首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of travelling wave MR to human body imaging is restricted by the limited peak power of the available RF amplifiers. Nevertheless, travelling wave MR advantages like a large field of view excitation and distant location of transmit elements would be desirable for whole body MRI. In this work, improvement of the efficiency of travelling wave MR is demonstrated. High permittivity dielectric lining placed next to the scanner bore wall effectively reduces attenuation of the travelling wave in the longitudinal direction and at the same time directs the radial power flow toward the load. First, this is shown with an analytical model of a metallic cylindrical waveguide with the dielectric lining next to the wall and loaded with a cylindrical phantom. Simulations and experiments also reveal an increase of efficiency in the center of the bore for travelling wave MR with a dielectric lining. Phantom experiments show up to a 2‐fold gain in with the dielectric lining. This corresponds to a 4‐fold increase in power efficiency of travelling wave MR. In vivo experiments demonstrate an 8‐fold signal‐to‐noise ratio gain with the dielectric lining. Overall, it is shown that dielectric lining is a constructive method to improve efficacy of travelling wave MR. Magn Reson Med 70:885–894, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
At high magnetic fields the performance of a volume‐type body coil inside a human sized MR‐scanner is influenced by the waveguide action of the scanner's bore. This can result in undesirable strong radio frequency fields ) outside the coil's target volume. A radio frequency (RF) transmit system, exploiting this waveguide action of the bore, is proposed in this work. A coaxial waveguide section is introduced between the antenna and the imaging region. It is shown that the coaxial waveguide has several advantages over the initially proposed travelling wave setup based on the cylindrical waveguide. First, a novel radio frequency matching principle (based on the transmission line impedance matching) is feasible with the coaxial waveguide achieving better radio frequency transmission characteristics, such as homogeneity and power efficiency of field. In case of body torso imaging, the coaxial waveguide prevents unwanted specific absorptive rate (SAR) deposition outside the target region and thus, effectively decreases local peak SAR values by factor of 5. A 3‐fold gain in the prostate can be achieved with the coaxial waveguide in comparison with the initially proposed travelling wave setup. Magn Reson Med 70:875–884, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Noncontrast‐enhanced renal angiography techniques based on balanced steady‐state free precession avoid external contrast agents, take advantage of high inherent blood signal from the contrast mechanism, and have short steady‐state free precession acquisition times. However, background suppression is limited; inflow times are inflexible; labeling region is difficult to define when tagging arterial flow; and scan times are long. To overcome these limitations, we propose the use of multiple inversion recovery preparatory pulses combined with alternating pulse repetition time balanced steady‐state free precession to produce renal angiograms. Multiple inversion recovery uses selective spatial saturation followed by four nonselective inversion recovery pulses to concurrently null a wide range of background species while allowing for adjustable inflow times; alternating pulse repetition time steady‐state free precession maintains vessel contrast and provides added fat suppression. The high level of suppression enables imaging in three‐dimensional as well as projective two‐dimensional formats, the latter of which has a scan time as short as one heartbeat. In vivo studies at 1.5 T demonstrate the superior vessel contrast of this technique. Magn Reson Med 70:527–536, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The Bloch–Siegert (B–S) method of B mapping has been shown to be fast and accurate, yet has high SAR and moderately long TE. These limitations can lengthen scan times and incur signal loss due to B0 inhomogeneity, particularly at high field. The B–S method relies on applying a band‐limited off‐resonant B–S radiofrequency pulse to induce a B‐dependent frequency‐shift for resonant spins. A method for optimizing the B–S radiofrequency pulse is presented here, which maximizes B–S B measurement sensitivity for a given SAR and T2. A 4‐ms optimized pulse is shown to have 35% less SAR compared with the conventional 6‐ms Fermi pulse while still improving B map angle‐to‐noise ratio by 22%. The optimized pulse performance is validated both in phantom and in vivo brain imaging at 7 T. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Chemical shift imaging benefits from signal‐to‐noise ratio (SNR) and chemical shift dispersion increases at stronger main field such as 7 Tesla, but the associated shorter radiofrequency (RF) wavelengths encountered require B mitigation over both the spatial field of view (FOV) and a specified spectral bandwidth. The bandwidth constraint presents a challenge for previously proposed spatially tailored B mitigation methods, which are based on a type of echovolumnar trajectory referred to as “spokes” or “fast‐kz”. Although such pulses, in conjunction with parallel excitation methodology, can efficiently mitigate large B inhomogeneities and achieve relatively short pulse durations with slice‐selective excitations, they exhibit a narrow‐band off‐resonance response and may not be suitable for applications that require B mitigation over a large spectral bandwidth. This work outlines a design method for a general parallel spectral‐spatial excitation that achieves a target‐error minimization simultaneously over a bandwidth of frequencies and a specified spatial‐domain. The technique is demonstrated for slab‐selective excitation with in‐plane B mitigation over a 600‐Hz bandwidth. The pulse design method is validated in a water phantom at 7T using an eight‐channel transmit array system. The results show significant increases in the pulse's spectral bandwidth, with no additional pulse duration penalty and only a minor tradeoff in spatial B mitigation compared to the standard spoke‐based parallel RF design. Magn Reson Med 61:493–500, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Reproducible and accurate myocardial T measurements are required for the quantification of iron in heart tissue in transfused thalassemia. The aim of this study was to determine the best method to measure the myocardial T from multi‐gradient‐echo data acquired both with and without black‐blood preparation. Sixteen thalassemia patients from six centers were scanned twice locally, within 1 week, using an optimized bright‐blood T sequence and then subsequently scanned at the standardization center in London within 4 weeks, using a T sequence both with and without black‐blood preparation. Different curve‐fitting models (monoexponential, truncation, and offset) were applied to the data and the results were compared by means of reproducibility. T measurements obtained using the bright‐ and black‐blood techniques. The black‐blood data were well fitted by the monoexponential model, which suggests that a more accurate measure of T can be obtained by removing the main source of errors in the bright‐blood data. For bright‐blood data, the offset model appeared to underestimate T values substantially and was less reproducible. The truncation model gave rise to more reproducible T measurements, which were also closer to the values obtained from the black‐blood data. Magn Reson Med 60:1082–1089, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
19F MRI offers high specificity but usually low sensitivity. Here, paramagnetic relaxation enhancement is assessed as a method to improve SNR efficiency in 19F MRI. Compounds with short relaxation times are used that combine fluorine and a paramagnetic ion within the same molecule. Different molecular designs provide T1 values in the range of 1.4–15 ms and /T1 ratios from 0.3 to 1. Gradient echo, as well as ultrafast radial MR sequences, is optimized to achieve highest SNR efficiency. Compared to nonparamagnetic compounds, ultrafast sequences can yield a gain of up to a factor 27 in sensitivity, whereas the gain with gradient echo is only factor 11. Comparison among the paramagnetic compounds shows that /T1 close to unity is a prerequisite for highest SNR efficiency gain and that best results are obtained for compounds with T1 in the range of 1–5 ms. Magn Reson Med 69:1056–1062, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
T‐weighted imaging (TWI) and quantitative T mapping with conventional gradient‐echo acquisition are often hindered by severe signal loss induced by macroscopic field inhomogeneity. Various z‐shimming approaches have been developed for TWI/T mapping in which the effects of macroscopic field inhomogeneity are suppressed while the sensitivity of T‐related signal intensity to alterations in the microscopic susceptibility is maintained. However, this is often done at the cost of significantly increased imaging time. In this work, a fast T mapping method with compensation for macroscopic field inhomogeneity was developed. A proton density‐weighted image and a composite T‐weighted image, both of which were essentially free from macroscopic field inhomogeneity‐induced signal loss, were used for the T calculation. The composite T‐weighted image was reconstructed from a number of gradient‐echo images acquired with successively incremented z‐shimming compensation. Because acquisition of the two images and z‐shimming compensation were realized in a single scan, the total acquisition time for obtaining a T map with the proposed method is the same as the time taken for a conventional multiecho gradient‐echo imaging sequence without compensation. The performance and efficiency of the proposed method were demonstrated and evaluated at 4.7 T. Magn Reson Med 60:1388–1395, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Myocardial T measurement has been increasingly used for iron quantification to assess the risk of cardiac complications in thalassemia patients. In this study the noise effects were evaluated along with different curve‐fitting models on an iron overloaded ex vivo heart in order to determine the optimal method of T measurement and to help understand issues affecting reproducibility and accuracy. Gradient multiecho short axis images were acquired with differing numbers of excitations to generate varying signal‐to‐noise ratio (SNR) images. A noise correction method was implemented; linear and nonlinear curve‐fitting algorithms were compared and different curve‐fitting models (monoexponential, truncation, baseline subtraction, and offset) were evaluated. This study suggests that the T decay curve in an ex vivo heart can be fitted by a monoexponential model and accurate T measurements can be obtained with proper noise correction. With MRI noise, T is generally overestimated by including late low SNR data points, but underestimated by the offset or baseline subtraction models, which are in fact equivalent. In this situation the truncation model proves to be reproducible and more accurate than the other models. The study also shows that the nonlinear algorithm is preferred in T curve fitting. Magn Reson Med 60:350–356, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
Cerebral blood volume maps are usually acquired using dynamic susceptibility contrast imaging which inherently limits the spatial resolution and signal to noise ratio of the images. In this study, we used ferumoxytol (AMAG Pharmaceuticals, Inc., Cambridge, MA), an FDA‐approved compound, to obtain high‐resolution cerebral blood volume maps with a steady‐state approach in seven healthy volunteers. maps (0.8 × 0.8 × 1 mm3) were acquired before and after injection of ferumoxytol and an intraindividual normalization protocol was used to obtain quantitative values. The results show excellent contrast between white and gray matter as well as fine highly detailed vascular structures. An average blood volume of 4% was found in the brain of all volunteers, consistent with prior literature values. A linear relationship was found between ferumoxytol dose (mg/kg) and (1/s) in gray (R2 = 0.98) and white matter (R2 = 0.98). A quadratic relationship was found in the sagittal sinus (R2 = 0.98). The cerebral blood volume maps compare well with lower resolution dynamic susceptibility contrast‐MRI and their use should improve the evaluation of small and heterogeneous lesions and facilitate intrapatient and interpatient comparisons. Magn Reson Med 70:705–710, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The aim of this study was to investigate T in the Achilles tendon (AT), in vivo, using a three‐dimensional ultrashort time echo (3D‐UTE) sequence, to compare field strength differences (3 and 7 T) and to evaluate a regional variation of T in healthy and pathologic tendon. Ten volunteers with no history of pain in the AT and five patients with chronic Achilles tendinopathy were recruited. 3D‐UTE images were measured with the following echo times, at echo time = [0.07, 0.2, 0.33, 0.46, 0.59, 0.74, 1.0, 1.5, 2.0, 4.0, 6.0, and 9.0 ms]. T values in the AT were calculated by fitting the signal decay to biexponential function. Comparing volunteers between 3 and 7 T, short component T was 0.71 ± 0.17 ms and 0.34 ± 0.09 ms (P < 0.05); bulk long component T was 12.85 ± 1.87 ms and 10.28 ± 2.28 ms (P < 0.05). In patients at 7 T, bulk T was 0.53 ± 0.17 ms (P = 0.045, compared to volunteers), T was 11.49 ± 4.28 ms (P = 0.99, compared to volunteers). The results of this study suggest that the regional variability of AT can be quantified by T in in vivo conditions. Advanced quantitative imaging of the human AT using a 3D‐UTE sequence may provide additional information to standard clinical imaging. Finally, as the preliminary patient data suggest, T may be a promising marker for the diagnosis of pathological changes in the AT. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Knowledge of B distribution is crucial for many applications, such as quantitative MRI. A novel method has been developed to improve the accuracy of the conventionally applied double‐angle method for B mapping. It solves the remaining issues raised by the use of selective pulses for slice selection to accelerate the acquisition process. A general approach for reconstructing B maps is presented first. It takes B‐induced slice profile distortions over off‐resonance frequencies into account. It is then shown how the ratio between the prescribed flip angles can be adjusted to reach a compromise between the level of noise propagated onto B maps and the width of the range in which the field can be mapped. Lastly, several solutions are proposed for reducing the B‐dependent pollution of regions distal to the image slice which participates significantly in the inaccuracy of B mapping. These methods were experimentally tested by comparison with gold standard B maps obtained on a phantom using a non‐selective and thus much slower technique. As they are independent and lead to significant improvements, these solutions can be combined to achieve high precision and fast B mapping using spin‐echo DAM. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Various regulatory mechanisms of pulmonary oxygen uptake () kinetics have been postulated. The purpose of this study was to investigate the relationship between vagal withdrawal, measured using RMSSDRR, the root mean square of successive differences in cardiac interval (RR) kinetics, a mediator of oxygen delivery, and kinetics. Forty‐nine healthy adults (23 ± 3 years; 72 ± 13 kg; 1.80 ± 0.08 m) performed multiple repeat transitions to moderate‐ and heavy‐intensity exercise. Electrocardiography, impedance cardiography, and pulmonary gas exchange parameters were measured throughout; time domain measures of heart rate variability were subsequently derived. The parameters describing the dynamic response of , cardiac output () and RMSSDRR were determined using a mono‐exponential model. During heavy‐intensity exercise, the phase II τ of was significantly correlated with the τ of RR (r = 0.36, P < 0.05), Q (r = 0.67, P < 0.05), and RMSSDRR (r = 0.38, P < 0.05). The τ describing the rise in Q explained 47% of the variation in τ, with 30% of the rate of this rise in Q explained by the τ of RR and RMSSDRR. No relationship was evident between kinetics and those of Q, RR, or RMSSDRR during moderate exercise. Vagal withdrawal kinetics support the concept of a centrally mediated oxygen delivery limitation partly regulating kinetics during heavy‐, but not moderate‐, intensity exercise.  相似文献   

14.
Sampling density‐weighted apodization projection reconstruction sequences are evaluated for three‐dimensional radial imaging. The readout gradients of the sampling density‐weighted apodization sequence are designed such that the locally averaged sampling density matches a Hamming filter function. This technique is compared with density‐adapted projection reconstruction with nonfiltered and postfiltered image reconstruction. Sampling density‐weighted apodization theoretically allows for a 1.28‐fold higher signal‐to‐noise ratio compared with postfiltered density‐adapted projection reconstruction sequences, if T decay is negligible compared with the readout duration TRO. Simulations of the point‐spread functions are performed for monoexponential and biexponential decay to investigate the effects of T decay on the performance of the different sequences. Postfiltered density‐adapted projection reconstruction performs superior to sampling density‐weighted apodization for large TRO/T ratios [>1.36 (monoexponential decay); >0.35 (biexponential decay with T/T = 10)], if signal‐to‐noise ratio of point‐like objects is considered. In conclusion, it depends on the readout parameters, the T relaxation times, and the dimensions of the subject which of both sequences is most suitable. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
This study examined the time course of short‐term training and detraining‐induced changes in oxygen uptake () kinetics. Twelve men (24 ± 3 years) were assigned to either a 50% or a 70% of training intensity (n = 6 per group). was measured breath‐by‐breath. Changes in deoxygenated‐hemoglobin concentration (Δ[HHb]) were measured by near‐infrared spectroscopy. Moderate‐intensity exercise on‐transient and Δ[HHb] were modeled with a mono‐exponential and normalized (0–100% of response) and the ratio was calculated. Similar changes in time constant of () were observed in both groups. The combined group mean for decreased ~14% (32.3 to 27.9 s, P < 0.05) after one training session with a further ~11% decrease (27.9 to 24.8 s, P < 0.05) following two training sessions. The remained unchanged throughout the remaining of training and detraining. A significant “overshoot” in the ratio was decreased (albeit not significant) after one training session, and abolished (P < 0.05) after the second one, with no overshoot observed thereafter. Speeding of kinetics was remarkably quick with no further changes being observed with continuous training or during detraining. Improve matching of local O2 delivery to O2 utilization is a mechanism proposed to influence this response.  相似文献   

16.
A method for fast quantitative T mapping based on multiple gradient‐echo (multi‐GE) imaging with correction for static magnetic field inhomogeneities is described, using an exponential excitation pulse. Field gradient maps are obtained from the phase information and modulus data are subsequently corrected, allowing for simple monoexponential T fitting. Echoes with long echo times suffering from major signal losses due to field inhomogeneities are excluded from the analysis. The acquisition time for a matrix size of 256 × 256, 1 mm in‐plane resolution, and 2 mm slice thickness amounts to 15 s per slice. An additional correction for in‐plane field gradients further improves accuracy. Phantom experiments show that the method provides accurate T values for field gradients up to 200 μT/m; for gradients up to 300 μT/m errors do not exceed 15%. In vivo T values acquired on healthy volunteers at 3T are in excellent agreement with results from the literature. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
A new method was developed to measure ultrashort T relaxation in tissues containing a focal area of superparamagnetic iron oxide (SPIO) nanoparticle‐labeled cells in which the T decay is too short to be accurately measured using regular gradient echo T mapping. The proposed method utilizes the relatively long T2 relaxation of SPIO‐labeled cells and acquires a series of spin echo images with the readout echo shifted to sample the T decay curve. MRI experiments in phantoms and rats with SPIO‐labeled tumors demonstrated that it can detect ultrashort T down to 1 ms or less. The measured T values were about 10% higher than those from the ultrashort TE (UTE) technique. The shorter the TE, the less the measurements deviated from the UTE T mapping. Combined with the regular T mapping, this technique is expected to provide quantitation of highly concentrated iron‐labeled cells from direct cell transplantation. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The purpose of this study was to detail a strategy for performing non‐contrast enhanced renal magnetic resonance angiography studies at 7.0 T. It is demonstrated that with proper B management, these studies can be successfully performed at ultrahigh field within local specific absorption rate constraints. An inversion prepared gradient echo acquisition, standard for non‐contrast renal magnetic resonance angiography studies, required radiofrequency pulse specific B shimming solutions to be dynamically applied to address the field dependent increases in both B0 and B inhomogeneity as well as to accommodate limitation in available power. By using more efficient B shimming solutions for the inversion preparation and more homogeneous solutions for the excitation, high quality images of the renal arteries were obtained without venous and background signal artifacts while working within hardware and safety constraints. Finite difference time domain simulations confirmed in vivo measurements with respect to B distributions and homogeneity for the range of shimming strategies used and allowed the calculation of peak local specific absorption rate values normalized by input power and B. Increasing B homogeneity was accompanied by decreasing local specific absorption rate per Watt and increasing maximum local specific absorption rate per [B]2, which must be considered, along with body size and respiratory rate, when finalizing acquisition parameters for a given individual. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Multiecho chemical shift–based water‐fat separation methods are seeing increasing clinical use due to their ability to estimate and correct for field inhomogeneities. Previous chemical shift‐based water‐fat separation methods used a relatively simple signal model that assumes both water and fat have a single resonant frequency. However, it is well known that fat has several spectral peaks. This inaccuracy in the signal model results in two undesired effects. First, water and fat are incompletely separated. Second, methods designed to estimate T in the presence of fat incorrectly estimate the T decay in tissues containing fat. In this work, a more accurate multifrequency model of fat is included in the iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL) water‐fat separation and simultaneous T estimation techniques. The fat spectrum can be assumed to be constant in all subjects and measured a priori using MR spectroscopy. Alternatively, the fat spectrum can be estimated directly from the data using novel spectrum self‐calibration algorithms. The improvement in water‐fat separation and T estimation is demonstrated in a variety of in vivo applications, including knee, ankle, spine, breast, and abdominal scans. Magn Reson Med 60:1122–1134, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
In this study, the reproducibility of MR imaging in colorectal liver metastases was assessed and values were correlated with the expression of the hypoxia‐related markers GLUT‐1 and CA‐IX as well as the relative vascular area, and the vessel density in resected tumors. The reproducibility of was analyzed in 18 patients with in total 22 colorectal liver metastases using the Bland and Altman method for the 16th, 50th, and 84th percentile values. Immunohistochemical staining was performed on 17 resected tumors obtained from 16 patients. The median of all liver metastases was 25.0 ± 5.6 ms vs. 23.0 ± 4.1 ms (median ± st.dev.) in normal liver. The coefficient of repeatability was 11.2 ms and the limits of agreement were ?13.2 ms and 9.1 ms for median values. On average, showed fair reproducibility. No correlations between values, hypoxia‐ and vascularity‐related markers were observed. Magn Reson Med, 70:1145–1152, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号