首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
A critical feature of tendons and ligaments is their ability to resist rupture when overloaded, resulting in strains or sprains instead of ruptures. To treat these injuries more effectively, it is necessary to understand how overload affects the primary load‐bearing elements of these tissues: collagen fibrils. We have investigated how repeated subrupture overload alters the collagen of tendons at the nanoscale. Using scanning electron microscopy to examine fibril morphology and hydrothermal isometric tension testing to look at molecular stability, we demonstrated that tendon collagen undergoes a progressive cascade of discrete plasticity damage when repeatedly overloaded. With successive overload cycles, fibrils develop an increasing number of kinks along their length. These kinks—discrete zones of plastic deformation known to contain denatured collagen molecules—are accompanied by a progressive and eventual total loss of D‐banding along the surface of fibrils, indicating a loss of native molecular packing and further molecular denaturation. Thermal analysis of molecular stability showed that the destabilization of collagen molecules within fibrils is strongly related to the amount of strain energy dissipated by the tendon after yielding during tensile overload. These novel findings raise new questions about load transmission within tendons and their fibrils and about the interplay between crosslinking, strain‐energy dissipation ability, and molecular denaturation within these structures. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 731–737, 2013  相似文献   

2.
    
Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue‐dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site‐specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament‐specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross‐link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region‐specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154–2161, 2016.  相似文献   

3.
    
Loss of experimental animals due to tendon repair failure results in the need for additional animals to complete the study. We designed a relief proximal to the flexor digitorum profundus (FDP) tendon repair site to serve as a “safety incision” to prevent repair site ruptures and maximize safety incision‐to‐suture strength. The FDP tendons were dissected in 24 canine forepaws. The 2nd and 5th tendons were lacerated at the proximal interphalangeal joint level and sutured using a modified Kessler technique and peripheral running suture. Tendon width was measured where the FDP tendon separates into each individual digit and a safety incision, equal to the 2nd and 5th tendon widths, was performed 3, 4, or 5 mm (Groups 1, 2, and 3) proximal to the separation. The tendons were pulled at a rate of 1 mm/s until either the “safety incision” ruptured or the repair failed. There was no gap formation at the repair site in Groups 1 and 2. However, all Group 3 tendons failed by repair site rupture with the safety incision intact. An adequate safety incision to protect repair gap and rupture and maintain tendon tension for the FDP animal model should be about 4 mm from where the FDP tendon separates. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1482–1489, 2010  相似文献   

4.
People with diabetes have increased risk of fracture disproportionate to BMD, suggesting reduced material strength (quality). We quantified the skeletal effects of type 1 diabetes in the rat. Fischer 344 and Sprague‐Dawley rats (12 wk of age) were injected with either vehicle (Control) or streptozotocin (Diabetic). Forelimbs were scanned at 0, 4, 8, and 12 wk using pQCT. Rats were killed after 12 wk. We observed progressive osteopenia in diabetic rats. Trabecular osteopenia was caused by bone loss: volumetric BMD decreased progressively with time in diabetic rats but was constant in controls. Cortical osteopenia was caused by premature arrest of cortical expansion: cortical area did not increase after 4–8 wk in diabetic rats but continued to increase in controls. Postmortem μCT showed a 60% reduction in proximal tibial trabecular BV/TV in diabetic versus control rats, whereas moments of inertia of the ulnar and femoral diaphysis were reduced ~30%. Monotonic bending tests indicated that ulna and femora from diabetic animals were ~25% less stiff and strong versus controls. Estimates of material properties indicated no changes in elastic modulus or ultimate stress but modest (~10%) declines in yield stress for diabetic bone. These changes were associated with a ~50% increase in the nonenzymatic collagen cross‐link pentosidine. Last, cyclic testing showed diminished fatigue life in diabetic bones at the structural (force) level but not at the material (stress) level. In summary, type 1 diabetes, left untreated, causes trabecular bone loss and a reduction in diaphyseal growth. Diabetic bone has greatly increased nonenzymatic collagen cross‐links but only modestly reduced material properties. The loss of whole bone strength under both monotonic and fatigue loading is attributed mainly to reduced bone size.  相似文献   

5.
    
Using functional tissue engineering principles, our laboratory has produced tendon repair tissue which matches the normal patellar tendon force‐displacement curve up to 32% of failure. This repair tissue will need to withstand more strenuous activities, which can reach or even exceed 40% of failure force. To improve the linear stiffness of our tissue engineered constructs (TECs) and tissue engineered repairs, our lab is incorporating the glycosaminoglycan chondroitin‐6‐sulfate (C6S) into a type I collagen scaffold. In this study, we examined the effect of C6S incorporation and mechanical stimulation cycle number on linear stiffness and mRNA expression (collagen types I and III, decorin and fibronectin) for mesenchymal stem cell (MSC)‐collagen sponge TECs. The TECs were fabricated by inoculating MSCs at a density of 0.14 × 106 cells/construct onto pre‐cut scaffolds. Primarily type I collagen scaffold materials, with or without C6S, were cultured using mechanical stimulation with three different cycle numbers (0, 100, or 3,000 cycles/day). After 2 weeks in culture, TECs were evaluated for linear stiffness and mRNA expression. C6S incorporation and cycle number each played an important role in gene expression, but only the interaction of C6S incorporation and cycle number produced a benefit for TEC linear stiffness. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1092–1099, 2010  相似文献   

6.
7.
    
Previous studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross‐link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 vertebrae (n = 49) from recently deceased donors 54–95 years of age (21 men and 27 women). Two trabecular cores were obtained from each vertebra, one for preexisting microdamage and mineralization measurements, and one for BV/TV and quasi‐static compression tests. Collagen cross‐link content (PYD, DPD, and PEN) was measured on surrounding trabecular bone. Advancing age was associated with impaired mechanical properties, and with increased microdamage, even after adjustment by BV/TV. BV/TV was the strongest determinant of elastic modulus and ultimate strength (r2 = 0.44 and 0.55, respectively). Microdamage, mineralization parameters, and collagen cross‐link content were not associated with mechanical properties. These data indicate that the compressive strength of human vertebral trabecular bone is primarily determined by the amount of trabecular bone, and notably unaffected by normal variation in other factors, such as cross‐link profile, microdamage and mineralization. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:481–488, 2011  相似文献   

8.
    
The purpose of this study was to develop and validate an in vivo mouse model of tendon fatigue and use this model to investigate and quantify the physical manifestations of fatigue damage in mouse tendon. Patellar tendons of C57BL/6J mice were fatigue loaded at 2 Hz to three endpoints (4 N peak force per cycle for 1 h, 6 N for 1 h, and 4 N for 2 h), during which hysteresis, tangent stiffness, and peak strain of each cycle were measured. Damage accumulation was then quantified using in situ histology, and each tendon was loaded monotonically to failure. Histological damage increased significantly in all three groups (≥2-fold), and monotonic stiffness decreased significantly in the 6 N, 1 h and 4 N, 2-h groups (~25%), suggesting that damage initially manifests as changes to the collagen structure of the tendon and subsequently as changes to the function. For the fatigue loading protocols used in this study, none of the evaluated real-time parameters from fatigue loading correlated with damage area fraction measured structural damage or monotonic stiffness, suggesting that they are not suited to serve as proxies for damage accumulation. In future studies, this model will be used to compare the biological response of mouse tendon to fatigue damage across genetic strains.  相似文献   

9.
BMD does not entirely explain an individual's risk of fracture. The purpose of this study was to assess whether specific differences in spatially resolved bone composition also contribute to fracture risk. These differences were assessed using Fourier transform infrared spectroscopic imaging (FTIRI) and analyzed through multiple logistic regression. Models were constructed to determine whether FTIRI measured parameters describing mineral content, mineral crystal size and perfection, and collagen maturity were associated with fracture. Cortical and cancellous bone were independently evaluated in iliac crest biopsies from 54 women (32 with fractures, 22 without) who had significantly different spine but not hip BMDs and ranged in age from 30 to 83 yr. The parameters that were significantly associated with fracture in the model were cortical and cancellous collagen maturity (increased with increased fracture risk), cortical mineral/matrix ratio (higher with increased fracture risk), and cancellous crystallinity (increased with increased fracture risk). As expected, because of its correlation with cortical but not cancellous bone density, hip BMD was significantly associated with fracture risk in the cortical but not the cancellous model. This research suggests that additional parameters associated with fracture risk should be targeted for therapies for osteoporosis.  相似文献   

10.
    
One proposed mechanism of tendon lengthening is the “sliding fibril” hypothesis, in which tendons lengthen through the sliding of discontinuous fibrils after release of decorin‐fibronectin interfibrillar bonds. The pentapeptide NKISK has been reported to inhibit the binding of decorin, a proteoglycan on the surface of collagen fibrils, to fibronectin, a tissue adhesion molecule, which are thought to play a role in interfibrillar binding. Prior investigations have demonstrated that NKISK produces in vivo tendon lengthening. This study investigates the effect of potential clinically applicable NKISK injection regimens in an in vivo model. One hundred and thirteen male Sprague‐Dawley rats were divided into 15 different treatment groups, each receiving percutaneous patellar tendon injections of NKISK, QKTSK (a “nonsense” pentapeptide), or PBS of varying volumes, concentrations, and injection schedules. Following sacrifice, the patellar tendon lengths were measured in all groups, and biomechanical testing was performed with comparisons made to the contralateral, untreated control limbs. Tendon lengthening was significantly greater (p ≤ 0.05) in nearly all NKISK‐treated tendons as compared to PBS‐ and QKTSK‐treated tendons and was dose‐dependent. Measured lengthening was less in rats whose sacrifice was delayed following the final injection of NKISK, which likely indicates recontraction of lengthened tendons, but they remained significantly longer than the controls. Biomechanical testing did not reveal significant differences in ultimate load, modulus, stiffness, or displacement. This study demonstrates that NKISK given in clinically plausible dosing regimens produces dose‐dependent tendon lengthening in an in vivo setting with minimal effects on the mechanical properties of the treated tendons. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:971–976, 2008  相似文献   

11.
  总被引:5,自引:0,他引:5  
Porcine small intestinal submucosa (SIS) was previously shown to enhance the mechanical properties of healing medial collateral ligaments (MCL), and the histomorphological appearance and collagen type V/I ratio were found to be close to those of normal MCL. We hypothesized that at a longer term, 26 weeks, SIS could guide a better organized neo-ligament formation, increasing mechanical properties and increasing collagen fibril diameters mediated by a reduction in collagen type V. A 6 mm gap injury in the right MCL was surgically created in 38 rabbits, while the contralateral intact MCL served as a sham-operated control. In half the animals, a strip of SIS was sutured onto the severed ends. In the other half, no SIS was applied. The cross-sectional area (CSA) was determined with a laser micrometer system. The femur-MCL-tibia complex was mechanically tested in uniaxial tension. Histomorphology was determined through H&E and immunofluorescent staining and transmission electron microscopy (TEM). Sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine collagen type V/I ratio. SIS-treated MCLs displayed a 28% reduction in CSA, a 33% increase in tangent modulus, and a 50% increase in tensile strength compared with the nontreated group (p < 0.05). TEM showed groups of collagen fibrils with larger diameters in the SIS-treated ligaments in comparison with uniformly small fibrils for the nontreated group. H&E staining showed more densely stained collagen fibers in the SIS-treated group aligned along the longitudinal axis with more interspersed spindle-shaped cells. Immunofluorescent staining showed less collagen type V signals, confirmed by a 5% lower ratio of collagen type V/I compared with the nontreated controls (p < 0.05). The findings extend the shorter term 12-week results, and support the potential of porcine SIS as a bioscaffold to enhance ligament healing.  相似文献   

12.
13.
14.
Aim Fibrin glue and porcine intestinal submucosa are used in novel sphincter‐preserving techniques to heal anal fistulae. However, their success is highly variable and decreases with the length of follow up. The aim of this study was to assess the safety, feasibility and potential efficacy of another novel agent, cross‐linked collagen, in two different physical formats, to heal anal fistulae. Method Prospectively recruited patients underwent symptom, continence and anal physiology assessments and magnetic resonance imaging. Patients with secondary tracts or acute sepsis were excluded. At operation, participants were randomized to receiving a solid collagen implant or collagen fibres suspended in fibrin glue. Follow up included repeat symptom, continence and physiological assessments at 3 months, and regular clinical review thereafter. Results Twenty‐nine of 43 entrants were eligible for inclusion. Thirteen patients received the collagen implant, and 16 collagen–fibrin glue. Three months postoperation, no patient experienced acute sepsis or continence disturbance, and sphincter function and integrity were unchanged. At 29 months, 12 of 15 (one lost to follow up) patients treated with collagen–fibrin glue were healed, compared with seven of 13 who received the implant. Conclusion In the short‐to‐medium term, both techniques are safe and equally effective. The results justify continued research into the use of biomaterials to heal anal fistulae.  相似文献   

15.
    
Bioscaffolds have been successfully used to improve the healing of ligaments and tendons. In a rabbit model, the application of porcine small intestine submucosa (SIS) to the healing medial collateral ligament (MCL) resulted in improved mechanical properties with the formation of larger collagen fibrils. Thus, the objective of the study was to find out whether the SIS bioscaffold could improve the gene expressions of fibrillogenesis‐related molecules, specifically, collagen types I, III, V, and small leucine‐rich proteoglycans including decorin, biglycan, lumican, and fibromodulin, as well as collagen fibril morphology and organization, in the healing rabbit MCL at an early time point (6 weeks postinjury). Twenty skeletally mature rabbits were equally divided into two groups. In the SIS‐treated group, a 6‐mm gap was surgically created and a layer of SIS was sutured to cover the gap, whereas the gap was left open in the nontreated group. At 6 weeks postinjury, Masson's trichrome staining showed that the SIS‐treated group had more regularly aligned collagen fibers and cells. Transmission electron microscopy revealed that the SIS‐treated group had larger collagen fibrils with a diameter distribution from 24 to 120 nm, whereas the nontreated group had only small collagen fibrils (ranging from 26 to 87 nm, p < 0.05). Finally, the quantitative real‐time PCR showed that the mRNAs of collagen type V, decorin, biglycan, and lumican in the SIS‐treated group were 41, 58, 51, and 43% lower than those in the nontreated group, respectively (p < 0.05). Such significant reduction in the gene expressions are closely related to the improved morphological characteristics, which are known to be coupled with better mechanical properties, as previously reported in longer term studies. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1098–1104, 2008  相似文献   

16.
17.
    
The aim of this study was to investigate the effects of alfacalcidol (1α(OH)D3: ALF) on bone collagen employing an ovariectomized rat model. Thirty‐five 16‐week‐old female Sprague‐Dawley rats were divided into five groups: SHAM (sham‐operated + vehicle), OVX (ovariectomy + vehicle), and three ALF‐treated groups, that is, ovariectomy + 0.022 µg/kg/day ALF, ovariectomy + 0.067 µg/kg/day ALF, and ovariectomy + 0.2 µg/kg/day ALF. After 12 weeks of treatment, tibiae were subjected to histological, biochemical and immunohistochemical analyses. Collagen matrices in OVX bone appeared as immature and poorly organized; however, with the ALF treatment, it was improved in a dose‐dependent manner. Contents of collagen and pyridinoline cross‐link were decreased in OVX compared with SHAM, but they increased to the level comparable to SHAM in ALF‐treated groups. The total aldehyde, that is, a sum of free and those involved cross‐links, in the highest dose of ALF was significantly higher than the rest of the groups (p < 0.05). In addition, the expression of lysyl oxidase was increased in the all ALF‐treated groups compared with OVX (p < 0.05). In conclusion, ALF increases not only the amount of collagen but also enhances the maturation of collagen in ovariectomy‐induced osteoporotic bones, which likely contributes to the improvement of bone quality. © 2014 The Authors. Journal of Orthopaedic Research. Published by Wiley Periodicals, Inc. J Orthop Res 32:1030–1036, 2014.  相似文献   

18.
    
The purpose of this study was to investigate the existence of sex‐based differences in the ultrastructural characteristics of the human anterior cruciate ligament (ACL) as the underlying cause of differences in the structural and mechanical properties between sexes. The ACL of six male and six female cadaveric donors were randomly chosen from a pool of 10 male and 10 female ACLs that had previously been tested for their structural and mechanical properties. Eighteen tissue samples from the distal, proximal, and middle sections of the anteromedial and posterolateral bundles were analyzed by transmission electron microscopy. Female ACLs exhibited both lower fibril concentration and lower percent area occupied by collagen fibrils (p < 0.05) compared to males. There was also a difference in the fibril diameters (p < 0.05); donor age, height, body mass, and body mass index contributed significantly to this difference. In females, ACL stiffness and modulus of elasticity were highly correlated to fibril concentration (r = 0.96 and 0.97, respectively); in males ACL failure load and strength were highly correlated to percent area occupied by collagen (r = 0.96 and 0.96, respectively). These differences in ultrastructure may underlie differences in ACL properties between sexes. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:945–950, 2008  相似文献   

19.
  总被引:3,自引:0,他引:3  
The purpose of this study was to assess the effects of stress shielding on the microstructure and ultrastructure of the patellar tendon using 40 mature female Japanese white rabbits. The patellar tendon was completely released from stress by drawing the patella toward the tibial tubercle with a stainless steel wire installed between them. Microstructurally, stress shielding for 3 and 6 weeks increased the number of cells approximately fivefold, to that of the control tendon. Collagen bundles were less well oriented in the stress-shielded tendon than in the control. Ultrastructurally, small collagen fibrils with a diameter of less than 90nm increased in the stress-shielded tendon. The median collagen fibril diameter in 6-week stress-shielded tendon was significantly smaller (P 0.05) than in the control tendon (58.8% of control). The ratio of the total area of collagen fibrils to the whole visualized area in the stress-shielded patellar tendon was significantly smaller at 3 and 6 weeks than that in the control. This study demonstrated that complete stress shielding significantly affects the microstructure and ultrastructure of the patellar tendon  相似文献   

20.
    
Classic Ehlers–Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1+/− mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1+/− ) with wild‐type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1+/− tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild‐type tendons, which recovered their pre‐injury values by 6 weeks post injury. Additionally, the Col5a1+/− tendons demonstrated altered fibril morphology and diameter distributions compared to the wild‐type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707–2715, 2017.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号