首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Purpose

To compare the test–retest reproducibility of three variants of arterial spin labeling (ASL): pseudo‐continuous (pCASL), pulsed (PASL) and continuous (CASL).

Materials and Methods

Twelve healthy subjects were scanned on a 3.0T scanner with PASL, CASL, and pCASL. Scans were repeated within‐session, after 1 hour, and after 1 week to assess reproducibility at different scan intervals.

Results

Comparison of within‐subject coefficients of variation (wsCV) demonstrated high within‐session reproducibility (ie, low wsCV) for CASL‐based methods (gray matter [GM] wsCV for pCASL: 3.5% ± 0.02%, CASL: 4.1% ± 0.07%) compared to PASL (wsCV: 7.5% ± 0.06%), due to the higher signal‐to‐noise ratio (SNR) associated with continuous labeling, evident in the 20% gain in temporal SNR and 58% gain in raw SNR for pCASL relative to PASL. At the 1‐week scan interval, comparable reproducibility between PASL (GM wsCV 9.2% ± 0.12%) and pCASL (GM wsCV 8.5% ± 0.14%) was observed, indicating the dominance of physiological fluctuations.

Conclusion

Although all three approaches are capable of measuring cerebral blood flow within a few minutes of scanning, the high precision and SNR of pCASL, with its insensitivity to vessel geometry, make it an appealing method for future ASL application studies. J. Magn. Reson. Imaging 2011;33:940–949. © 2011 Wiley‐Liss, Inc.  相似文献   

2.

Purpose:

To compare the performance of pulsed and pseudocontinuous arterial spin‐labeling (PASL and pCASL) methods in measuring CO2‐induced cerebrovascular reactivity (CVR).

Materials and Methods:

Subjects were scanned using both ASL sequences during a controlled hypercapnia procedure and visual stimulation. CVR was computed as the percent CO2‐induced increase in cerebral blood flow (Δ%CBF) per mmHg increase in end‐tidal PCO2. Visually evoked responses were expressed as Δ%CBF. Resting CBF and temporal signal‐to‐noise ratio were also computed. Regionally averaged values for the different quantities were compared in gray matter (GM) and visual cortex (VC) using t‐tests.

Results:

Both PASL and pCASL yielded comparable respective values for resting CBF (56 ± 3 and 56 ± 4 mL/min/100g) and visually evoked responses (75 ± 5% and 81 ± 4%). Values of CVR determined using pCASL (GM 4.4 ± 0.2, VC 8 ± 1 Δ%CBF/mmHg), however, were significantly higher than those measured using PASL (GM 3.0 ± 0.6, VC 5 ± 1 Δ%CBF/mmHg) in both GM and VC. The percentage of GM voxels in which statistically significant hypercapnia responses were detected was also higher for pCASL (27 ± 5% vs. 16 ± 3% for PASL).

Conclusion:

pCASL may be less prone to underestimation of CO2‐induced flow changes due to improved label timing control. J. Magn. Reson. Imaging 2012;36:312–321. © 2012 Wiley Periodicals, Inc.  相似文献   

3.

Purpose:

To investigate arterial spin labeling (ASL) methods for improved brain perfusion mapping. Previously, pseudo‐continuous ASL (pCASL) was developed to overcome limitations inherent with conventional continuous ASL (CASL), but the control scan (null pulse) in the original method for pCASL perturbs the equilibrium magnetization, diminishing the ASL signal. Here, a new modification of pCASL, termed mpCASL is reported, in which the perturbation caused by the null pulse is reduced and perfusion mapping improved.

Materials and Methods:

improvements with mpCASL are demonstrated using numerical simulations and experiments. ASL signal intensity as well as contrast and reproducibility of in vivo brain perfusion images were measured in four volunteers who had MRI scans at 4 Tesla and the data compared across the labeling methods.

Results:

Perfusion maps with mpCASL showed, on average, higher ASL signal intensity and higher image contrast than those from CASL or pCASL. Furthermore, mpCASL yielded better reproducibility in repeat scans than the other methods.

Conclusion:

The experimental results are consistent with the hypothesis that the new null pulse of mpCASL leads to improved brain perfusion images. J. Magn. Reson. Imaging 2010;31:1419–1427. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Arterial spin labeling (ASL) is capable of noninvasively measuring blood flow by magnetically tagging the protons in arterial blood, which has been conventionally achieved using instantaneous (PASL) or continuous (CASL) RF pulses. As an intermediate method, pseudocontinuous ASL (pCASL) utilizes a train of discrete RF pulses to mimic continuous tagging that is often unavailable on imagers due to the requirement of continuous RF transmit capabilities. In the present study, we implemented two versions of pCASL (balanced and unbalanced gradient waveforms in tag and control scans) for both transmit/receive coils and array receivers. Experimental data show a 50% +/- 4% increase of signal-to-noise ratio (SNR) compared with PASL and a higher tagging efficiency than amplitude-modulated (AM) CASL (80% vs. 68%). Computer simulations predict an optimal tagging efficiency of 85% for flow velocities from 10 to 60 cm/s. It is theoretically and experimentally demonstrated that the tagging efficiency of pCASL is dependent upon the resonance offset and flip angle of the RF pulse train. We conclude that pCASL has the potential of combining the merits of PASL, including less hardware demand and higher tagging efficiency, and CASL, which includes a longer tagging bolus and thus higher SNR. These improvements provide a better balance between tagging efficiency and SNR.  相似文献   

5.

Purpose:

To investigate blood to tissue water transfer in human brain, in vivo and spatially resolved using a T2‐based arterial spin labeling (ASL) method with 3D readout.

Materials and Methods:

A T2‐ASL method is introduced to measure the water transfer processes between arterial blood and brain tissue based on a 3D‐GRASE (gradient and spin echo) pulsed ASL sequence with multiecho readout. An analytical mathematical model is derived based on the General Kinetic Model, including blood and tissue compartment, T1 and T2 relaxation, and a blood‐to‐tissue transfer term. Data were collected from healthy volunteers on a 3 T system. The mean transfer time parameter Tbl→ex (blood to extravascular compartment transfer time) was derived voxelwise by nonlinear least‐squares fitting.

Results:

Whole‐brain maps of Tbl→ex show stable results in cortical regions, yielding different values depending on the brain region. The mean value across subjects and regions of interest (ROIs) in gray matter was 440 ± 30 msec.

Conclusion:

A novel method to derive whole‐brain maps of blood to tissue water transfer dynamics is demonstrated. It is promising for the investigation of underlying physiological mechanisms and development of diagnostic applications in cerebrovascular diseases. J. Magn. Reson. Imaging 2013;37:332–342. © 2012 Wiley Periodicals, Inc.  相似文献   

6.

Purpose

To study the feasibility of using the MRI technique of segmented true–fast imaging with steady‐state precession arterial spin‐labeling (True‐FISP ASL) for the noninvasive measurement and quantification of local perfusion in cerebral deep gray matter at 3T.

Materials and Methods

A flow‐sensitive alternating inversion‐recovery (FAIR) ASL perfusion preparation was used in which the echo‐planar imaging (EPI) readout was replaced with a segmented True‐FISP data acquisition strategy. The absolute perfusion for six selected regions of deep gray matter (left and right thalamus, putamen, and caudate) were calculated in 11 healthy human subjects (six male, five female; mean age = 35.5 years ± 9.9).

Results

Preliminary measurements of the average absolute perfusion values at the six selected regions of deep gray matter are in agreement with published values for mean absolute cerebral blood flow (CBF) baselines acquired from healthy volunteers using positron emission tomography (PET).

Conclusion

Segmented True‐FISP ASL is a practical and quantitative technique suitable to measure local tissue perfusion in cerebral deep gray matter at a high spatial resolution without the susceptibility artifacts commonly associated with EPI‐based methods of ASL. J. Magn. Reson. Imaging 2009;29:1425–1431. © 2009 Wiley‐Liss, Inc.  相似文献   

7.

Purpose:

To compare 12‐channel and 32‐channel phased‐array coils and to determine the optimal parallel imaging (PI) technique and factor for brain perfusion imaging using Pulsed Arterial Spin labeling (PASL) at 3 Tesla (T).

Materials and Methods:

Twenty‐seven healthy volunteers underwent 10 different PASL perfusion PICORE Q2TIPS scans at 3T using 12‐channel and 32‐channel coils without PI and with GRAPPA or mSENSE using factor 2. PI with factor 3 and 4 were used only with the 32‐channel coil. Visual quality was assessed using four parameters. Quantitative analyses were performed using temporal noise, contrast‐to‐noise and signal‐to‐noise ratios (CNR, SNR).

Results:

Compared with 12‐channel acquisition, the scores for 32‐channel acquisition were significantly higher for overall visual quality, lower for noise and higher for SNR and CNR. With the 32‐channel coil, artifact compromise achieved the best score with PI factor 2. Noise increased, SNR and CNR decreased with PI factor. However mSENSE 2 scores were not always significantly different from acquisition without PI.

Conclusion:

For PASL at 3T, the 32‐channel coil at 3T provided better quality than the 12‐channel coil. With the 32‐channel coil, mSENSE 2 seemed to offer the best compromise for decreasing artifacts without significantly reducing SNR, CNR. J. Magn. Reson. Imaging 2012;35:1233‐1239. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Single shot 3D GRASE is less sensitive to field inhomogeneity and susceptibility effects than gradient echo based fast imaging sequences while preserving the acquisition speed. In this study, a continuous arterial spin labeling (CASL) pulse was added prior to the single shot 3D GRASE readout and quantitative perfusion measurements were carried out at 3 T, at rest and during functional activation. The sequence performance was evaluated by comparison with a CASL sequence with EPI readout. It is shown that perfusion measurements using CASL GRASE can be performed safely on humans at 3 T without exceeding the current RF power deposition limits. The maps of resting cerebral blood flow generated from the GRASE images are comparable to those obtained with the 2D EPI readout, albeit with better coverage in the orbitofrontal cortex. The sequence proved effective for functional imaging, yielding time series of images with improved temporal SNR with respect to EPI and group activation maps with increased significance levels. The method was further improved using parallel imaging techniques to provide increased spatial resolution and better separation of the gray-white matter cerebral blood flow maps.  相似文献   

9.

Purpose:

To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train.

Materials and Methods:

An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh‐field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false‐positive blood oxygenation level‐dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared.

Results:

Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false‐positive activation in fMRI data.

Conclusion:

It is concluded that at high B0 fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume. J. Magn. Reson. Imaging 2009;30:1171–1178. © 2009 Wiley‐Liss, Inc.  相似文献   

10.

Purpose:

To compare pulsed arterial spin labeling (PASL) and pseudocontinuous arterial spin labeling (PCASL) for nonenhanced extracranial carotid MR angiography (MRA).

Materials and Methods:

Parametric signal equations for PASL and PCASL MRA were formulated and compared. Volunteer imaging (n = 7) at 1.5 Tesla was performed to compare the methods over a broad range of repetition and labeling times. Empirical results were compared with theoretical predictions. The feasibility of the optimal method was investigated in patients (n = 2) with sonographically documented carotid artery disease.

Results:

In volunteers, PCASL provided significantly improved signal than PASL (range: 32–255% improvement; P < 0.01), and better supported the use of long labeling times and short repetition times. Excellent agreement between theory and experiment was found (intraclass correlation coefficient = 0.966; P < 0.001). PCASL provided excellent depiction of the carotid arteries in initial patient studies.

Conclusion:

Compared with pulsed tagging, pseudocontinuous tagging provides improved performance for nonenhanced extracranial carotid MRA and warrants further clinical investigation. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
High-field arterial spin labeling (ASL) perfusion MRI is appealing because it provides not only increased signal-to-noise ratio (SNR), but also advantages in terms of labeling due to the increased relaxation time T(1) of labeled blood. In the present study, we provide a theoretical framework for the dependence of the ASL signal on the static field strength, followed by experimental validation in which a multislice pulsed ASL (PASL) technique was carried out at 4T and compared with PASL and continuous ASL (CASL) techniques at 1.5T, both in the resting state and during motor activation. The resting-state data showed an SNR ratio of 2.3:1.4:1 in the gray matter and a contrast-to-noise ratio (CNR) of 2.7:1.1:1 between the gray and white matter for the difference perfusion images acquired using 4T PASL, 1.5T CASL, and 1.5T PASL, respectively. However, the functional data acquired using 4T PASL did not show significantly improved sensitivity to motor cortex activation compared with the 1.5T functional data, with reduced fractional perfusion signal change and increased intersubject variability. Possible reasons for these experimental results, including susceptibility effects and physiological noise, are discussed.  相似文献   

12.
Arterial spin labeling (ASL) provides a noninvasive method to measure brain perfusion and is becoming an increasingly viable alternative to more invasive MR methods due to improvements in acquisition, such as the use of a three‐dimensional GRASE readout. A potential source of error in ASL measurements is signal arising from intravascular blood that is destined for more distal tissue. This is typically suppressed using diffusion gradients in many ASL sequences. However, several problems exist with this approach, such as the choice of cutoff velocity and gradient direction and incompatibility with certain readout modules. An alternative approach is to explicitly model the intravascular signal. This study exploits this approach by using multi‐inversion time ASL data with a recently developed model‐fitting method. The method employed permits the intravascular contribution to be discarded in voxels where there is no support in the data for its inclusion, thereby addressing the issue of overfitting. It is shown by comparing data with and without flow suppression, and by comparing the intravascular contribution in GRASE ASL data to MR angiographic images, that the model‐fitting approach can provide a viable alternative to flow suppression in ASL where suppression is either not feasible or not desirable. Magn Reson Med 63:1357–1365, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.

Objectives

To present a multi-delay pseudo-continuous ASL (pCASL) protocol that offers simultaneous measurements of cerebral blood flow (CBF) and arterial transit time (ATT), and to study correlations between multi-delay pCASL and CT perfusion in moyamoya disease.

Methods

A 4 post-labeling delay (PLD) pCASL protocol was applied on 17 patients with moyamoya disease who also underwent CT perfusion imaging. ATT was estimated using the multi-delay protocol and included in the calculation of CBF. ASL and CT perfusion images were rated for lesion severity/conspicuity. Pearson correlation coefficients were calculated across voxels between the two modalities in grey and white matter of each subject respectively and between normalized mean values of ASL and CT perfusion measures in major vascular territories.

Results

Significant associations between ASL and CT perfusion were detected using subjective ratings, voxel-wise analysis in grey and white matter and region of interest (ROI)-based analysis of normalized mean perfusion. The correlation between ASL CBF and CT perfusion was improved using the multi-delay pCASL protocol compared to CBF acquired at a single PLD of 2 s (P?<?0.05).

Conclusions

There is a correlation between perfusion data from ASL and CT perfusion imaging in patients with moyamoya disease. Multi-delay ASL can improve CBF quantification, which could be a prognostic imaging biomarker in patients with moyamoya disease.

Key Points

? Simultaneous measurements of CBF and ATT can be achieved using multi-delay pCASL. ? Multi-delay ASL was compared with CT perfusion in patients with moyamoya disease. ? Statistical analyses showed significant associations between multi-delay ASL and CT perfusion. ? Multi-delay ASL can improve CBF quantification in moyamoya disease.  相似文献   

14.

Purpose

To investigate the feasibility and utility of arterial spin labeling (ASL) perfusion MRI for characterizing alterations of cerebral blood flow (CBF) in pediatric patients with arterial ischemic stroke (AIS).

Materials and Methods

Ten children with AIS were studied within 4 to 125 hours following symptom onset, using a pulsed ASL (PASL) protocol attached to clinically indicated MR examinations. The interhemisphere perfusion deficit (IHPD) was measured in predetermined vascular territories and infarct regions of restricted diffusion, which were compared with the degree of arterial stenosis and volumes of ischemic infarcts.

Results

Interpretable CBF maps were obtained in all 10 patients, showing simple lesion in nine patients (five hypoperfusion, two hyperperfusion, and two normal perfusion) and complex lesions in one patient. Both acute and follow‐up infarct volumes were significantly larger in cases with hypoperfusion than in either hyper‐ or normal perfusion cases. The IHPD was found to correlate with the degree of stenosis, diffusion lesion, and follow‐up T2 infarct volumes. Mismatch between perfusion and diffusion lesions was observed. Brain regions presenting delayed arterial transit effects were tentatively associated with positive outcome.

Conclusion

This study demonstrates the clinical utility of ASL in the neuroimaging diagnosis of pediatric AIS. J. Magn. Reson. Imaging 2009;29:282–290. © 2009 Wiley‐Liss, Inc.  相似文献   

15.

Purpose

To increase the efficiency of densely encoded diffusion imaging of the brain, such as diffusion spectrum imaging (DSI), we time‐multiplex multiple slices within the same readout using simultaneous image refocusing echo‐planar imaging (SIR‐EPI).

Materials and Methods

Inefficiency in total scan time results from the long time of diffusion encoding gradient pulses which must be repeated for each and every image. We present a highly efficient multiplexing method, simultaneous image refocusing (SIR), for reducing the total scan time of diffusion imaging by nearly one‐half. SIR DSI is performed in 10 minutes rather than 21 minutes, acceptable for routine clinical application.

Results

Two identical studies were completed, comparing conventional single‐slice EPI DSI and SIR‐EPI DSI, showing equal signal‐to‐noise ratio (SNR) and contrast and small differences in registration, likely due to typical subject motion. Comparison of DSI and DTI tractographs showed matching quality and detection of white matter tracts.

Conclusion

The net reduction to nearly half the number of diffusion encoding gradient pulses in SIR‐EPI significantly reduces acquisition times of DSI and DTI. J. Magn. Reson. Imaging 2009;29:517–522. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single‐shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal‐to‐noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through‐plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through‐plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm3 nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through‐plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.

Purpose:

To extend the parameter restrictions of a silent echo‐planar imaging (sEPI) sequence using sinusoidal readout (RO) gradients, in particular with increased spatial resolution. The sound pressure level (SPL) of the most feasible configurations is compared to conventional EPI having trapezoidal RO gradients.

Materials and Methods:

We enhanced the sEPI sequence by integrating a parallel acquisition technique (PAT) on a 3 T magnetic resonance imaging (MRI) system. The SPL was measured for matrix sizes of 64 × 64 and 128 × 128 pixels, without and with PAT (R = 2). The signal‐to‐noise ratio (SNR) was examined for both sinusoidal and trapezoidal RO gradients.

Results:

Compared to EPI PAT, the SPL could be reduced by up to 11.1 dB and 5.1 dB for matrix sizes of 64 × 64 and 128 × 128 pixels, respectively. The SNR of sinusoidal RO gradients is lower by a factor of 0.96 on average compared to trapezoidal RO gradients.

Conclusion:

The sEPI PAT sequence allows for 1) increased resolution, 2) expanded RO frequency range toward lower frequencies, which is in general beneficial for SPL, or 3) shortened TE, TR, and RO train length. At the same time, it generates lower SPL compared to conventional EPI for a wide range of RO frequencies while having the same imaging parameters. J. Magn. Reson. Imaging 2012;36:581–588. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Transfer insensitive labeling technique (TILT) was previously applied to acquire multislice cerebral blood flow maps as a pulsed arterial spin labeling (PASL) method. The magnetization transfer effect with TILT is well controlled by using concatenated radiofrequency pulses. However, use of TILT has been limited by several challenges, including slice profile errors, sensitivity to arterial transit time and intrinsic low signal‐to‐noise ratio (SNR). In this work, we propose to address these challenges by making the original TILT method into a novel pseudo‐continuous arterial spin labeling approach, named pseudo‐continuous transfer insensitive labeling technique (pTILT). pTILT improves perfusion acquisitions by (i) realizing pseudo‐continuous tagging with nonadiabatic pulses, (ii) being sensitive to slow flows in addition to fast flows, and (iii) providing flexible labeling geometries. Perfusion maps during both resting state and functional tasks are successfully demonstrated in healthy volunteers with pTILT. A comparison with typical SNR values from other perfusion techniques shows that although pTILT provides less SNR than inversion‐based pseudo‐continuous ASL techniques, the modified sequence provides similar SNR to inversion‐based PASL techniques. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
The purpose of this study was to establish a normal range for the arterial arrival time (AAT) in whole‐brain pulsed arterial spin labeling (PASL) cerebral perfusion MRI. Healthy volunteers (N = 36, range: 20 to 35 years) provided informed consent to participate in this study. AAT was assessed in multiple brain regions, using three‐dimensional gradient and spin echo (GRASE) pulsed arterial spin labeling at 3.0 T, and found to be 641 ± 95, 804 ± 91, 802 ± 126, and 935 ± 108 ms in the temporal, parietal, frontal, and occipital lobes, respectively. Mean gray matter AAT was found to be 694 ± 89 ms for females (N = 15), which was significantly shorter than for men, 814 ± 192 ms (N = 21; P < 0.0003), and significant after correcting for brain volume (P < 0.001). Significant AAT sex differences were also found using voxelwise permutation testing. An atlas of AAT values across the healthy brain is presented here and may be useful for future experiments that aim to quantify cerebral blood flow from ASL data, as well as for clinical comparisons where disease pathology may lead to altered AAT. Pulsed arterial spin labeling signals were simulated using an identical sampling scheme as the empiric study and revealed AAT can be estimated robustly when simulated arrival times are well beyond the normal range. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.

Purpose:

To determine whether quantitative arterial spin labeling (ASL) can be used to evaluate regional cerebral blood flow in Parkinson's disease with dementia (PDD) and without dementia (PD).

Materials and Methods:

Thirty‐five PD patients, 11 PDD patients, and 35 normal controls were scanned by using a quantitative ASL method with a 3 Tesla MRI unit. Regional cerebral blood flow was compared in the posterior cortex using region‐of‐interest analysis.

Results:

PD and PDD patients showed lower regional cerebral blood flow in the posterior cortex than normal controls (P = 0.002 and P = 0.001, respectively, analysis of variance with a Bonferroni post hoc test).

Conclusion:

This is the first study to detect hypoperfusion in the posterior cortex in PD and PDD patients using ASL perfusion MRI. Because ASL perfusion MRI is completely noninvasive and can, therefore, safely be used for repeated assessments, this method can be used to monitor treatment effects or disease progression in PD. J. Magn. Reson. Imaging 2011;33:803–807. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号