首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High levels of decoy receptor 2 (DcR2; TRAIL-R4) expression are correlated with TRAIL resistance in prostate cancer cells. In addition, upregulation of TRAIL death receptor (DR4 and DR5) expression, either by ionizing radiation or chemotherapy, can sensitize cancer cells to TRAIL. Considering more than half of human cancers are TRAIL resistant, modulation of surface TRAIL receptor expression appears to be an attractive treatment modality to counteract TRAIL resistance. In this study, three siRNA duplexes targeting DcR2 receptor were tested. Ad5hTRAIL infections were performed to overexpress human full-length TRAIL to induce cell death, and the in vitro tumorigenic potential of prostate cancer cells was assessed using colony-forming assays on soft agar. The DU145 and LNCaP prostate cancer cell lines, which express high levels of DcR2, were resistant to Ad5hTRAIL-induced death. Downregulation of surface DcR2 expression by siRNA sensitized these prostate cancer cell lines to Ad5hTRAIL. In addition, DcR2 siRNA-mediated knockdown of DcR2, followed by Ad5hTRAIL infection, dramatically reduced the in vitro tumorigenic potential of prostate cancer cells. Collectively, our results suggest the potential for combining receptor-specific siRNA with TRAIL in the treatment of certain cancers.  相似文献   

2.
Failure to undergo apoptosis has been implicated in the resistance of tumor cells to anticancer therapies. Promotion of apoptosis in tumor cells could potentially increase the efficacy of conventional treatment regimens and improve prognosis. Prostate cancer cells are generally resistant to induction of apoptosis by anticancer agents and death ligands. We investigated the sensitization of prostate cancer cell lines by curcumin (diferuloyl-methane) to TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. Prostate cancer cells treated with curcumin or TRAIL or curcumin and TRAIL together were assessed for induction of apoptosis and pathway of apoptosis was determined from the activation of procaspases and release of cytochrome c from mitochondria. Curcumin sensitized LNCaP, DU145 and PC3 tumor cell lines to TRAIL. Combined curcumin and TRAIL treatment produced the most loss of viable cells by inducing apoptosis as revealed by accumulation of hypodiploid cells in sub-G1 phase, enhanced annexin V binding, DNA fragmentation, cleavage of procaspases-3, -8, and 9, truncation of proapoptotic Bid, and release of cytochrome c from mitochondria. Tumor cells expressed constitutively active NF-kappaB and sensitization to TRAIL involved inhibition of NF-kappaB by curcumin. These findings suggest that combined curcumin/TRAIL chemo-immunotherapy may be a beneficial adjunct to the standard therapeutic regimens for prostate cancer.  相似文献   

3.
A Munshi  G Pappas  T Honda  T J McDonnell  A Younes  Y Li  R E Meyn 《Oncogene》2001,20(29):3757-3765
To determine if TRAIL-induced apoptosis in human prostate tumor cells was suppressed by bcl-2, we compared the levels of apoptosis induced by recombinant human TRAIL in pairs of isogenic cell lines that do or do not express bcl-2. Three human prostate tumor cell lines (PC3, DU145 and LNCaP) and their bcl-2-expressing counterparts were tested for their susceptibility to TRAIL. Cells were exposed to TRAIL in the presence of cycloheximide which acted as a sensitizer. Apoptosis was induced rapidly in PC3 and DU145 neo-control transfected cells, whereas induction in LNCaP required 24 h. All three cell line variants expressing bcl-2 were resistant to the apoptotic effects of TRAIL. Caspase 3 and 8 activation was also detected in the neo control cells after treatment with TRAIL, demonstrating the rapid activation of the caspase cascade similar to that seen with other death receptors. Bcl-2 overexpression in these cells blocked activation of these caspases, suggesting that bcl-2 expression of human cancer cells may be a critical factor in the therapeutic efficacy of TRAIL.  相似文献   

4.
The present study was undertaken to test the effects of prostate cancer cell lines (LNCaP, DU145, PC3, and MDA PCa 2b) on osteoclastogenesis. Crude conditioned medium (CM) from all four prostate cancer cell lines enhanced expression of the mRNA for receptor activator of NF-kappaB ligand (RANKL) in a mouse osteoblast cell line, MC3T3-E1; however, CM had no effect on expression of osteoprotegerin (OPG) mRNA. Coculture of MC3T3-E1 with prostate cancer cells yielded similar results. The number of mature osteoclasts induced by soluble RANKL increased significantly when osteoclast precursor cells were cultured with CM from LNCaP and DU145 cells. CM from LNCaP and DU145 cells also induced maturation from precursor in the absence of soluble RANKL, and this effect was not blocked by OPG. Addition of CM from DU145 cells increased expression of MMP-9 mRNA by osteoclast precursors. Our findings indicate that prostate cancer mediates osteoclastogenesis through induction of RANKL expression by osteoblasts and through direct actions on osteoclast precursors mediated by some factors other than RANKL.  相似文献   

5.
eNOS protects prostate cancer cells from TRAIL-induced apoptosis   总被引:2,自引:0,他引:2  
Tong X  Li H 《Cancer letters》2004,210(1):63-71
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent anti-cancer agent because it induces apoptosis of most tumor cells with little or no effect on normal cells. In this study, we investigated the effect of TRAIL on human prostate normal and cancer cell lines, and found that the prostate cancer cell lines PC-3, ALVA-31, DU 145 and TSU-Pr1 were sensitive to TRAIL-induced apoptosis, while normal PrEC cells and cancer cell line LNCaP were resistant. No correlation was found between the sensitivity of cells to TRAIL and the expression of TRAIL receptors DR4 and DR5, and pro-apoptotic proteins Bax and Bak. However, LNCaP cells displayed a high Akt activity. Furthermore, we found that endothelial nitric oxide synthase (eNOS), one of the Akt substrates, was highly expressed in LNCaP but not in other cells. Inhibition of eNOS activity by NOS inhibitor sensitized LNCaP cells to TRAIL. Moreover, PC-3 cell clones stably expressing eNOS were resistant to TRAIL-induced apoptosis. Taken together, these results indicate that eNOS can regulate the sensitivity of prostate cancer cells to TRAIL, and down-regulation of eNOS activity may sensitize prostate cancer cells to TRAIL-based therapy.  相似文献   

6.
Using a binary co-transfection strategy of Ad/GT Bax and Ad/PGK-GV16, we have succeeded in inducing overexpression of Bax protein in three prostate cell lines (androgen-insensitive DU145 and PC3, and androgen-sensitive LNCaP). The expression of Bax protein by this system was sufficient to induce all three prostate lines to undergo apoptosis. The fact that DU145 cells which have a p53 mutation and are deficient in Bax, responded to this treatment, suggests that this effect is independent of these pathways. Initiation of the cleavage of Caspase-3 (CPP32/Yama/apopain) and PARP (poly (ADP-ribose) polymerase) by the introduction of Bax were confirmed by western blot analysis. Bcl-2 expression is relevant in the progression of prostate cancer and contributes to an androgen, apoptotic-resistant phenotype in the advanced stages. We examined stable Bcl-2 overexpressing DU145, PC3 and LNCaP cell lines as models of advanced prostate cancer. The adenoviral co-transfection system induced Bax protein expression and apoptosis even in these Bcl-2 transfected cell lines. Taken together, our results suggest that this Bax expression system might represent a useful gene therapy strategy when applied to the treatment of prostate cancer and its efficacy would be independent of the Bcl-2 status and androgen sensitivity of these cancers.  相似文献   

7.
8.
9.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL/Apo2L) can induce receptor-mediated apoptosis in prostate cancer cell lines that have been co-treated with the chemotherapeutic agent doxorubicin (Voelkel-Johnson C, et al. Cancer Gene Therapy 2002; 9:164-172). In this study, we report that pretreatment with doxorubicin is sufficient to sensitize cells to TRAIL. To identify possible targets of doxorubicin, we analyzed levels of several Bcl-2 family members, TRAIL receptors and the anti-apoptotic protein c-FLIP. Doxorubicin did not affect steady state levels of Bax, Bcl-2 and Bcl-X(L) in the majority of the prostate cancer cell lines. TRAIL receptor mRNAs (DR4, DR5, and DcR2) were induced by doxorubicin but these changes were not reflected at the protein level. In contrast, in response to doxorubicin, levels of c-FLIP, particularly FLIP(S), decreased in all cell lines tested. The decrease in c-FLIP(S) correlated with onset and magnitude of caspase-8 and PARP cleavage in PC3 cells. In two TRAIL resistant cell lines, DU145 and LNCaP, treatment with TRAIL alone resulted in processing of c-FLIP(L) and initiated abortive caspase-8 proteolysis. TRAIL treatment did not affect levels of c-FLIP(S) in Du145 and LNCaP cells and did not result in PARP cleavage. Therefore, our results suggest that doxorubicin- mediated down regulation of c-FLIP(S) predisposes cells to TRAIL-induced apoptosis.  相似文献   

10.
BACKGROUND: Expression of fibroblast growth factors (FGFs) is increased in a substantial fraction of human prostate cancers in vivo and in prostate cancer cell lines. Altered FGF signaling can potentially have a variety of effects, including stimulating cell proliferation and inhibiting cell death. To determine the biologic significance of altered FGF signaling in human prostate cancer, we disrupted signaling by expression of a dominant-negative (DN) FGF receptor in prostate cancer cell lines. METHODS: PC-3, LNCaP, and DU145 prostate cancer cells were stably transfected with DN FGFR constructs, and LNCaP and DU145 cells were infected with a recombinant adenovirus expressing DN FGFR-1. The effect of DN FGFR-1 expression was assessed by colony-formation assays, cell proliferation assays, flow cytometry, and cytogenetic analysis. Key regulators involved in the G(2)-to-M cell cycle transition were assessed by western blotting to examine cyclin B1 expression and by in vitro kinase assay to assess cdc2 kinase activity. RESULTS: Stable transfection of the DN FGFR-1 construct inhibited colony formation by more than 99% in all three cell lines. Infection of LNCaP and DU145 prostate cancer cells with adenovirus expressing DN FGFR-1 led to extensive cell death within 48 hours. Flow cytometry and cytogenetic analysis revealed that the DN FGFR-1 receptor led to arrest in the G(2) phase of the cell cycle before cell death. Cyclin B1 accumulated in DN FGFR-1-infected LNCaP cells, but cdc2 kinase activity was decreased. CONCLUSIONS: These findings reveal an unexpected dependence of prostate cancer cells on FGF receptor signal transduction to traverse the G(2)/M checkpoint. The mechanism for the G(2) arrest is not clear. Our results raise the possibility that FGF-signaling antagonists might enhance the cell death induced by other prostate cancer therapies.  相似文献   

11.
Liu AY 《Cancer research》2000,60(13):3429-3434
The expression of 119 cell surface molecules was catalogued for three prostate cancer cell lines, LNCaP, PC3, and DU145, all of which were established from metastases. Many of these molecules are common to all three cell lines, whereas some are differentially expressed. More prostate basal epithelial cell-specific than luminal epithelial cell-specific molecules are detected, especially in DU145 and PC3 cells. The cancer cells also express molecules that are not normally associated with prostate epithelial cells. As a population, expression of these molecules appears to be heterogeneous. This heterogeneity may be an inherent property of the population.  相似文献   

12.
Inosine 5-monophosphate dehydrogenase II, a key enzyme in the de novo synthesis of purine nucleotides, is expressed in prostate tumors and prostate cancer cells. AVN944 is a new, specific, noncompetitive IMPDH inhibitor. In this study, we investigated the effects of IMPDH inhibitor AVN944 on LNCaP, CWR22Rv1, DU145 and PC-3 human prostate cancer cells. AVN944 inhibited proliferation of these 4 prostate cancer cell lines and was associated with cell cycle G1 arrest of LNCaP cells and S-phase block of androgen-independent CWR22Rv1, DU145 and PC-3 cells. AVN944 induced caspase-dependentand caspase-independent cell death in LNCaP, CWR22Rv1, and DU145 cells. AVN944 induced expression of p53-target proteins Bok, Bax and Noxa in androgen-responsive cell lines and suppressed expression of survivin in prostate cancer cells regardless of their androgen sensitivity. AVN944 also induced differentiation of androgen-independent prostate cancer cells as indicated by morphological changes and increased expression of genes coding for prostasomal proteins, keratins and other proteins, including tumor suppressor genes MIG-6 and NDRG1. AVN944-differentiated androgen-independent DU145 and PC-3 cells are sensitized to TRAIL-induced apoptosis as demonstrated by induction of caspases and PARP cleavage. In summary, AVN944 inhibited the growth of human prostate cancer cells by inducing cell cycle arrest, cell death as well as differentiation. AVN944 is a novel, promising therapeutic agent that might be combined with other agents for treatment of human prostate cancer.  相似文献   

13.
14.
Understanding the molecular action of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, might allow us to perform more effective therapies for hormone-independent advanced prostate cancer. A DNA microarray study was undertaken to comprehensively analyze the alteration of levels of 1,081 genes after gefitinib treatment in androgen-independent PC3 and DU145 cells and androgen-dependent LNCaP cells. The proliferation of PC3, DU145 and LNCaP cells was significantly inhibited by 50.2%, 83.8% and 55.2%, respectively, 6 days after 10 microM gefitinib administration. Of the above 1,081 genes, we identified 23, 13 and 33 genes with significantly different expression in PC3, DU145 and LNCaP cells, respectively, 24 h after 10 microM-gefitinib exposure. Among the identified genes, only Quiescin Q6, a negative cell cycle regulator, was increased after gefitinib treatment in all three cell lines regardless of gefitinib sensitivity. Except for Quiescin Q6, there were no overlapping genes between PC3 and DU145 cells. However, levels of several oncogenes or proliferation-related genes were changed after gefitinib treatment in the 2 androgen-independent cell lines. We also identified 7 unique genes [glycyl-tRNA synthetase, interferon, alpha-inducible protein, stratifin, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, dual specificity phosphatase 9, guanine nucleotide binding protein (G protein) beta polypeptide 2, neural retina leucine zipper] whose levels were altered exclusively after gefitinib administration in gefitinib-resistant PC3 and LNCaP cells, but not in DU145 cells, suggesting that these 7 genes could be targets for overcoming gefitinib resistance. Collectively, our molecular profiling data will serve as a framework for understanding the molecular action of gefitinib for prostate cancer.  相似文献   

15.
Focal adhesion kinase (FAK) has been implicated in the regulation of cell migration. In addition, FAK expression is increased in a number of highly metastatic tumor cell lines. Therefore, we investigated the role of FAK in regulating migration of prostate carcinoma cell lines with increasing metastatic potential. We show that highly tumorigenic PC3 and DU145 cells exhibit intrinsic migratory capacity, while poorly tumorigenic LNCaP cells require a stimulus to migrate. Increased metastatic potential of PC3 and DU145 cells correlates with increased FAK expression, overall tyrosine phosphorylation and activity, as measured by autophosphorylation of tyrosine 397. However, in PC3 and DU145 cells, FAK autophosphorylation is adhesion dependent whereas a second site of tyrosine phosphorylation, tyrosine 861, a Src specific site, is uncoupled from adhesion-dependent signaling events. Finally, inhibiting the FAK/Src signal transduction pathway by over expressing FRNK (Focal adhesion kinase-Related Non-Kinase), an inhibitor of FAK activation, or treatment with PP2, a Src family kinase inhibitor, significantly inhibited migration of prostate carcinoma cell lines, demonstrating that tumor cell migration continues to be dependent on signals emanating from this pathway.  相似文献   

16.
Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells   总被引:30,自引:0,他引:30  
Factors that aid survival of prostate cancer cells in the presence of the various categories of cytotoxic cytokines present in tumors in vivo are largely unknown. Osteoprotegerin (OPG) is a decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that inhibits TRAIL-induced apoptosis. In relation to this activity, we hypothesized that the ability to produce OPG by prostate cancer cells would confer a survival advantage on these cells. In this study we have demonstrated that high levels of OPG are produced by the hormone-insensitive prostate cancer cell lines PC3 and Du145, whereas the hormone-sensitive cell line LNCaP produced 10-20-fold less OPG under the same conditions. A strong negative correlation was observed between levels of endogenously produced OPG in the medium and the capacity of TRAIL to induce apoptosis in cells that produced high levels of OPG. The antiapoptotic effect of OPG was reversed by coadministration of 100-fold molar excess of receptor-activator of nuclear factor-kappaB ligand, another protein that selectively binds OPG. These observations suggest that prostate cancer-derived OPG may be an important survival factor in hormone-resistant prostate cancer cells.  相似文献   

17.
PURPOSE: Proteasome inhibition has been shown to be an effective anticancer therapy in many tumor models, including prostate cancer. We sought to identify drug interactions between the proteasome inhibitor bortezomib and other apoptotic stimuli, including cytotoxic chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In addition, we wanted to gain insight into the role of nuclear factor kappaB inhibition as a mediator of bortezomib cytotoxic effects. EXPERIMENTAL DESIGN: Prostate cancer cell lines (LNCaP, LAPC4, CL1, and DU145) were treated with bortezomib and apoptotic stimuli (TRAIL, chemotherapy, and tumor necrosis factor alpha), alone or in combination. Apoptosis and cell viability were measured, and median effect/combination index analyses were used to quantitate drug interactions. Nuclear factor kappaB activity at baseline and in response to drug treatment was determined by gel shift and reporter gene assays. RESULTS: Bortezomib induced cell death of androgen-dependent (LNCaP and LAPC4) and androgen-independent (CL1 and DU145) prostate cancer cell lines, although androgen-dependent cells were more sensitive to proteasome inhibition. Bortezomib synergized with TRAIL and tumor necrosis factor alpha to induce death in both androgen-dependent and androgen-independent cells. CONCLUSIONS: Bortezomib and TRAIL represent a synergistic drug combination that warrants further evaluation in in vivo models of prostate cancer.  相似文献   

18.

Background  

Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL).  相似文献   

19.
Resveratrol, a natural phytoestrogen, has been reported to promote differentiation of murine MC3T3-E1 osteoblasts and to inhibit proliferation of prostate cancer cell lines. In the present study we tested the effects of resveratrol on the increased proliferation of human AHTO-7 osteoblastic cell line induced by conditioned media (CM) from a panel of carcinoma cell lines. This compound was found to modulate AHTO-7 proliferation in a tamoxifen-sensitive mechanism at lower concentrations, but failed to induce the osteoblast differentiation marker alkaline phosphatase (ALP) in contrast to vitamin D3. The proliferative response of AHTO-7 cells to conditioned media from carcinoma cell lines was diminished (30-71.4% inhibition) upon pretreatment with 0.5 microM resveratrol. Highest inhibition was demonstrated for pancreas (BxPC3, Panc-1), breast (ZR75-1) and renal (ACHN) carcinoma cell line supernatants whereas the effect on colon carcinoma (SW620, Colo320DM) cell CM and prostate cancer (PC3, DU145 and LNCaP) CM was less pronounced. Direct addition of resveratrol affected only supernatants of cell lines (<25% inhibition) exhibiting growth stimulatory activity for normal WI-38 lung fibroblasts. Resveratrol inhibited proliferation of DU145 and LNCaP cells in concentrations exceeding 5 microM, altered cell cycle distribution of all prostate cancer cell lines in concentrations as low as 0.5 microM, but did not inhibit the production of osteoblastic factors by these lines. In conclusion, resveratrol failed to induce ALP activity as marker of osteoblast differentiation in human osteoblastic AHTO-7 cells, however, inhibited their response to osteoblastic carcinoma-derived growth factors in concentrations significantly lower than those to reduce growth of cancer cells, thus effectively modulating tumor - osteoblast interaction.  相似文献   

20.
BACKGROUND: The aim of our study has to evaluate the antiproliferative effect of polyphenols and sterols extracted from the virgin argan oil on three human prostatic cell lines (DU145, LNCaP, and PC3). METHODS: Cytotoxicity, anti-proliferative effects and nuclear morphological changes of cells were analyzed after treatment with sterols and polyphenols. The results were compared to 2-methoxyestradiol (2ME(2)) as positive control. RESULTS: Polyphenols and sterols of virgin argan oil and 2ME(2) exhibited a dose-response cytotoxic effect and antiproliferative action on the three tested cell lines. The antiproliferative effect of polyphenols was similar for the DU145 and LNCaP cell lines; the GI(50) (defined as the concentration inhibiting growth by 50% in comparison with the control) was respectively 73 and 70microg/ml. The antiproliferative effect of sterols was 46 and 60microg/ml as GI(50) for the DU145 and LNCaP cell lines. For the PC3 cell line, the best antiproliferative effect was obtained by argan sterols with GI(50)=43microg/ml. On the other hand, the nuclear morphology analyses have shown an increased proportion of pro-apoptotic of nuclei in LNCaP cell treated with IC(50) of polyphenols or sterols compared to control cells. Our results show for the first time the antiproliferative and pro-apoptotic effects of polyphenols and sterols extracted from virgin argan oil and confirm the antiproliferative and pro-apoptotic effects of 2ME(2) on prostate cancer cell lines. CONCLUSION: These data suggest that argan oil may be interesting in the development of new strategies for prostate cancer prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号