首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rationale Dopamine (DA) receptors within the nucleus accumbens (NAc) are implicated in the rewarding properties of stimuli. Aggressive behavior can be reinforcing but the involvement of NAc DA in the reinforcing effects of aggression has yet to be demonstrated. Objective To microinject DA receptor antagonists into the NAc to dissociate their effects on reinforcement from their effects on aggressive behavior and general movement. Materials and methods Male Swiss Webster mice were implanted with guide cannulae aimed for the NAc and tested for aggressive behavior in a resident–intruder procedure. Aggressive mice were then conditioned on a variable-ratio 5 (VR-5) schedule with presentation of the intruder as the reinforcing event. The D1- and D2-like receptor antagonists SCH-23390 and sulpiride were microinfused (12–50 ng) before the mice responded on the VR-5 schedule and attacked the intruder. Open-field activity was also determined following the highest doses of these drugs. Results SCH-23390 and sulpiride dose-dependently reduced VR responding but did not affect open-field activity. The 50-ng SCH-23390 dose suppressed response rates by 40% and biting behaviors by 10%; other aggressive behaviors were not affected. The 25 and 50 ng sulpiride doses almost completely inhibited VR responding; the 50-ng dose suppressed biting by 50%. Conclusions These results suggest that both D1- and D2-like receptors in the ventral striatum are involved in the rewarding properties of aggression, but that D1-like receptors may be related to the motivation to earn reinforcement as opposed to aggressive behavior.  相似文献   

2.
Rationale Recent reports have demonstrated that gamma-aminobutyric acid (GABA)-ergic compounds attenuate the reinforcing effects of cocaine in rats. Baclofen, a GABAB receptor agonist, appears to be particularly effective in this respect, suggesting that GABAB receptor activation is critically involved in mediating anti-cocaine effects. Amphetamine, like cocaine, is a psychomotor stimulant with high abuse potential in humans.Objectives The purpose of the present investigation was to determine whether baclofen may attenuate the reinforcing effects of d-amphetamine (dAMPH) in rats. Dose–response curves were generated to examine the effect of three doses of baclofen (1.8, 3.2 or 5.6 mg/kg, IP) on dAMPH intravenous self-administration (IVSA). Separate groups were trained to self-administer two doses of dAMPH (0.1 mg/kg or 0.2 mg/kg per injection) under either a fixed-ratio (FR) or progressive ratio (PR) schedule of reinforcement. Microdialysis was performed in an additional group of rats to examine the effect of baclofen on dAMPH-induced increases in dopamine (DA) efflux in the nucleus accumbens (NAc).Results Pretreatment with baclofen produced dose-dependent reductions in responding for dAMPH under both the FR and PR schedules, and attenuated dAMPH-induced increases in DA levels in the NAc.Conclusion These results add to previous findings showing that baclofen attenuates the reinforcing effects of psychostimulant drugs, and suggest that further investigation into the effects of GABAB receptor agonists on drug self-administration is warranted.  相似文献   

3.
The dopaminergic system plays a central role in the processing of reward or reinforcement since drugs that have reinforcing properties all share the ability to elevate dopamine (DA) levels in the nucleus accumbens or neostriatum. Histamine H1 receptor antagonists are known to have reinforcing effects in humans and laboratory rats. Here, we examined the effect of systemic (i.p.) treatment with two H1 antagonists, chlorpheniramine and pyrilamine, on the extracellular levels of DA and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the neostriatum and nucleus accumbens of urethane-anesthetized rats. Dopamine and metabolites were measured using in vivo microdialysis and HPLC with electrochemical detection. Saline injections did not produce significant effects on DA, DOPAC, or HVA levels in the neostriatum or nucleus accumbens. In the neostriatum, chlorpheniramine administration (5 and 20 mg/kg) produced a sustained increase in DA to approximately 140 and 180% of pre-injection baseline levels, respectively. In the nucleus accumbens, chlorpheniramine (20 mg/kg) produced a transient increase in DA levels to about 300% of baseline. In both the neostriatum and nucleus accumbens, DOPAC and HVA decreased after chlorpheniramine treatment. Pyrilamine administration (10 and 20 mg/kg) produced a sustained increase in neostriatal DA levels to 140 and 165%, respectively, and accumbens DA increased transiently to 230% after a dose of 20 mg/kg. Levels of neostriatal and accumbens DOPAC and HVA decreased after pyrilamine treatment. These results show that H1 antagonists can potently enhance DA levels in the neostriatum and nucleus accumbens of urethane-anesthetized rats. The neurochemical effects on DA and its metabolites seen here (increased DA, decreased DOPAC and HVA) are similar to those commonly observed with drugs of abuse (e.g. psychostimulants). The interaction of H1 antagonists with dopaminergic transmission may explain the reinforcing effects and abuse potential associated with these compounds. Received: 29 December 1997 / Accepted: 18 June 1998  相似文献   

4.
Reinforcing effects of intraperitoneally (IP) administered substance P (SP1-11), its amino-terminal fragment SP1-7 (SPN) and an analog of the carboxy terminus (pGlu6-SP6-11: SPC) were studied in rats. Two conditioned place preference paradigms were used. After three pairings of the drug with a certain environment the effect of the treatment was evaluated in the drug-free state during a test trial. The reinforcing effects of SP (37 nmol) and the equimolar dose of SPC were expressed by a significant increase in the amount of time the animals spent in the treatment environment. Other doses of SP (3.7 and 185 nmol) and SPC (7.4 and 185 nmol) and none of the doses of SPN (37, 185, 370 nmol) influenced the place preference behavior of the rats. The reinforcing effects of SP parallel the known facilitating effects of peripherally administered SP on memory. The amino acids that encode the reinforcing effects of SP may lie within the C-terminal sequence of the SP molecule.  相似文献   

5.
Modulation of striatal dopamine (DA) neurotransmission plays a fundamental role in the reinforcing and ultimately addictive effects of nicotine. Nicotine, by desensitizing beta2 subunit-containing (beta2*) nicotinic acetylcholine receptors (nAChRs) on striatal DA axons, significantly enhances how DA is released by reward-related burst activity compared to nonreward-related tonic activity. This action provides a synaptic mechanism for nicotine to facilitate the DA-dependent reinforcement. The subfamily of beta2*-nAChRs responsible for these potent synaptic effects could offer a molecular target for therapeutic strategies in nicotine addiction. We explored the role of alpha6beta2*-nAChRs in the nucleus accumbens (NAc) and caudate-putamen (CPu) by observing action potential-dependent DA release from synapses in real-time using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in mouse striatal slices. The alpha6-specific antagonist alpha-conotoxin-MII suppressed DA release evoked by single and low-frequency action potentials and concurrently enhanced release by high-frequency bursts in a manner similar to the beta2*-selective antagonist dihydro-beta-erythroidine (DHbetaE) in NAc, but less so in CPu. The greater role for alpha6*-nAChRs in NAc was not due to any confounding regional difference in ACh tone since elevated ACh levels (after the acetylcholinesterase inhibitor ambenonium) had similar outcomes in NAc and CPu. Rather, there appear to be underlying differences in nAChR subtype function in NAc and CPu. In summary, we reveal that alpha6beta2*-nAChRs dominate the effects of nicotine on DA release in NAc, whereas in CPu their role is minor alongside other beta2*-nAChRs (eg alpha4*), These data offer new insights to suggest striatal alpha6*-nAChRs as a molecular target for a therapeutic strategy for nicotine addiction.  相似文献   

6.
Rationale Dopamine (DA) activity in the nucleus accumbens (NAc) is related to the general motivational effects of rewarding stimuli. Dickinson and colleagues have shown that initial acquisition of instrumental responding reflects action–outcome relationships based on instrumental incentive learning, which establishes the value of an outcome. Given that the sensitivity of responding to outcome devaluation is not affected by NAc lesions, it is unlikely that incentive learning during the action–outcome phase is mediated by DA activity in the NAc. Objectives DA efflux in the NAc after limited and extended training was compared on the assumption that comparable changes would be observed during both action–outcome- and habit-based phases of instrumental responding for food. This study also tested the hypothesis that increase in NAc DA activity is correlated with instrumental responding during extinction maintained by a conditioned stimulus paired with food. Methods Rats were trained to lever press for food (random-interval 30 s schedule). On the 5th and 16th day of training, microdialysis samples were collected from the NAc or mediodorsal striatum (a control site for generalized activity) during instrumental responding in extinction and then for food reward, and analyzed for DA content using high performance liquid chromatography. Results Increase in DA efflux in the NAc accompanied responding for food pellets on both days 5 and 16, with the magnitude of increase significantly enhanced on day 16. DA efflux was also significantly elevated during responding in extinction only on day 16. Conclusions These results support a role for NAc DA activity in Pavlovian, but not instrumental, incentive learning.  相似文献   

7.
Rationale WIN 55,212-2, a potent cannabinoid receptor 1 agonist, is self-administered by animals to evaluate abuse liability of cannabinoids, but to date no information is yet available about its effects on dopaminergic transmission during active response-contingent administration.Objectives This study monitored the changes of extracellular dopamine (DA) in the nucleus accumbens (NAc) shell and core during active intravenous WIN 55,212-2 self-administration (SA).Methods Rats, implanted with a jugular catheter and bilateral intracerebral chronic cannulae, were trained for 3 weeks to self-administer WIN 55,212-2 (12.5 μg/kg) in single daily 1-h sessions under a fixed ratio 1 (FR 1) schedule, than switched to FR 2 for a further week. During SA sessions, microdialysis assays were performed every 3rd day, and then daily starting from the 13th session. Dialysate DA from the NAc shell and core was monitored before, during, and for 30 min after SA.Results Dialysate DA increased during WIN 55,212-2 SA starting from the 1st week in the NAc shell and on the 2nd week in the core. The increase of dialysate DA in the NAc shell was larger than that in the core on all weeks. Dialysate DA did not change during extinction sessions in spite of active nose poking.Conclusions Response-contingent WIN 55,212-2 SA preferentially increases the NAc shell DA output as compared to that of the core independently from the duration of the WIN 55,212-2 exposure. Increase in NAc DA is strictly related to WIN 55,212-2 actions because it is not observed during extinction despite active responding.  相似文献   

8.
The serotonergic system appears crucial for (±)-3,4-methylenedioxymethamphetamine (MDMA) reinforcing properties. Current evidence indicates that serotonin 5-HT2A receptors (5-HT2ARs) modulate mesolimbic dopamine (DA) activity and several behavioural responses related to the addictive properties of psychostimulants. This study evaluated the role of 5-HT2ARs in MDMA-induced reinforcement and hyperlocomotion, and the reinstatement of MDMA-seeking behaviour. Basal and MDMA-stimulated extracellular levels of DA in the nucleus accumbens (NAc) and serotonin and noradrenaline in the prefrontal cortex were also assessed. Self-administration of MDMA was blunted in 5-HT2AR knockout (KO) mice compared to wild-type (WT) littermates at both doses tested (0.125 and 0.25 mg/kg per infusion). Horizontal locomotion was increased by MDMA (10 and 20 mg/kg i.p.) to a higher extent in KO than in WT mice. DA outflow in the NAc was lower in KO compared to WT mice under basal conditions and after MDMA (20 mg/kg) challenge. In WT mice, MDMA (5 and 10 mg/kg i.p.) priming did not reinstate MDMA-seeking behaviour, while cue-induced reinstatement was prominent. This cue-induced reinstatement was blocked by administration of the selective 5-HT2AR antagonist, SR46349B (eplivanserin) at a dose of 0.5 mg/kg, but not at 0.25 mg/kg. Our results indicate that 5-HT2ARs are crucial for MDMA-induced reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. These effects are probably due to the modulation of mesolimbic dopaminergic activity.  相似文献   

9.
Recently, we have shown that acamprosate is able to modulate extracellular dopamine (DA) levels in the nucleus accumbens (NAc) and may act as an antagonist of N-methyl-D-aspartate (NMDA) receptors. Neurochemical studies show that chemical stimulation (using NMDA) of the ventral subiculum (vSub) of the hippocampus produces robust and sustained increases in extracellular DA levels in the NAc, an effect mediated through ionotropic glutamate (iGlu) receptors. The present study examines whether acamprosate locally infused in the NAc of rats could block or attenuate the increase in NAc extracellular DA elicited by chemical stimulation (with 5 mM NMDA) of the ventral subiculum of the hippocampus. The stimulation of the vSub during perfusion of artificial cerebrospinal fluid in NAc induced a significant and persistent increase in NAc DA levels. Reverse dialysis of 0.05 mM acamprosate in NAc blocked the increase in DA evoked by the chemical stimulation of the vSub. These data support the possibility that the antagonism at the NMDA receptors in NAc can explain, at least in part, the mechanism of action of this drug.  相似文献   

10.
The concurrent use of cocaine and opiate combinations (speedball) has increased since the 1970s and now represents a growing subset of intravenous drug abusers. An isobolographic analysis was applied to the ascending limb of the dose-effect curves for rat self-administration of cocaine, heroin, and their combination to determine the nature of the interaction. The addition of heroin to cocaine shifted the dose-effect curve for self-administration to the left, and the modulation in reinforcing efficacy of the combination of cocaine and heroin was found to be additive. A second experiment used microdialysis to determine the effects of this drug combination on nucleus accumbens (NAc) extracellular levels of dopamine ([DA](e)) in rats self-administering low doses of cocaine, heroin, or cocaine/heroin combinations. These doses of cocaine and cocaine/heroin combinations significantly increased NAc [DA](e), while heroin alone did not. The ratio of the % baseline of [DA](e) (or the dialysate concentrations of DA) to cocaine in the dialysate was higher during self-administration of cocaine/heroin combinations than with cocaine alone. These data indicate that although the interaction between cocaine and heroin in maintaining self-administration is additive, a potentiation of NAc dopaminergic neurotransmission is present, suggesting that NAc [DA](e) may not be a direct measure of reinforcing efficacy and/or it is not central to the mediation of the self-administration of this drug combination.  相似文献   

11.
Li X  Gardner EL  Xi ZX 《Neuropharmacology》2008,54(3):542-551
The group III metabotropic glutamate receptor 7 (mGluR7) has been implicated in many neurological and psychiatric diseases, including drug addiction. However, it is unclear whether and how mGluR7 modulates nucleus accumbens (NAc) dopamine (DA), L-glutamate or gamma-aminobutyric acid (GABA), important neurotransmitters believed to be involved in such neuropsychiatric diseases. In the present study, we found that systemic or intra-NAc administration of the mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082) dose-dependently lowered NAc extracellular GABA and increased extracellular glutamate, but had no effect on extracellular DA levels. Such effects were blocked by (R,S)-alpha-methylserine-O-phosphate (MSOP), a group III mGluR antagonist. Intra-NAc perfusion of tetrodotoxin (TTX) blocked the AMN082-induced increases in glutamate, but failed to block the AMN082-induced reduction in GABA, suggesting vesicular glutamate and non-vesicular GABA origins for these effects. In addition, blockade of NAc GABAB receptors by 2-hydroxy-saclofen itself elevated NAc extracellular glutamate. Intra-NAc perfusion of 2-hydroxy-saclofen not only abolished the enhanced extracellular glutamate normally produced by AMN082, but also decreased extracellular glutamate in a TTX-resistant manner. We interpret these findings to suggest that the increase in glutamate is secondary to the decrease in GABA, which overcomes mGluR7 activation-induced inhibition of non-vesicular glutamate release. In contrast to its modulatory effect on GABA and glutamate, the mGluR7 receptor does not appear to modulate NAc DA release.  相似文献   

12.
Rationale It has been reported that passive administration of nicotine increases preferentially extracellular dopamine (DA) release in the shell as compared to that in the core of the nucleus accumbens (NAc). To date, no information is available if this also applies to active, response-contingent nicotine administration. Objective This study was aimed to monitor the changes of extracellular DA in the NAc shell and core during active intravenous nicotine self-administration (SA). Methods Rats were bilaterally implanted with chronic cannulae and were trained to self-administer nicotine (0.03 mg/kg, i.v.) in single daily 1-h session for 6 weeks, with an initial fixed ratio (FR) 1 schedule increased to FR 2. Dialysate DA from the NAc shell and core was monitored before and for 90 min after the start of SA. Results Significant increases of active nose-pokes over inactive ones were found starting from the 16th SA session. No differences were found in basal extracellular DA in the NAc subdivisions. Data analysis showed (1) significant increases over basal of dialysate DA in the NAc subdivisions during nicotine SA, starting from the first week in the shell and from the second week in the core, (2) preferential increase of extracellular DA during nicotine SA in the shell (24–43%) compared to that in the core (10–23%) and (3) no change in dialysate DA in NAc subdivisions during extinction. Conclusions Response-contingent nicotine SA preferentially increases the DA output in the NAc shell as compared to that in the core, independently from the duration of the nicotine exposure. Increase in NAc DA is strictly related to nicotine action since is not observed during extinction in spite of active responding.  相似文献   

13.
The role for serotonin (5-HT) in mediating the behavioral effects of cocaine may be related in part to the ability of 5-HT to modulate the function of the dopamine (DA) mesoaccumbens pathways. In the present study, the ability of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine (10 mg/kg, IP) and fluvoxamine (10 and 20 mg/kg, IP) to alter cocaine (10 mg/kg, IP)-induced hyperactivity and DA release in the nucleus accumbens (NAc) was analyzed in male Sprague-Dawley rats. Systemic administration of either fluoxetine or fluvoxamine enhanced cocaine-induced locomotor activity in a dose-dependent manner; fluoxetine (10 mg/kg, IP) also enhanced cocaine (10 mg/kg, IP)-induced DA efflux in the NAc. To test the hypothesis that the NAc serves as the locus of action underlying these effects following systemic cocaine administration, fluoxetine (1 and 3 micro g/0.2 micro l/side) or fluvoxamine (1 and 3 micro g/0.2 micro l/side) was microinfused into the NAc shell prior to systemic administration of cocaine (10 mg/kg, IP). Intra-NAc shell infusion of 3 micro g of fluoxetine or fluvoxamine enhanced cocaine-induced hyperactivity, while infusion of fluoxetine (1 micro M) through the microdialysis probe implanted into the NAc shell enhanced cocaine (10 mg/kg, IP)-induced DA efflux in the NAc. Thus, the ability of systemic injection of SSRIs to enhance cocaine-evoked hyperactivity and DA efflux in the NAc is mediated in part by local actions of the SSRIs in the NAc.  相似文献   

14.
Rationale Several lines of evidence indicate that the endogenous cannabinoid system is involved in the pharmacological and behavioural effects of alcohol. The mesolimbic dopaminergic (DA) system and the nucleus accumbens (NAc) process rewarding properties of drugs of abuse, including alcohol and cannabinoids, whereas endocannabinoids in these regions modulate synaptic function and mediate short- and long-term forms of synaptic plasticity.Objectives The present study was designed to investigate the contribution of the endogenous cannabinoid system in alcohol electrophysiological effects in the mesolimbic reward circuit.Methods We utilized extracellular single cell recordings from ventral tegmental area (VTA) DA and NAc neurons in anesthetized rats. DA neurons were antidromically identified as projecting to the shell of NAc, whereas NAc putative medium spiny neurons were identified by their evoked responses to basolateral amygdala (BLA) stimulation. Results Alcohol stimulated firing rate of VTA DA neurons and inhibited BLA-evoked NAc neuron spiking responses. The cannabinoid type-1 receptor (CB1) antagonist rimonabant (SR141716A) fully antagonized alcohol effect in both regions. In the NAc, either inhibition of the major catabolic enzyme of the endocannabinoid anandamide, the fatty-acid amyd hydrolase, with URB597 or a pretreatment with the CB1 receptor agonist WIN55212-2 significantly depressed alcohol-induced effects in the NAc.Conclusions These results corroborate the notion of the involvement of endocannabinoids and their receptors in the actions of alcohol and highlight the endocannabinoid system as a valuable target in the therapy for alcoholism.  相似文献   

15.
This study assessed the relationship between extracellular nucleus accumbens (NAc) dopamine (DA) concentrations and sensitized locomotor activation following repeated administration of the DA D2-like receptor agonist quinpirole. Locomotor activity measures and nucleus accumbens microdialysis samples were collected concurrently in response to the first (acute) and tenth (repeated) quinpirole injection (0.5 mg/kg s.c., every other day). Results indicate that acute quinpirole produced locomotor activation and that repeated quinpirole resulted in locomotor sensitization. Acute quinpirole significantly decreased the detection of extracellular concentrations of DA and the DA metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the NAc. Following repeated quinpirole, basal NAc DA levels were decreased, whereas basal DOPAC levels were increased. Nevertheless, quinpirole challenge elicited a significant decrease in DA, DOPAC and HVA following repeated treatment. In addition, although acute quinpirole did not affect NAc levels of the serotonin metabolite 5-hydroxyindolacetic acid (5-HIAA), quinpirole challenge produced a significant increase in 5-HIAA levels following repeated treatment. Taken together, these data indicate that functional DA autoreceptor subsensitivity is not a necessary condition for the expression of behavioral sensitization to quinpirole. Instead, it appears that behavioral sensitization to quinpirole occurs predominantly as a consequence of neuroadaptations that are post-synaptic to DA release.  相似文献   

16.
Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.  相似文献   

17.
Rationale Although passive administration of heroin to drug-naive rats increases extracellular dopamine (DA) in the nucleus accumbens (NAc), its ability to do so also after active drug exposure (self-administration) is debated. Objectives This study investigated by repeated microdialysis sampling the inter- and intrasession changes in the responsiveness of the NAc shell and core DA and the behavioral effects of active and passive heroin exposure in the intravenous self-administration/yoked paradigm. Materials and methods Rats were implanted with jugular catheters and bilateral intracerebral chronic guide cannulae. Nose poking in the active hole by master rats resulted in heroin administration to the same subjects and to their yoked mates. Concentric microdialysis probes were inserted daily in the guide cannulae, and changes in dialysate DA in response to heroin exposure (0.05 mg/kg) were monitored in the same subject for 90 min for 4 weeks. Behavior associated with heroin exposure, distinguished into nonstereotyped and stereotyped, was also recorded. Results Dialysate DA increased preferentially in the shell of master rats from the first session (+112%) and throughout the 4 weeks of self-administration (+130–140%). In yoked rats, a preferential but lesser increase in DA in the shell was observed only on the first session (+60%), as the DA response in the NAc core increased progressively (+25–118%), so that within a week, the shell/core ratio was reversed, and this pattern was maintained for the following 2 weeks. Yoked rats showed a progressive and larger increase in stereotyped behaviors than master rats. Conclusions Chronic heroin self-administration increases extracellular DA preferentially in the NAc shell. Response-noncontingent heroin administration is particularly prone, compared to response-contingent administration, to induce behavioral and biochemical sensitization.  相似文献   

18.
Three experiments investigated the suppression of hypothalamic self-stimulation in rats by neuroleptics and its restoration by centrally acting anticholinergic agents. Scopolamine (0.1--1.0 mg/kg i.p.) and benztropine (1.0--10.0 mg/kg i.p.) each enhanced self-stimulation when administered alone, and partially restored performance suppressed by spiroperidol (0.05--0.15 mg/kg i.p.). Benztropine strongly inhibits transmitter reuptake at DA synapses but scopolamine does not, thus inhibition of DA reuptake cannot fully account for the stimulant or antineuroleptic action of anticholinergic drugs. Neuroleptic and anticholinergic effects on self-stimulation rate were mutually subtractive, and statistical evidence of interaction was not obtained. Scopolamine was shown also to restore performance extinguished by discontinuation of the stimulating current. Smaller doses of scopolamine (50 nmol; 19 microgram) injected directly into the nucleus accumbens septi partially restored responding suppressed by spiroperidol, though similar doses of scopolamine injected bilaterally into the caudate-putamen were ineffective. These findings suggest that hypothalamic self-stimulation may be influenced by ACh-and DA-containing systems which exert independent effects on a third system controlling performance. These effects appear to reflect the level of arousal or motivation rather than the reinforcement process itself.  相似文献   

19.
Rationale A large body of evidence indicates an involvement of the mesolimbic dopamine (DA) pathway innervating the ventral striatum in the motivational effects of drug abuse.Objective The goal of the study is to clarify the role of DA D1 and D2 receptors of the rat nucleus accumbens (NAc) shell and core in the motivational effects of morphine as studied by conditioned place preference (CPP).Methods The effect of the intracerebral infusion of DA antagonists specific for DA D1 (SCH 39166) and D2 receptors (l-sulpiride) was studied in a single-trial place conditioning paradigm with fixed assignment of the drug to the unpreferred compartment.Results Morphine induced significant CPP at all the doses tested (0.5, 1.0, and 2.0 mg/kg, subcutaneously). A dose of 1.0 mg/kg was selected for further studies. Intra-NAc shell infusion of SCH 39166 and l-sulpiride at doses of 25 and 50 ng/1 μl per side impaired the acquisition of CPP by morphine. No effect was observed at 12.5 ng/1 μl per side. Intra-NAc core infusion of SCH 39166 (12.5, 25, and 50 ng/1 μl per side) did not affect the acquisition of morphine-induced CPP, while l-sulpiride (12.5, 25, and 50 ng/1 μl per side) impaired CPP acquisition only at the dose of 50 ng/1 μl per side. No effect on morphine-induced CPP was observed when the DA antagonists were infused into the NAc shell or core 10 min before the test session.Conclusion These results indicate that DA D1 and D2 receptors in the NAc shell are involved in the acquisition of morphine-induced CPP.  相似文献   

20.
Rationale  There is evidence demonstrating changes in dopamine (DA) transmission in the nucleus accumbens (NAc) related to contingent versus non-contingent drug administration. Objectives  The aim of this study was to evaluate basal and 3,4-methylenedioxymethamphetamine (MDMA)-stimulated DA levels in the NAc of mice that had previously received contingent and non-contingent infusions of MDMA. Contingent mice were trained to self-administer MDMA (0.125 mg/kg/infusion) in 2-h sessions for 10 days. Yoked mice received either MDMA at the same dose or saline. Forty-eight hours after the last MDMA or saline administration, DA levels were measured by in vivo microdialysis before and after an MDMA (10 mg/kg, i.p.) challenge. Binding of [3H]-mazindol and [3H]-citalopram was evaluated by autoradiography. Results  Animals receiving MDMA infusions showed significantly lower basal DA levels than the yoked saline group. A reduced activation of DA was observed following MDMA in contingent mice with respect to both yoked MDMA and saline mice. No significant alterations in DA transporter or serotonin transporter were observed in the three groups of mice. Conclusions  These results suggest that prolonged exposure to MDMA in mice produces changes in basal DA levels after drug withdrawal and a decreased neurochemical response at the level of the mesolimbic DA reward pathway that is, in part, related to instrumental learning during self-administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号