首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Striatal‐enriched phosphatase 61 (STEP61) plays an essential role in synaptic plasticity and has recently been implicated in neurodegenerative disease. Here we characterized a possible role of STEP61 in Alzheimer's disease (AD) pathology using a mouse model of AD (Tg‐APPswe/PSEN1dE9, APP/PS1 mice) and an in vitro model of AD [cortical neurons treated with amyloid β (Aβ)1–42 peptides]. Our data indicate age‐related elevation of STEP61 levels and the proportion of dephosphorylated STEP61 (active STEP61) in wild‐type mice, which was enhanced in APP/PS1 mice. Furthermore, the increased STEP61 levels and active STEP61 were observed in the hippocampus and cortex from 12‐month‐old APP/PS1 mice and in Aβ1–42‐treated cortical neurons. An α7 nicotinic acetylcholine receptors (nAChRs) antagonist, α‐bungarotoxin (BTX), inhibited the Aβ1–42‐induced increase of STEP61 expression and activation. In addition, extracellular signal‐regulated kinase 1/2 (ERK1/2) and cAMP response element binding (CREB) were impaired in Aβ1–42‐treated cortical neurons, and knockdown of STEP61 enhanced the activation of ERK1/2 and CREB. Collectively, these findings indicate two alternate pathological pathways effecting STEP61 regulation in AD. First, Aβ regulating STEP61 activity is mediated by Aβ binding to α7 nAChRs. Second, STEP61 negatively regulates Aβ‐mediated ERK/CREB pathway, an important signaling cascade involved in memory formation. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly. Although the underlying cause has yet to be established, numerous data have shown that oxidative stress is implicated in AD as well as in preclinical stages of AD, such as mild cognitive impairment (MCI). The oxidative stress observed in brains of subjects with AD and MCI may be due, either fully or in part, to increased free radicals mediated by amyloid‐β peptide (Aβ). By using double human mutant APP/PS‐1 knock‐in mice as the AD model, the present work demonstrates that the APP/PS‐1 double mutation results in elevated protein oxidation (as indexed by protein carbonyls), protein nitration (as indexed by 3‐nitrotyrosine), as well as lipid peroxidation (as indexed by protein‐bound 4‐hydroxy‐2‐nonenal) in brains of mice aged 9 months and 12 months. APP/PS‐1 mice also exhibited lower levels of brain glutathione peroxidase (GPx) in both age groups studied, whereas glutathione reductase (GR) levels in brain were unaffected by the mutation. The activities of both of these antioxidant enzymes were significantly decreased in APP/PS‐1 mouse brains, whereas the activity of glucose‐6‐phosphate dehydrogenase (G6PDH) was increased relative to controls in both age groups. Levels of peptidyl prolyl isomerase 1 (Pin1) were significantly decreased in APP/PS‐1 mouse brain aged 9 and 12 months. Administration of N‐acetyl‐L‐cysteine (NAC), a glutathione precursor, to APP/PS‐1 mice via drinking water suppressed increased protein oxidation and nitration and also significantly augmented levels and activity of GPx in brain from both age groups. Oral administration of NAC also increased the diminished activity of GR and protected against lipid peroxidation in brains of 9‐month‐old APP/PS‐1 mice only. Pin1 levels, GR levels, and G6PDH activity in brain were unaffected by oral administration of NAC in both age groups. These results are discussed with reference to the therapeutic potential of this brain‐accessible glutathione precursor in the treatment of MCI and AD. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
To investigate the possible involvement of β‐amyloid (Aβ) in disrupting neuronal function during ischemia, we examined whether overexpression of C‐terminal fragments of β‐amyloid precursor protein (β‐APP) in transgenic (Tg) mice is capable of altering the capacity of hippocampus slices to recover synaptic transmission after transient hypoxic episodes. Recovery of synaptic transmission was monitored in area CA1 of perfused hippocampal slices prepared from both control and Tg mice. The results obtained indicate that hippocampal slices prepared from Tg mice exhibited a much lower level of recovery in synaptic transmission following reoxygenation. This reduction in the capacity of Tg slices to recover from hypoxia‐induced impairment of synaptic transmission in the hippocampus does not appear to be related to pre‐existing alterations in either functional or biochemical properties of glutamate receptors in Tg mice. The present results provide the first experimental evidence that overexpression of the C‐terminal fragment of APP exacerbates functional damage of hippocampal neurons after hypoxic episodes. Hippocampus 1999;9:201–205. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Granulocyte colony‐stimulating factor (G‐CSF) is a hematopoietic cytokine that also possesses neurotrophic and antiapoptotic properties. G‐CSF has been reported to decrease amyloid burden significantly, promote hippocampal neurogenesis, and improve spatial learning in a mouse model of Alzheimer's disease. To understand better the effects of G‐CSF on hippocampal‐dependent learning, the present study focused on electrophysiological correlates of neuroplasticity, long‐term potentiation (LTP), and long‐term depression (LTD). Two cohorts of transgenic APP/PS1 mice, with or without prior bone marrow transplantation from Tg GFP mice, were treated in vivo for 2 weeks with G‐CSF or vehicle. After completion of the treatments, hippocampal slices were prepared for electrophysiological studies of LTP and LTD. LTP was induced and maintained in both G‐CSF‐treated and vehicle‐treated groups of Tg APP/PS1. In contrast, LTD could not be induced in vehicle‐treated Tg APP/PS1 mice, but G‐CSF treatment restored LTD. The LTP and LTD results obtained from the cohort of bone marrow‐grafted Tg APP/PS1 mice did not differ from those from nongrafted Tg APP/PS1 mice. The mechanism by which G‐CSF restores LTD is not known, but it is possible that its capacity to reduce amyloid plaques results in increased soluble oligomers of amyloid‐β (A‐β), which in turn may facilitate LTD. This mechanism would be consistent with the recent report that soluble A‐β oligomers promote LTD in hippocampal slices. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
6.
Recent research has focused on soluble oligomeric assemblies of β‐amyloid peptides (Aβ) as the proximate cause of neuroinflammation, synaptic loss, and the eventual dementia associated with Alzheimer's disease (AD). In this study, tripchlorolide (T4), an extract of Tripterygium wilfordii Hook. F (TWHF), was studied as a novel agent to suppress neuroinflammatory process in microglial cells and to protect neuronal cells against microglia‐mediated oligomeric Aβ toxicity. T4 significantly attenuated oligomeric Aβ(1‐42)‐induced release of inflammatory productions such as tumor necrosis factor‐α, interleukin‐1β, nitric oxide (NO), and prostaglandin E2. It also downregulated the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2) in microglial cells. Further molecular mechanism study demonstrated that T4 inhibited the nuclear translocation of nuclear factor‐κB (NF‐κB) without affecting I‐κBα phosphorylation. It repressed Aβ‐induced JNK phosphorylation but not ERK or p38 MAPK. The inhibition of NF‐κB and JNK by T4 is correlated with the suppression of inflammatory mediators in Aβ‐stimulated microglial cells. These results suggest that T4 protects neuronal cells by blocking inflammatory responses of microglial cells to oligomeric Aβ(1‐42) and that T4 acts on the signaling of NF‐κB and JNK, which are involved in the modulation of inflammatory response. Therefore, T4 may be an effective agent in modulating neuroinflammatory process in AD. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
《Neuromodulation》2023,26(3):589-600
ObjectivesTransauricular vagal nerve stimulation (taVNS) at 40 Hz attenuates hippocampal amyloid load in 6-month-old amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, but it is unclear whether 40-Hz taVNS can improve cognition in these mice. Moreover, the underlying mechanisms are still unclear.Materials and Methods6-month-old C57BL/6 (wild type [WT]) and APP/PS1 mice were subjected to 40-Hz taVNS. Novel Object Recognition and the Morris Water Maze were used to evaluate cognition. Hippocampal amyloid-β (Aβ)1-40, Aβ1-42, pro–interleukin (IL)-1β, and pro–IL-18 were measured using enzyme-linked immunosorbent assays. Hippocampal Aβ42, purinergic 2X7 receptor (P2X7R), nucleotide-binding oligomerization domain–like receptor pyrin domain containing 3 (NLRP3), Caspase-1, IL-1β, and IL-18 expression were evaluated by western blotting. Histologic assessments including immunofluorescence, immunohistochemistry, Nissl staining, and Congo red staining were used to assess microglial phagocytosis, neuroprotective effects, and Aβ plaque load.Results40-Hz taVNS improved spatial memory and learning in 6-month-old APP/PS1 mice but did not affect recognition memory. There were no effects on the cognitive behaviors of 6-month-old WT mice. taVNS at 40 Hz modulated microglia; significantly decreased levels of Aβ1-40, Aβ1-42, pro–IL-1β, and pro–IL-18; inhibited Aβ42, P2X7R, NLRP3, Caspase-1, IL-1β, and IL-18 expression; reduced Aβ deposits; and had neuroprotective effects in the hippocampus of 6-month-old APP/PS1 mice. These changes were not observed in 6-month-old WT mice.ConclusionOur results show that 40-Hz taVNS inhibits the hippocampal P2X7R/NLRP3/Caspase-1 signaling and improves spatial learning and memory in 6-month-old APP/PS1 mice.  相似文献   

8.
Studies have implicated astrocytic dysfunction in Alzheimer's disease (AD). However, the role of astrocytes in the pathophysiology and treatment of the disease is poorly characterized. Here, we identified astrocytes as independent key factors involved in several Alzheimer‐like phenotypes in an APP/PS1 mouse model, including amyloid pathology, altered neuronal and synaptic properties, and impaired cognition. In vitro astrocytes from APP/PS1 mice induced synaptotoxicity as well as reduced dendritic complexity and axonal branching of hippocampal neurons. These astrocytes produced high levels of soluble β‐amyloid (Aβ) which could be significantly inhibited by fluoxetine (FLX) via activating serotonin 5‐HT2 receptors. FLX could also protect hippocampal neurons against astrocyte‐induced neuronal damage in vitro. In the same APP/PS1 mice, FLX inhibited activation of astrocytes, lowered Aβ products, ameliorated neurotoxicity, and improved behavioral performance. These findings may provide a basis for the clinical application of FLX in patients, and may also lay the groundwork for exploration of other novel astrocyte‐based therapies of AD. GLIA 2016;64:240–254  相似文献   

9.
Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aβ and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aβ‐plaques and synapse loss, with rTg21221 mice, which overexpress wild‐type human tau. When compared to the APP/PS1 mice without human tau, the cross‐sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque‐associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aβ at synapses. Together, these results indicate that adding human wild‐type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque‐associated synapse loss.  相似文献   

10.
Amyloid β (Aβ) is a metabolic product of Aβ precursor protein (APP). Deposition of Aβ in the brain and neuronal degeneration are characteristic hallmarks of Alzheimer's disease (AD). Aβ induces neuronal degeneration, but the mechanism of neurotoxicity remains elusive. Increasing evidence implicates APP as a receptor‐like protein for Aβ fibrils (fAβ). In this study, we present further experimental support for the direct interaction of APP with fAβ and for its involvement in Aβ neurotoxicity. Using recombinant purified holo‐APP (h‐APP), we have shown that it directly binds fAβ. Employing deletion mutant forms of APP, we show that two different sequences are involved in the binding of APP to fAβ. One sequence in the n‐terminus of APP is required for binding of fAβ to secreted APP (s‐APP) but not to h‐APP. In addition, the extracellular juxtamembrane Aβ‐sequence mediates binding of fAβ to h‐APP but not to s‐APP. Deletion of the extracellular juxtamembrane Aβ sequence abolishes abnormal h‐APP accumulation and toxicity induced by fAβ deposition, whereas deletions in the n‐terminus of APP do not affect Aβ toxicity. These experiments show that interaction of toxic Aβ species with its membrane‐anchored parental protein promotes toxicity in hippocampal neurons, adding further support to an Aβ‐receptor‐like function of APP directly implicated in neuronal degeneration in AD. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

12.
Why memory is a particular target for the pathological changes in Alzheimer's Disease (AD) has long been a fundamental question when considering the mechanisms underlying this disease. It has been established from numerous biochemical and morphological studies that AD is, at least initially, a consequence of synaptic malfunction provoked by Amyloid β (Aβ) peptide. APP/PS1 transgenic mice accumulate Aβ throughout the brain, and they have therefore been employed to investigate the effects of Aβ overproduction on brain circuitry and cognition. Previous studies show that Aβ overproduction affects spine morphology in the hippocampus and amygdala, both within and outside plaques (Knafo et al., (2009) Cereb Cortex 19:586‐592; Knafo et al., (in press) J Pathol). Hence, we conducted a detailed analysis of dendritic spines located in the stratum oriens and stratum radiatum of the CA1 hippocampal subfield of APP/PS1 mice. Three‐dimensional analysis of 18,313 individual dendritic spines revealed a substantial layer‐specific decrease in spine neck length and an increase in the frequency of spines with a small head volume. Since dendritic spines bear most of the excitatory synapses in the brain, changes in spine morphology may be one of the factors contributing to the cognitive impairments observed in this AD model. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 37 million people worldwide. Current drugs for AD are only symptomatic, but do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of ß‐amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. The identification of the molecular determinants underlying AD pathogenesis is a fundamental step to design new disease‐modifying drugs. Recently, a specific impairment of transforming‐growth‐factor‐β1 (TGF‐β1) signaling pathway has been demonstrated in AD brain. The deficiency of TGF‐β1 signaling has been shown to increase both Aβ accumulation and Aβ‐induced neurodegeneration in AD models. The loss of function of TGF‐ß1 pathway seems also to contribute to tau pathology and neurofibrillary tangle formation. Growing evidence suggests a neuroprotective role for TGF‐β1 against Aβ toxicity both in vitro and in vivo models of AD. Different drugs, such as lithium or group II mGlu receptor agonists are able to increase TGF‐β1 levels in the central nervous system (CNS), and might be considered as new neuroprotective tools against Aβ‐induced neurodegeneration. In the present review, we examine the evidence for a neuroprotective role of TGF‐β1 in AD, and discuss the TGF‐β1 signaling pathway as a new pharmacological target for the treatment of AD.  相似文献   

14.
Baicalein, a flavonoid isolated from the roots of Scutellaria baicalensis, is known to modulate γ‐aminobutyric acid (GABA) type A receptors. Given prior reports demonstrating benefits of GABAA modulation for Alzheimer's disease (AD) treatment, we wished to determine whether this agent might be beneficial for AD. CHO cells engineered to overexpress wild‐type amyloid precursor protein (APP), primary culture neuronal cells from AD mice (Tg2576) and AD mice were treated with baicalein. In the cell cultures, baicalein significantly reduced the production of β‐amyloid (Aβ) by increasing APP α‐processing. These effects were blocked by the GABAA antagonist bicuculline. Likewise, AD mice treated daily with i.p. baicalein for 8 weeks showed enhanced APP α‐secretase processing, reduced Aβ production, and reduced AD‐like pathology together with improved cognitive performance. Our findings suggest that baicalein promotes nonamyloidogenic processing of APP, thereby reducing Aβ production and improving cognitive performance, by activating GABAA receptors. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Alzheimer’s disease (AD) is characterized by extracellular accumulation of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles, along with cognitive decline and neurodegeneration. The cognitive deficit is considered to be due to the dysfunction of hippocampal neurogenesis. Although L-3-n-butylphthalide (L-NBP) has been shown beneficial effects in multiple AD animal models, the underlying molecular mechanisms are still elusive. In this study, we investigated the effects of L-NBP on neurogenesis both in vitro and in vivo. L-NBP promoted proliferation and migration of neural stem cells and induced neuronal differentiation in vitro. In APP/PS1 mice, L-NBP induced neurogenesis in the dentate gyrus and improved cognitive functions. In addition, L-NBP significantly increased the expressions of BDNF and NGF, tyrosine phosphorylation of its cognate receptor, and phosphorylation of Akt as well as CREB at Ser133 in the hippocampus of APP/PS1 mice. These results indicated that L-NBP might stimulate the proliferation, migration, and differentiation of hippocampal neural stem cells and reversed cognitive deficits in APP/PS1 mice. BDNF/TrkB/CREB/Akt signaling pathway might be involved.  相似文献   

16.
The accumulation of amyloid β‐peptide (Aβ) in the brain is a critical pathological process in Alzheimer's disease (AD). Recent studies have implicated intracellular Aβ in neurodegeneration in AD. To investigate the generation of intracellular Aβ, we established human neuroblastoma SH‐SY5Y cells stably expressing wild‐type amyloid precursor protein (APP), Swedish mutant APP, APP plus presenilin 1 (PS1) and presenilin 2 (PS2; wild‐type or familial AD‐associated mutant), and quantified intracellular Aβ40 and Aβ42 in formic acid extracts by sensitive Western blotting. Levels of both intracellular Aβ40 and Aβ42 were 2–3‐fold higher in cells expressing Swedish APP, compared with those expressing wild‐type APP. Intracellular Aβ42/Aβ40 ratios were approximately 0.5 in these cells. These ratios were increased markedly in cells expressing mutant PS1 or PS2 compared with those expressing their wild‐type counterparts, consistent with the observed changes in secreted Aβ42/Aβ40 ratios. High total levels of intracellular Aβ were observed in cells expressing mutant PS2 because of a marked elevation of Aβ42. Immunofluorescence staining additionally revealed more intense Aβ42 immunoreactivity in mutant PS2‐expressing cells than in wild‐type cells, which was partially colocalized with immunoreactivity for the trans‐Golgi network and endosomes. The data collectively indicate that PS mutations promote the accumulation of intracellular Aβ42, which appears to be localized in multiple subcellular compartments.  相似文献   

17.
The effectiveness of O‐pulse stimulation (TPS) for the reversal of O‐pattern primed bursts (PB)‐induced long‐term potentiation (LTP) were examined at the Schaffer–collateral–CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M‐T). The results showed that slices derived from both control and M‐T rats had normal field excitatory postsynaptic potential (fEPSP)‐LTP, whereas PS‐LTP in slices from M‐T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS‐LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP‐ or PS‐LTP in both groups of slices. However, TPS delivered in the presence of long‐term in vitro morphine caused the PS‐LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine‐exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train‐induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Alzheimer's disease (AD) is a progressive neurodegenerative dementia characterized by amyloid plaque accumulation, synapse/dendrite loss, and cognitive impairment. Transgenic mice expressing mutant forms of amyloid‐β precursor protein (AβPP) and presenilin‐1 (PS1) recapitulate several aspects of this disease and provide a useful model system for studying elements of AD progression. AβPP/PS1 mice have been previously shown to exhibit behavioral deficits and amyloid plaque deposition between 4–9 months of age. We crossed AβPP/PS1 animals with mice of a mixed genetic background (C57BL/6 × 129/SvJ) and investigated the development of AD‐like features in the resulting outcrossed mice. The onset of memory‐based behavioral impairment is delayed considerably in outcrossed AβPP/PS1 mice relative to inbred mice on a C57BL/6 background. While inbred AβPP/PS1 mice develop deficits in radial‐arm water maze performance and novel object recognition as early as 8 months, outcrossed AβPP/PS1 mice do not display defects until 18 months. Within the forebrain, we find that inbred AβPP/PS1 mice have significantly higher amyloid plaque burden at 12 months than outcrossed AβPP/PS1 mice of the same age. Surprisingly, inbred AβPP/PS1 mice at 8 months have low plaque burden, suggesting that plaque burden alone cannot explain the accompanying behavioral deficits. Analysis of AβPP processing revealed that elevated levels of soluble Aβ correlate with the degree of behavioral impairment in both strains. Taken together, these findings suggest that animal behavior, amyloid plaque deposition, and AβPP processing are sensitive to genetic differences between mouse strains. J. Comp. Neurol., 521:1395–1408, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Amyloid β protein (Aβ) is responsible for the deficits of learning and memory in Alzheimer's disease (AD). The high affinity between Aβ and nicotinic acetylcholine receptors (nAChRs) suggests that the impairment of cognitive function in AD might be involved in the Aβ‐induced damage of nAChRs. This study investigated the effects of Aβ fragments on nAChR‐mediated membrane currents in acutely isolated rat hippocampal pyramidal neurons by using whole‐cell patch clamp technique. The results showed that: (1) nonspecific nAChR agonist nicotine, selective α7 nAChR agonist choline, and α4β2 nAChR agonist epibatidine all effectively evoked inward currents in CA1 neurons at normal resting membrane potential, with different desensitization characteristics; (2) acute application of different concentrations (pM–μM) of Aβ25‐35, Aβ31‐35, or Aβ35‐31 alone did not trigger any membrane current, but pretreatment with 1 μM Aβ25‐35 and Aβ31‐35 similarly and reversibly suppressed the nicotine‐induced currents; (3) further, choline‐ and epibatidine‐induced currents were also reversibly suppressed by the Aβ pretreatment, but more prominent for the choline‐induced response. These results demonstrate that the functional activity of both α7 and α4β2 nAChRs in the membrane of acutely isolated hippocampal neurons was significantly downregulated by Aβ treatment, suggesting that nAChRs, especially α7 nAChRs, in the brain may be the important biological targets of neurotoxic Aβ in AD. In addition, the similar suppression of nAChR currents by Aβ25‐35 and Aβ31‐35 suggests that the sequence 31‐35 in Aβ molecule may be a shorter active center responsible for the neurotoxicity of Aβ in AD. Synapse, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Deposition of β ‐amyloid (Aβ) peptides, cleavage products of β‐amyloid precursor protein (APP) by β‐secretase‐1 (BACE1) and γ‐secretase, is a neuropathological hallmark of Alzheimer's disease (AD). γ‐Secretase inhibition is a therapeutical anti‐Aβ approach, although changes in the enzyme's activity in AD brain are unclear. Cerebrospinal fluid (CSF) Aβ peptides are thought to derive from brain parenchyma and thus may serve as biomarkers for assessing cerebral amyloidosis and anti‐Aβ efficacy. The present study compared active γ‐secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored the possibility of Aβ production and secretion by the choroid plexus (CP). The specific binding density of [3H]‐L‐685,458, a radiolabeled high‐affinity γ‐secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with similar ages and post‐mortem delays. The CP in post‐mortem samples exhibited exceptionally high [3H]‐L‐685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin‐1 immunoreactivity, and β‐site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins and released Aβ40 and Aβ42 into the medium. Overall, our results suggest that γ‐secretase activity appears unaltered in the cerebrum in AD and is not correlated with regional amyloid plaque pathology. The CP appears to be a previously unrecognised non‐neuronal contributor to CSF Aβ, probably at reduced levels in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号