首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose:

To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants.

Materials and Methods:

Slice‐encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view‐angle tilting and slice‐direction phase encoding to correct both in‐plane and through‐plane artifacts. Standard spin echo trains and short‐TI inversion recovery (STIR) allow efficient PD‐weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal‐to‐noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods.

Results:

The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects.

Conclusion:

SEMAC imaging can be combined with standard echo‐train imaging, parallel imaging, partial‐Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal‐induced artifacts in scan times under 11 minutes. J. Magn. Reson. Imaging 2010;31:987–996. ©2010 Wiley‐Liss, Inc.  相似文献   

2.
Magnetic resonance imaging (MRI) near metallic implants remains an unmet need because of severe artifacts, which mainly stem from large metal‐induced field inhomogeneities. This work addresses MRI near metallic implants with an innovative imaging technique called “Slice Encoding for Metal Artifact Correction” (SEMAC). The SEMAC technique corrects metal artifacts via robust encoding of each excited slice against metal‐induced field inhomogeneities. The robust slice encoding is achieved by extending a view‐angle‐tilting (VAT) spin‐echo sequence with additional z‐phase encoding. Although the VAT compensation gradient suppresses most in‐plane distortions, the z‐phase encoding fully resolves distorted excitation profiles that cause through‐plane distortions. By positioning all spins in a region‐of‐interest to their actual spatial locations, the through‐plane distortions can be corrected by summing up the resolved spins in each voxel. The SEMAC technique does not require additional hardware and can be deployed to the large installed base of whole‐body MRI systems. The efficacy of the SEMAC technique in eliminating metal‐induced distortions with feasible scan times is validated in phantom and in vivo spine and knee studies. Magn Reson Med 62:66–76, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The recently developed multi‐acquisition with variable resonance image combination (MAVRIC) and slice‐encoding metal artifact correction (SEMAC) techniques can significantly reduce image artifacts commonly encountered near embedded metal hardware. These artifact reductions are enabled by applying alternative spectral and spatial‐encoding schemes to conventional spin‐echo imaging techniques. Here, the MAVRIC and SEMAC concepts are connected and discussed. The development of a hybrid technique that utilizes strengths of both methods is then introduced. The presented technique is shown capable of producing minimal artifact, high‐resolution images near total joint replacements in a clinical setting. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.

Purpose:

To evaluate two magnetic resonance imaging (MRI) techniques, slice encoding for metal artifact correction (SEMAC) and multiacquisition variable‐resonance image combination (MAVRIC), for their ability to correct for artifacts in postoperative knees with metal.

Materials and Methods:

A total of 25 knees were imaged in this study. Fourteen total knee replacements (TKRs) in volunteers were scanned with SEMAC, MAVRIC, and 2D fast spin‐echo (FSE) to measure artifact extent and implant rotation. The ability of the sequences to measure implant rotation and dimensions was compared in a TKR knee model. Eleven patients with a variety of metallic hardware were imaged with SEMAC and FSE to compare artifact extent and subsequent patient management was recorded.

Results:

SEMAC and MAVRIC significantly reduced artifact extent compared to FSE (P < 0.0001) and were similar to each other (P = 0.58), allowing accurate measurement of implant dimensions and rotation. The TKRs were properly aligned in the volunteers. Clinical imaging with SEMAC in symptomatic knees significantly reduced artifact (P < 0.05) and showed findings that were on the majority confirmed by subsequent noninvasive or invasive patient studies.

Conclusion:

SEMAC and MAVRIC correct for metal artifact, noninvasively providing high‐resolution images with superb bone and soft tissue contrast. J. Magn. Reson. Imaging 2011;33:1121–1127. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
Development of GRASE (gradient‐ and spin‐echo) pulse sequences for single‐shot 3D imaging has been motivated by physiologic studies of the brain. The duration of echo‐planar imaging (EPI) subsequences between RF refocusing pulses in the GRASE sequence is determinant of image distortions and susceptibility artifacts. To reduce these artifacts the regular Cartesian trajectory is modified to a circular trajectory in 2D and a cylindrical trajectory in 3D for reduced echo train time. Incorporation of “fly‐back” trajectories lengthened the time of the subsequences and proportionally increased susceptibility artifact but the unipolar readout gradients eliminate all ghost artifacts. The modified cylindrical trajectory reduced susceptibility artifact and distortion artifact while raising the signal‐to‐noise ratio in both phantom and human brain images. Magn Reson Med 60:976–980, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.

Purpose:

To investigate the feasibility of combining the inner‐volume‐imaging (IVI) technique with single‐shot diffusion‐weighted (DW) spin‐echo echo‐planar imaging (SE‐EPI) and DW‐SPLICE (split acquisition of fast spin‐echo) sequences for renal DW imaging.

Materials and Methods:

Renal DWI was performed in 10 healthy volunteers using single‐shot DW‐SE‐EPI, DW‐SPLICE, targeted‐DW‐SE‐EPI, and targeted‐DW‐SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted‐DW‐SE‐EPI and targeted DW‐SPLICE methods with conventional full field of view (FOV) DW‐SE‐EPI and DW‐SPLICE measurements in phantoms and normal volunteers.

Results:

Compared with full FOV DW‐SE‐EPI and DW‐SPLICE methods, targeted‐DW‐SE‐EPI and targeted‐DW‐SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion, and reduced spatial blurring in both phantom and volunteer studies. The apparent diffusion coefficient (ADC) values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intravoxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single‐shot DW‐SE‐EPI, targeted‐DW‐EPI, and targeted‐DW‐SPLICE (P > 0.05).

Conclusion:

Compared with full‐FOV DWI methods, targeted‐DW‐SE‐EPI and targeted‐DW‐SPLICE techniques reduced image distortion and artifacts observed in the single‐shot DW‐SE‐EPI images, reduced blurring in DW‐SPLICE images, and produced comparable quantitative DW and IVIM measurements to those produced with conventional full‐FOV approaches. J. Magn. Reson. Imaging 2011;33:1517–1525. © 2011 Wiley‐Liss, Inc.  相似文献   

7.

Purpose:

To evaluate a single‐pass fast spoiled gradient echo (FSPGR) two‐point Dixon sequence and a gradient echo sequence with spectral fat suppression in their performance at 3 T for fat suppressed contrast‐enhanced bilateral breast imaging.

Materials and Methods:

Twenty patients were prospectively enrolled in an imaging protocol that included axial Dixon and 3D FSPGR with spectrally selective fat saturation sequences as part of patient care in this study. Qualitative analysis was performed retrospectively by two readers who scored the images for homogeneity and degree of fat saturation, severity of artifacts, and quality of normal anatomical structures. Enhancing lesions were scored according to the confidence with which American College of Radiology (ACR) BI‐RADS magnetic resonance imaging (MRI) features were identified.

Results:

The Dixon sequence showed superior fat saturation homogeneity, quality of posterior anatomical structures, and decreased artifact severity that were statistically significant (P < 0.0001). The degree of fat saturation was scored higher in the Dixon sequence, although the difference did not reach statistical significance. There were no significant differences between the 3D T1‐weighted FSPGR and Dixon groups for assessing lesion features.

Conclusion:

Our findings suggest that the Dixon technique is an effective fat suppression method for contrast‐enhanced breast MRI. The Dixon technique also seemed to provide better anatomical definition of posterior structures and improvement in severity of artifacts. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

8.

Purpose:

To suppress off‐resonance artifacts in coronary artery imaging at 3 Tesla (T), and therefore improve spatial resolution.

Materials and Methods:

Wideband steady state free precession (SSFP) sequences use an oscillating steady state to reduce banding artifacts. Coronary artery images were obtained at 3T using three‐dimensional navigated gradient echo, balanced SSFP, and wideband SSFP sequences.

Results:

The highest in‐plane resolution of left coronary artery images was 0.68 mm in the frequency‐encoding direction. Wideband SSFP produced an average SNR efficiency of 70% relative to conventional balanced SSFP and suppressed off‐resonance artifacts.

Conclusion:

Wideband SSFP was found to be a promising approach for obtaining noncontrast, high‐resolution coronary artery images at 3 Tesla with reliable image quality. J. Magn. Reson. Imaging 2010;31:1224–1229. © 2010 Wiley‐Liss, Inc.  相似文献   

9.

Purpose

To describe and demonstrate a new technique that allows diffusion tensor imaging of small structures such as the spinal cord (SC) and optic nerve (ON) with contiguous slices and reduced image distortions using a narrow field of view (FOV).

Materials and Methods

Images were acquired with a modified single‐shot echo‐planar imaging (EPI) sequence that contains a refocusing radio frequency (RF) pulse in the presence of the phase‐encoding (rather than slice‐select) gradient. As a result, only a narrow volume may be both excited and refocused, removing the problem of signal aliasing for narrow FOVs. Two variants of this technique were developed: cardiac gating is included in the study of the SC to reduce pulsation artifacts, whereas inversion‐recovery (IR) cerebrospinal fluid (CSF) suppression is utilized in the study of the ON to eliminate partial volume effects. The technique was evaluated with phantoms, and mean diffusivity (MD) and fractional anisotropy (FA) measurements were made in the SC and ON of two healthy volunteers.

Results

The technique provides contiguous‐slice, reduced‐FOV images that do not suffer from aliasing and have reduced magnetic susceptibility artifacts. MD and FA values determined here lie within the ranges quoted in the literature.

Conclusion

Contiguous‐slice zonally orthogonal multislice (CO‐ZOOM‐EPI is a new technique for diffusion‐weighted imaging of small structures such as the ON and SC with high resolution and reduced distortions due to susceptibility variations. This technique is able to acquire contiguous slices that may allow further nerve‐tracking analyses. J. Magn. Reson. Imaging 2009;29:454–460. © 2009 Wiley‐Liss, Inc.  相似文献   

10.

Purpose:

To evaluate an alternative method for generating multibanded radiofrequency (RF) pulses for use in multiband slice‐accelerated imaging with slice‐GRAPPA unaliasing, substantially reducing the required peak power without bandwidth compromises. This allows much higher accelerations for spin‐echo methods such as SE‐fMRI and diffusion‐weighted MRI where multibanded slice acceleration has been limited by available peak power.

Theory and Methods:

Multibanded “time‐shifted” RF pulses were generated by inserting temporal shifts between the applications of RF energy for individual bands, avoiding worst‐case constructive interferences. Slice profiles and images in phantoms and human subjects were acquired at 3 T.

Results:

For typical sinc pulses, time‐shifted multibanded RF pulses were generated with little increase in required peak power compared to single‐banded pulses. Slice profile quality was improved by allowing for higher pulse bandwidths, and image quality was improved by allowing for optimum flip angles to be achieved.

Conclusion:

A simple approach has been demonstrated that significantly alleviates the restrictions imposed on achievable slice acceleration factors in multiband spin‐echo imaging due to the power requirements of multibanded RF pulses. This solution will allow for increased accelerations in diffusion‐weighted MRI applications where data acquisition times are normally very long and the ability to accelerate is extremely valuable. Magn Reson Med 69:1261–1267, 2013 Wiley Periodicals, Inc.  相似文献   

11.

Purpose:

To evaluate the performance of a slice navigator sequence integrated into a b‐SSFP sequence for obtaining real time respiratory self‐gated whole heart cine imaging.

Materials and Methods:

In this work, we present a novel and robust approach for respiratory motion detection by integrating a slice navigator sequence into a balanced steady state free precession (b‐SSFP) sequence, while maintaining the steady state. The slice navigator sequence is integrated into consecutive repetition times (TRs) of a b‐SSFP sequence to excite and read out a navigator slice. We performed several phantom experiments to test the performance of the slice navigator sequence. Additionally, the method was evaluated in five volunteers and compared with breathing signals obtained from conventional pencil beam navigator sequence. Finally, the navigator slice was used to obtain whole heart MR cine images.

Results:

The breathing signals detected by the proposed method showed an excellent agreement with those obtained from pencil beam navigators. Moreover, the technique was capable of removing respiratory motion artifacts with minimal distortion of the steady state. Image quality comparison showed a statistical significant improvement from a quality score of 2.1 obtained by the nonrespiratory gated images, compared to a quality score of 3.4 obtained by the respiratory gated images.

Conclusion:

This novel method represents a robust approach to estimate breathing motion during SSFP imaging. The technique was successfully applied to acquire whole heart artifact‐free cine images. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

12.

Purpose:

To demonstrate the feasibility of two‐dimensional selective radio frequency (2DRF) excitations for fast‐spin‐echo imaging of inner fields‐of‐view (FOVs) in order to shorten acquisitions times, decrease RF energy deposition, and reduce image blurring.

Materials and Methods:

Fast‐spin‐echo images (in‐plane resolution 1.0 × 1.0 mm2 or 0.5 × 1.0 mm2) of inner FOVs (40 mm, 16 mm oversampling) were obtained in phantoms and healthy volunteers on a 3 T whole‐body MR system using blipped‐planar 2DRF excitations.

Results:

Positioning the unwanted side excitations in the blind spot between the image section and the slice stack to measure yields minimum 2DRF pulse durations (about 6 msec) that are compatible with typical echo spacings of fast‐spin‐echo acquisitions. For the inner FOVs, the number of echoes and refocusing RF pulses is considerably reduced which compared to a full FOV (182 mm) reduces the RF energy deposition by about a factor of three and shortens the acquisition time, e.g., from 39 seconds to 12 seconds for a turbo factor of 15 or from 900 msec to 280 msec for a single‐shot acquisition, respectively. Furthermore, image blurring occurring for high turbo factors as in single‐shot acquisitions is considerably reduced yielding effectively higher in‐plane resolutions.

Conclusion:

Inner‐FOV acquisitions using 2DRF excitations may help to shorten acquisitions times, ameliorate image blurring, and reduce specific absorption rate (SAR) limitations of fast‐spin‐echo (FSE) imaging, in particular at higher static magnetic fields. J. Magn. Reson. Imaging 2010;31:1530–1537. © 2010 Wiley‐Liss, Inc.  相似文献   

13.

Purpose:

To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT).

Materials and Methods:

Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6‐echo 3D‐spoiled gradient‐echo (SPGR) (26‐sec single‐breath‐hold) at 3T. Fat‐fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat‐fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT‐TAT‐ratio (VTR), body‐mass‐index (BMI), waist circumference, and waist‐hip‐ratio (WHR).

Results:

Oil phantom measurements were highly accurate (<3% error). The measured adipose fat‐fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r2 ≥ 0.96, overweight girls r2 ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004).

Conclusion:

The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. J. Magn. Reson. Imaging 2013;37:707–716. © 2012 Wiley Periodicals, Inc.  相似文献   

14.

Objective

To apply and compare magnetic resonance imaging (MRI) metal artifact reducing sequences (MARS) including subtraction imaging after contrast application in patients with metal-on-metal (MoM) hip prostheses, investigate the prevalence and characteristics of periprosthetic abnormalities, as well as their relation with pain and risk factors.

Materials and methods

Fifty-two MoM prostheses (35 cases with pain and or risk factors, and 17 controls) in 47 patients were examined in a 1.5-T MR scanner using MARS: turbo spin echo (TSE) with high readout bandwidth with and without view angle tilting (VAT), TSE with VAT and slice encoding for metal artifact correction (SEMAC), short tau inversion recovery (STIR) with matched RF pulses, and post-contrast imaging. The relations of MRI findings to pain and risk factors were analyzed and in five revised hips findings from operation, histology, and MRI were compared.

Results

TSE VAT detected the highest number of osteolyses. Soft tissue mass, effusion, and capsular thickening were common, whereas osteolysis in acetabulum and femur were less frequent. Contrast enhancement occurred in bone, synovia, joint capsule, and the periphery of soft tissue mass. There was no significant relation between MRI findings and pain or risk factors.

Conclusions

MARS and gadolinium subtraction imaging are useful for evaluation of complications to MoM prosthesis. TSE VAT had the highest sensitivity for osteolysis. Contrast enhancement might indicate activation of aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL). Pain, small head, or steep prosthesis inclination angle are not useful predictors of periprosthetic abnormalities, and wide indications for MR follow-up are warranted.  相似文献   

15.
Head motion artifacts are a major problem in functional MRI that limit its use in neuroscience research and clinical settings. Real‐time scan‐plane correction by optical tracking has been shown to correct slice misalignment and nonlinear spin‐history artifacts; however, residual artifacts due to dynamic magnetic field nonuniformity may remain in the data. A recently developed correction technique, Phase Labeling for Additional Coordinate Encoding, can correct for absolute geometric distortion using only the complex image data from two echo planar images with slightly shifted k‐space trajectories. An approach is presented that integrates Phase Labeling for Additional Coordinate Encoding into a real‐time scan‐plane update system by optical tracking, applied to a tissue‐equivalent phantom undergoing complex motion and an functional MRI finger tapping experiment with overt head motion to induce dynamic field nonuniformity. Experiments suggest that such integrated volume‐by‐volume corrections are very effective at artifact suppression, with potential to expand functional MRI applications. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.

Purpose

To evaluate a new dynamic contrast‐enhanced (DCE) imaging technique called multiecho time‐resolved acquisition (META) for abdominal/pelvic imaging. META combines an elliptical centric time‐resolved three‐dimensional (3D) spoiled gradient‐recalled echo (SPGR) imaging scheme with a Dixon‐based fat‐water separation algorithm to generate high spatiotemporal resolution volumes.

Materials and Methods

Twenty‐three patients referred for hepatic metastases or renal masses were imaged using the new META sequence and a conventional fat‐suppressed 3D SPGR sequence on a 3T scanner. In 12 patients, equilibrium‐phase 3D SPGR images acquired immediately after META were used for comparing the degree and homogeneity of fat suppression, artifacts, and overall image quality. In the remaining 11 of 23 patients, DCE 3D SPGR images acquired in a previous or subsequent examination were used for comparing the efficiency of arterial phase capture in addition to the qualitative analysis for the degree and homogeneity of fat suppression, artifacts, and overall image quality.

Results

META images were determined to be significantly better than conventional 3D SPGR images for degree and uniformity of fat suppression and ability to visualize the arterial phase. There were no significant differences in artifact levels or overall image quality.

Conclusion

META is a promising high spatiotemporal resolution imaging sequence for capturing the fast dynamics of hyperenhancing hepatic lesions and provides robust fat suppression even at 3T. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.

Purpose:

1) To analyze and compare fast dynamic imaging sequences to biopsy suspect liver lesions. 2) To evaluate the additional use of hepatocyte‐specific contrast agent compared to the nonenhanced fast dynamic scans and diagnostic liver imaging.

Materials and Methods:

Image acquisition was performed using a 1T open‐configured scanner suitable for interventional purposes. Transversal postcontrast T1‐weighted (T1w) fat‐saturated 3D high‐resolution examination (THRIVE) images were acquired >20 minutes postintravenous application of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd‐EOB‐DTPA). A single slice, crossing the level of the lesion, was acquired using intermediate‐weighted steady‐state free‐precession (bTFE), T1w‐gradient echo and spin echo (T1FFE/TSE), T2w‐spin echo (sshTSE) sequences. T1w imaging was acquired prior and after contrast media application. Diagnostic and fast dynamic images were compared based on a 10‐point rating scale. In addition, the liver‐to‐lesion‐contrast ratio was measured.

Results:

A total of 39 malignant lesions with a mean diameter of 13 mm (5–30 mm) in 39 patients were included. Concerning a test of noninferiority, there was no significant difference between rating score values of fast dynamic imaging employing contrast‐enhanced T1FFE‐sequences compared to diagnostic THRIVE (P = 0.001). Calculated liver‐to‐lesion contrast also showed no difference for either imaging sequence (P = 1.0). All other sequences tested showed significant inferiority (P ≤ 0.001).

Conclusion:

T1w Gd‐EOB‐DTPA contrast‐enhanced fast dynamic GRE imaging significantly improves the contrast behavior of malignant liver lesions comparable to diagnostic imaging and is best suited for liver intervention, especially at 1T open magnetic resonance imaging. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
The importance of diffusion‐weighted MRI in the assessment of acute stroke is well‐recognized, and quantitative maps of the apparent diffusion coefficient (ADC) are now widely used. Echo‐planar imaging provides a robust method of acquiring diffusion‐weighted images free of motion artifact. However, initial experience with clinical MRI systems indicates that calculation of artifact‐free ADC maps from a series of echo‐planar diffusion‐weighted images is not necessarily straight‐forward. One of the problems is that frequency shifts resulting from eddy currents can cause misregistration of base diffusion‐weighted images. In this study, an on‐line correction method that overcomes this problem is described, and phantom and human images that demonstrate the validity of the technique are presented. The method uses a non‐phase‐encoded reference scan to correct the phase of each echo in the echo train, and can provide ADC maps that are free of misregistration artifacts, without the need for off‐line postprocessing. Magn Reson Med 41:95‐102, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.

Purpose

To describe an initial experience imaging the human hippocampus in vivo using a 7T magnetic resonance (MR) scanner and a protocol developed for very high field neuroimaging.

Materials and Methods

Six normal subjects were scanned on a 7T whole body MR scanner equipped with a 16‐channel head coil. Sequences included a full field of view T1‐weighted 3D turbo field echo (T1W 3D TFE: time of acquisition (TA) = 08:58), T2*‐weighted 2D fast field echo (T2*W 2D FFE: TA = 05:20), and susceptibility‐weighted imaging (SWI: TA = 04:20). SWI data were postprocessed using a minimum intensity projection (minIP) algorithm. Total imaging time was 23 minutes.

Results

T1W 3D TFE images with 700 μm isotropic voxels provided excellent anatomic depiction of macroscopic hippocampal structures. T2*W 2D FFE images with 0.5 mm in‐plane resolution and 2.5 mm slice thickness provided clear discrimination of the Cornu Ammonis and the compilation of adjacent sublayers of the hippocampus. SWI images (0.5 mm in‐plane resolution, 1.0 mm slice thickness) delineated microvenous anatomy of the hippocampus.

Conclusion

In vivo 7T MR imaging can take advantage of higher signal‐to‐noise and novel contrast mechanisms to provide increased conspicuity of hippocampal anatomy. J. Magn. Reson. Imaging 2008;28:1266–1272. © 2008 Wiley‐Liss, Inc.  相似文献   

20.

Purpose

To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS‐fMRI) caused by small leakage currents originating from the high‐voltage capacitors in the TMS stimulator system.

Materials and Methods

The artifacts in echo‐planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom‐coil geometries. A relay‐diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS‐fMRI experiment.

Results

The leakage‐current‐induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil‐cortex distances. The relay‐diode combination effectively reduced the artifact to a negligible level.

Conclusion

The leakage‐current artifacts potentially obscure effects of interest or lead to false‐positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay‐diode combination can eliminate the artifacts if necessary. J. Magn. Reson. Imaging 2009;29:1211–1217. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号