain of an oscine, the zebra finch (Taeniopygia guttata). DBH-positive cells were seen in the locus coeruleus, the nucleus subcoeruleus ventralis, the nucleus of the solitary tract, and the caudolateral medulla. Immunoreactive fibers and varicosities had a much wider brain distribution. They were particularly abundant in the hippocampus, septum, hypothalamus, area ventralis of Tsai, and substantia nigra, where they formed dense pericellular arrangements. Significant immunoreactivity was observed in auditory nuclei, including the nucleus mesencephalicus lateralis pars dorsalis, the thalamic nucleus ovoidalis, field L, the shelf of the high vocal center (HVC), and the cup of the nucleus robustus archistriatalis (RA), as well as in song control nuclei, including the HVC, RA, the lateral magnocellular nucleus of the anterior neostriatum, and the dorsomedial nucleus (DM) of the intercollicular complex. Except for the DM, DBH immunoreactivity within song nuclei was comparable to that of surrounding tissues. Conspicuously negative were the lobus paraolfactorius, including song nucleus area X, and the paleostriatum. Our results are in agreement with previous studies of the noradrenergic system performed in nonoscines. More importantly, they provide direct evidence for a noradrenergic innervation of auditory and song control nuclei involved in song perception and production, supporting the notion that noradrenaline is involved in vocal communication and learning in oscines. J. Comp. Neurol. 400:207–228, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
When administered systemically, the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) appears to target the noradrenergic innervation originating in the locus coeruleus causing long-term decrements in noradrenergic function. In songbirds, DSP-4-treatment decreased female-directed singing by males and copulation solicitation responses of females to male songs. However, DSP-4 treatment in songbirds did not lower measures of NE function in the brain to the same extent as it does in mammals. The current study had two goals: determining if two DSP-4 treatments 10 days apart would cause significant decrements in noradrenergic function in male zebra finches and determining if, as in other species, the noradrenergic innervation of midbrain and cortical areas would be profoundly affected while hypothalamic areas were spared. Dopamine-beta-hydroxylase immunoreactivity (DBH-ir) was quantified in thirteen brain regions (five vocal control nuclei, one auditory nucleus, two hypothalamic nuclei, and five additional areas that demonstrated high DBH labeling in controls). Within 20 days, DSP-4 treatment profoundly reduced the number of DBH-ir cells in both the locus coeruleus and ventral subcoeruleus. Unlike a previous study, DBH labeling delineated four out of five vocal control nuclei and an auditory nucleus. As expected, DSP-4 treatment significantly decreased DBH labeling in all areas examined in the mesencephalon and telencephalon without significantly affecting DBH-ir in hypothalamic areas. This double treatment regime appears to be much more effective in decreasing noradrenergic function in songbirds than the single treatment typically used.  相似文献   

14.
The catecholaminergic innervation of the human septal area and closely related structures has been visualized by using tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) as immunocytochemical markers. TH-like immunoreactivity with no corresponding DBH labelling was considered to be indicative of dopaminergic fibers. Catecholaminergic innervation offered the following similarities to that of rodents: moderate innervation in the medial septal division, with predominant DBH immunolabelling; dense dopaminergic innervation in the lateral septal nuclei, organized in a laminar pattern; presence of dopaminergic pericellular arrangements in the dorsal septum and bed n. of the stria terminalis; clustering of dopaminergic terminals in n. accumbens associated with a medioventral zone of DBH-like immunoreactive fibers; close overlap between dopaminergic fields and acetylcholinesterase-reactive zones in both the lateral septum and the n. of the stria terminalis. Differences with the catecholaminergic septal innervation of rodents consisted of general caudal extension of the dopaminergic fields, possibly accounted for by the vertical stretching and caudal displacement of the septal nuclei in man; complementary lateromedial topography of dopaminergic and DBH-immunoreactive inputs in the n. of the stria terminalis as opposed to their dorsoventral organization in rodents; presence of TH-immunolabelled cell group in the anterior olfactory nucleus and parolfactory cortex, which seems specific for primates. Precise topographical mapping of the catecholaminergic structures in this central region of the limbic forebrain seems to be a prerequisite for accurate tissue sampling in the biochemical investigations of pathological cases and should help in the interpretation of aminergic dysfunction in a variety of human diseases.  相似文献   

15.
To gain more insight into the dopaminergic system of amphibians and the evolution of catecholaminergic systems in vertebrates in general, the distribution of dopamine and tyrosine hydroxylase immunoreactivity was studied in the brains of the anuran Rana ridibunda and the urodele Pleurodeles waltlii. In both species, dopamine-immunoreactive (DAi) cell bodies were observed in the olfactory bulb, the preoptic area, the suprachiasmatic nucleus, the nucleus of the periventricular organ and its accompanying cells, the nucleus of the posterior tubercle, the pretectal area, the midbrain tegmentum, around the solitary tract, in the ependymal and subependymal layers along the midline of the caudal rhombencephalon, and ventral to the central canal of the spinal cord. Tyrosine hydroxylase (TH) immunohistochemistry revealed a similar pattern, although some differences were noted. For example, with the TH antibodies, additional cell bodies were stained in the internal granular layer of the olfactory bulb and in the isthmal region, whereas the same antibodies failed to stain the liquor contacting cells in the nucleus of the periventricular organ. Both antisera revealed an almost identical distribution of fibers in the two amphibian species. Remarkable differences were observed in the forebrain. Whereas the nucleus accumbens in Rana contains the densest DAi plexus, in Pleurodeles the dopaminergic innervation of the striatum prevails. Moreover, cortical structures of the newt contain numerous DAi fibers, whereas the corresponding structures in the frog are devoid of immunoreactivity. The dopaminergic system in amphibians appears to share many features not only with other anamniotes but also with amniotes.  相似文献   

16.
The periaqueductal or midbrain central gray matter (CG) in the rat contains a dense network of adrenergic and noradrenergic fibers. We examined the origin of this innervation by using retrograde and anterograde axonal tracers combined with immunohistochemistry for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT). Following injections of the fluorescent tracers Fast Blue or Fluorogold into the CG, double-labeled neurons in the medulla were identified mainly in the noradrenergic A1 group in the caudal ventrolateral medulla (VLM) and A2 group in the medial part of the nucleus of the solitary tract (NTS); and in the adrenergic C1 group in the rostral ventrolateral medulla and C3 group in the rostral dorsomedial medulla. Injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) into these cell groups resulted in a distinct pattern of axonal labeling in various subdivisions of the CG. Anterogradely labeled fibers originating in the medial NTS were predominantly found in the lateral portion of the dorsal raphe nucleus and in the adjacent part of the lateroventral CG (CGlv). Following PHA-L injections into the C3 region the anterogradely labeled fibers were diffusely distributed in the CGlv and the dorsal raphe nucleus at caudal levels, but rostrally tended to be located laterally in the CGlv. In contrast, ascending fibers from the caudal and rostral VLM terminated in the rostral dorsal part of the CGlv and in the dorsal nucleus of the CG, whereas ventral parts of the CG, including the dorsal raphe nucleus, contained few afferent fibers. Double-label studies with antisera against DBH and PNMT confirmed that noradrenergic neurons in the A1 and A2 groups and adrenergic neurons in the C1 and C3 groups contributed to these innervation patterns in the CGlv. Noradrenergic and adrenergic projections from the medulla to the CG may play an important role in a variety of autonomic, sensory and behavioral processes.  相似文献   

17.
The activities of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) have been measured in brain stem and hypothalamic nuclei during the development of renovascular hypertension. TH activity fell at 72 h in the posterior hypothalamic and peri- and paraventricular nuclei of the hypothalamus, but had returned to control levels by 7 days. PNMT activity was raised in the nucleus of the solitary tract at 7 days and was also elevated in the nucleus of the solitary tract, parahypoglossal nucleus, locus coeruleus and cerebellar cortex at 4 weeks. No change in PNMT was noted in hypothalamus. It appears from these results that both central noradrenergic and adrenergic pathways are involved in the development of this model of experimental hypertension.  相似文献   

18.
Kawano H  Masuko S 《Brain research》2001,903(1-2):154-161
The subfornical organ (SFO) is known to be innervated by noradrenergic fibers. One possible origin of these fibers, which carry peripheral baroreceptor information to enhance the activity of SFO neurons, is the nucleus tractus solitarius (NTS). To investigate possible sites of origin of the catecholaminergic projections to the SFO, a retrograde tracing method was combined with immunohistochemistry in the rat. Stereotaxical injection of a retrograde tracer, wheat germ agglutinin-conjugated horseradish peroxidase--colloidal gold complex, into the SFO from the dorsal aspect revealed retrogradely labeled neurons in several catecholaminergic cell groups. A substantial number of retrogradely labeled neurons showing tyrosine hydroxylase (TH) immunoreactivity were found in the NTS and ventrolateral medulla (VLM) at levels caudal to the obex and in the locus coeruleus, while retrogradely labeled neurons without TH immunoreactivity were found in the VLM at levels rostral to the obex and in the nucleus prepositus hypoglossi. When the tracer was injected into the structures dorsal to the SFO, including the triangular septal nucleus, the frequency of retrogradely labeled neurons in the NTS and VLM at the caudal level was very low. These findings indicate the existence of catecholaminergic projections from the VLM (probably A1) to the SFO, in addition to the noradrenergic projections from the NTS previously reported.  相似文献   

19.
The aim of this investigation was to identify the proportional neurochemical codes of enteric neurons and to determine the specific terminal fields of chemically defined nerve fibers in all parts of the human gastrointestinal (GI) tract. For this purpose, antibodies against the vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), serotonin (5-HT), vasoactive intestinal peptide (VIP), and protein gene product 9.5 (PGP 9.5) were used. For in situ hybridization (35)S-labeled VMAT1, VMAT2, and VAChT riboprobes were used. In all regions of the human GI tract, 50-70% of the neurons were cholinergic, as judged by staining for VAChT. The human gut unlike the rodent gut exhibits a cholinergic innervation, which is characterized by an extensive overlap with VIPergic innervation. Neurons containing VMAT2 constituted 14-20% of all intrinsic neurons in the upper GI tract, and there was an equal number of TH-positive neurons. In contrast, DBH was absent from intrinsic neurons. Cholinergic and monoaminergic phenotypes proved to be completely distinct phenotypes. In conclusion, the chemical coding of human enteric neurons reveals some similarities with that of other mammalian species, but also significant differences. VIP is a cholinergic cotransmitter in the intrinsic innervation of the human gut. The substantial overlap between VMAT2 and TH in enteric neurons indicates that the intrinsic catecholaminergic innervation is a stable component of the human GI tract throughout life. The absence of DBH from intrinsic catecholaminergic neurons indicates that these neurons have a dopaminergic phenotype.  相似文献   

20.
Casu MA  Dinucci D  Colombo G  Gessa GL  Pani L 《Brain research》2002,948(1-2):192-202
We have recently shown that tyrosine-hydroxylase immunostaining (TH-IM) is selectively decreased in the cingulate cortex and in the shell of the nucleus accumbens (nAcc) of Sardinian alcohol-preferring rats (sP) when compared with Sardinian alcohol-non preferring (sNP) and Wistar (W) rats. Since these regions contain both dopamine and noradrenaline (NA) fibers, clarification of the dopaminergic and noradrenergic contribution to the decreased TH-immunoreactivity was needed. To this aim, we carried out the present immunohistochemistry study using two antibodies raised against dopamine beta-hydroxylase (DBH), the enzyme responsible for the conversion of dopamine into noradrenaline, and against the dopamine transporter (DAT), as markers for noradrenergic and dopaminergic fibers, respectively. The results show that DBH-immunostaining (DBH-IM) and DAT-immunostaining (DAT-IM) were both lower in the cingulate cortex of the sP rats with respect to sNP and W rats. In the shell of the nAcc a reduced DAT-IM in sP rats was found, while the DBH-IM did not differ between the three lines of rats. The analysis of the cell-body area of noradrenergic neurons in the locus coeruleus, revealed no differences between sP, sNP and W rats. These results indicate a selective reduction of the terminal innervation in the mesocorticolimbic dopamine and NA systems in sP rats. This genetically-determined difference may be involved in the opposite alcohol preference and consumption of sP and sNP rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号