首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) has been considered a catabolic factor that contributes to OA pathology by inducing chondrocytes apoptosis, matrix metalloproteinases synthesis, and pro‐inflammatory cytokines expression. Thus, the research on NO regulation in chondrocytes represents a relevant field which needs to be explored in depth. However, to date, only the murine ATDC‐5 cell line and primary chondrocytes are well‐established cells to study NO production in cartilage tissues. The goal of this study is to determine whether two commonly used human chondrocytic cell lines: SW‐1353 and T/C‐28a2 cell lines are good models to examine lipopolysaccharide and/or pro‐inflammatory cytokine‐driven NO release and iNOS expression. To this aim, we carefully examined NO production and iNOS protein expression in human T/C‐28a2 and SW‐1353 chondrocytes stimulated with LPS and interleukin (IL)‐1 alone or in combination. We also use ATDC‐5 cells as a positive control for NO production. NO accumulation has been determined by colorimetric Griess reaction, whereas NOS type II expression was determined by Western Blot analysis. Our results clearly demonstrated that neither human T/C‐28a2 nor SW‐1353 chondrocytes showed a detectable increase in NO production or iNOS expression after bacterial endotoxin or cytokines challenge with IL‐1. Our study demonstrated that T/C‐28a2 and SW‐1353 human cell lines are not suitable for studying NO release and iNOS expression confirming that ATDC5 and human primary cultured chondrocytes are the best in vitro cell system to study the actions derived from this mediator. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1784–1788, 2015.  相似文献   

2.
Nesfatin‐1 is a recently discovered satiety‐inducing adipokine identified in hypothalamic regions that regulates energy balance. So far, no data exist on NUCB2/nesfatin‐1 localization in human and murine chondrocytes. Here, we therefore investigated NUCB2/nesfatin‐1 gene and protein expression in human and murine chondrocytes and the effect of nesfatin‐1 on pro‐inflammatory cytokines expression. Peptide localization was performed by laser confocal microscopy, NUCB2 mRNA expression was studied by RT‐PCR and protein secretion was measured by XMap technology and Western blot analysis. First, we demonstrated cytoplasmic localization of NUCB2/nesfatin‐1 peptide in both human and murine chondrocytes. We present evidence that both mRNA and protein expression of NUCB2 were increased during the differentiation of ATDC5 murine chondrocyte cell line. Furthermore, we demonstrated that nesfatin‐1 induces IL‐6 and MIP‐1α mRNA expression and protein secretion in ATDC‐5 cells challenged with IL‐1, and also increases COX‐2 mRNA expression in these cells. Finally, nesfatin‐1 provoked a clear induction of pro‐inflammatory agents, such as COX‐2, IL‐8, IL‐6, and MIP‐1α in human primary chondrocytes from OA patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:653–660, 2014.  相似文献   

3.
Targeting activated macrophages using anti‐inflammatory phytopharmaceuticals has been proposed as general therapeutic approaches for rheumatic diseases. Besides macrophages, chondrocytes are another promising target of anti‐inflammatory agents. Tetrandrine is a major bisbenzylisoquinoline alkaloid isolated from Stephania tetrandrae S. Moore which has been used for 2,000 years as an antirheumatic herbal drug in China. Although, the anti‐inflammatory effect of tetrandrine has been demonstrated, the mechanism has not been clearly clarified. In this study, we designed a comprehensive anti‐inflammatory evaluation system for tetrandrine, including complete Freund's adjuvant (CFA)‐induced arthritis rat, LPS‐induced macrophage RAW 264.7 cells, and chondrogenic ATDC5 cells. The results showed that tetrandrine alleviated CFA‐induced foot swelling, synovial inflammation, and pro‐inflammatory cytokines secretion. Tetrandrine could inhibit IL‐6, IL‐1β, and TNF‐α expression via blocking the nuclear translocation of nuclear factor (NF)‐κB p65 in LPS‐induced RAW 264.7 cells. Moreover, ATDC5 cells well responded to LPS induced pro‐inflammatory mediators secretion and tissue degradation, and tetrandrine could also inhibit the production of nitric oxide and prostaglandin E2, as well as the expression of matrix metalloproteinase (MMP)‐3 and tissue inhibitor of metalloproteinase (TIMP)‐1 via inhibiting IκBα phosphorylation and degradation. In conclusion, the results showed that one of the anti‐inflammatory mechanisms of tetrandrine was inhibiting IκBα and NF‐κB p65 phosphorylation in LPS‐induced macrophage RAW 264.7 cells and chondrogenic ATDC5 cells. Moreover, we introduce a vigorous in vitro cell screening system, LPS‐induced murine macrophage RAW 264.7 cells coupling chondrogenic ADTC5 cells, for screening anti‐rheumatic drugs. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1557–1568, 2016.  相似文献   

4.
5.
OBJECTIVE: Many genetically modified animal models are providing new keys for unlocking the pathophysiology of cartilage degradation. To produce a tool for cellular and molecular studies in genetically engineered murine models, we defined the optimal culture conditions for primary cultures of articular chondrocytes from newborn mice (C57Bl/6). METHODS: To determine whether the cultured cells exhibited the typical articular chondrocyte phenotype, we examined several morphological, biochemical, and functional features. RESULTS: The cells had the typical chondrocyte morphology, with a rounded or polygonal shape. Immunolocalization studies showed high levels of type II collagen and aggrecan expression, together with sulfated glycosaminoglycan accumulation. Type II collagen and aggrecan expression decreased with passaging. In contrast, type I collagen expression was low in primary cultures and high after four passages, indicating a fibroblast phenotype. To evaluate the functional integrity of our cultured cells, we evaluated their ability to produce prostaglandin E2 (PGE2) and nitric oxide (NO) in response to the catabolic cytokine interleukin (IL)-1beta (10 ng/ml). Production of both PGE2 and NO increased significantly as compared to untreated controls. In addition, IL-1beta induced COX-2 expression by the cultured cells, as shown by Western blotting. CONCLUSIONS: Since functional and molecular parameters can be measured readily in mice, the immature murine articular chondrocyte (iMAC) model described here should prove a powerful tool for research, particularly as many transgenic and knockout mouse strains are available, even if iMACs are not optimal substitutes for human chondrocytes.  相似文献   

6.
BACKGROUND: Inhalation of nitric oxide (NO) selectively dilates the pulmonary circulation and improves arterial oxygenation in patients with adult respiratory distress syndrome (ARDS). In approximately 60% of patients with septic ARDS, minimal or no response to inhaled NO is observed. Because sepsis is associated with increased NO production by inducible NO synthase (NOS2), the authors investigated whether NOS inhibition alters NO responsiveness in rats exposed to gram-negative lipopolysaccharide (LPS). METHODS: Sprague-Dawley rats were treated with 0.4 mg/kg Escherichia coli O111:B4 LPS with or without dexamethasone (inhibits NOS2 gene expression; 5 mg/kg), L-NAME (a nonselective NOS inhibitor; 7 mg/kg), or aminoguanidine (selective NOS2 inhibitor; 30 mg/kg). Sixteen hours after LPS treatment, lungs were isolated-perfused; a thromboxane-analog U46619 was added to increase pulmonary artery pressure (PAP) by 5 mmHg, and the pulmonary vasodilator response to inhaled NO was measured. RESULTS: Ventilation with 0.4, 4, and 40 ppm NO decreased the PAP less than in lungs of LPS-treated rats (0.75+/-0.25, 1.25+/-0.25, 1.75+/-0.25 mmHg) than in lungs of control rats (3+/-0.5, 4.25+/-0.25, 4.5+/-0.25 mmHg; P < 0.01). Dexamethasone treatment preserved pulmonary vascular responsiveness to NO in LPS-treated rats (3.75+/-0.25, 4.5+/-0.25, 4.5+/-0.5 mmHg, respectively; P < 0.01 vs. LPS, alone). Responsiveness to NO in LPS-challenged rats was also preserved by treatment with L-NAME (3.0+/-1.0, 4.0+/-1.0, 4.0+/-0.75 mmHg, respectively; P < 0.05 vs. LPS, alone) or aminoguanidine (1.75+/-0.25, 2.25+/-0.5, 2.75+/-0.5 mmHg, respectively; P < 0.05 vs. LPS, alone). In control rats, treatment with dexamethasone, L-NAME, and aminoguanidine had no effect on inhaled NO responsiveness. CONCLUSION: These observations demonstrate that LPS-mediated increases in pulmonary NOS2 are involved in decreasing responsiveness to inhaled NO.  相似文献   

7.
This study tested the hypothesis that heme oxygenase‐1 (HO‐1) expression counteracts bacterial antigen‐induced catabolic metabolism in human articular chondrocytes. HO‐1 expression was induced in chondrocytes by the iron‐containing porphoryin, hemin. Anti‐catabolic and anti‐apoptotic effects of HO‐1 expression were evaluated following bacterial antigen (lipopolysaccharides, LPS) activation of chondrocytes by quantification of cytokine and cartilage matrix protein expression. Effects of HO‐1 over‐expression on chondrocyte matrix metabolism were evaluated using plasmid‐driven protein synthesis. Hemin increased HO‐1 expression and LPS increased interleukin‐1beta and interleukin‐6 gene and protein expression in chondrocytes. Hemin‐induced HO‐1 decreased LPS‐induced interleukin‐1beta and interleukin‐6 gene and protein expression. Increased HO‐1 expression partially reversed LPS‐suppression of aggrecan and type II collagen gene expression and suppressed LPS‐induced gene expression of IL‐6, inducible nitric oxide synthase (iNOS), matrix metalloproteinases (MMPs), and IL‐1beta. HO‐1 induction was inversely correlated with LPS‐induced chondrocyte apoptosis. HO‐1 over‐expression in chondrocytes decreased matrix protein gene expression. With LPS activation, increased HO‐1 expression decreased chondrocyte catabolism, partially reversed LPS‐dependent inhibition of cartilage matrix protein expression and protected against apoptosis. Without LPS, hemin‐induced HO‐1 and plasmid‐based over‐expression of HO‐1 inhibited cartilage matrix gene expression. The results suggest that elevated HO‐1 expression in chondrocytes is protective of cartilage in inflamed joints but may otherwise suppress matrix turn over. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1943–1949, 2013  相似文献   

8.
Background: Inhalation of nitric oxide (NO) selectively dilates the pulmonary circulation and improves arterial oxygenation in patients with adult respiratory distress syndrome (ARDS). In approximately 60% of patients with septic ARDS, minimal or no response to inhaled NO is observed. Because sepsis is associated with increased NO production by inducible NO synthase (NOS2), the authors investigated whether NOS inhibition alters NO responsiveness in rats exposed to gram-negative lipopolysaccharide (LPS).

Methods: Sprague-Dawley rats were treated with 0.4 mg/kg Escherichia coli 0111:B4 LPS with or without dexamethasone (inhibits NOS2 gene expression; 5 mg/kg), L-NAME (a nonselective NOS inhibitor; 7 mg/kg), or aminoguanidine (selective NOS2 inhibitor; 30 mg/kg). Sixteen hours after LPS treatment, lungs were isolated-perfused; a thromboxane-analog U46619 was added to increase pulmonary artery pressure (PAP) by 5 mmHg, and the pulmonary vasodilator response to inhaled NO was measured.

Results: Ventilation with 0.4, 4, and 40 ppm NO decreased the PAP less than in lungs of LPS-treated rats (0.75 +/- 0.25, 1.25 +/- 0.25, 1.75 +/- 0.25 mmHg) than in lungs of control rats (3 +/- 0.5, 4.25 +/- 0.25, 4.5 +/- 0.25 mmHg; P < 0.01). Dexamethasone treatment preserved pulmonary vascular responsiveness to NO in LPS-treated rats (3.75 +/- 0.25, 4.5 +/- 0.25, 4.5 +/- 0.5 mmHg, respectively; P < 0.01 vs. LPS, alone). Responsiveness to NO in LPS-challenged rats was also preserved by treatment with L-NAME (3.0 +/- 1.0, 4.0 +/- 1.0, 4.0 +/- 0.75 mmHg, respectively; P < 0.05 vs. LPS, alone) or aminoguanidine (1.75 +/- 0.25, 2.25 +/- 0.5, 2.75 +/- 0.5 mmHg, respectively; P < 0.05 vs. LPS, alone). In control rats, treatment with dexamethasone, L-NAME, and aminoguanidine had no effect on inhaled NO responsiveness.  相似文献   


9.
The goal of this investigation was to explore the mechanism by which NOS and NO serve to regulate events linked to chondrocyte terminal differentiation. NOS isoform expression and NO adducts in chick growth cartilage were detected by immunohistochemistry and Western blot analysis. All NOS isoforms were expressed in chick growth plate chondrocytes with the highest levels present in the hypertrophic region. The enzymes were active since nitrosocysteine and nitrotyrosine residues were detected in regions of the epiphysis with the highest levels of NOS expression. Maturing chick sternal chondrocytes evidenced an increase in NO release and a rise in NOS protein levels. When treated with NOS inhibitors, there was a decrease in the alkaline phosphatase activity of the hypertrophic cells. On the other hand, NO donors caused a small but significant elevation in alkaline phosphatase activity. Transient transfections of chondrocytes with an endothelial NOS isoform caused an increase in collagen type X promoter activity. Induction of both collagen type X expression and alkaline phosphatase activity was blocked by inhibitors of the cGMP pathway. These findings indicate that NO is generated by three NOS isoforms in terminally differentiated chondrocytes. The expression of NOS and the generation of NO enhanced maturation by upregulating alkaline phosphatase and collagen type X expression. Since expression of these two determinants was blocked by inhibitors of the cGMP pathway, it is concluded that NO metabolism is required for development of the mature chondrocyte phenotype.  相似文献   

10.
We investigated whether N‐acetylcysteine (NAC), a precursor of glutathione, could protect rabbit articular chondrocytes against nitric oxide (NO)‐induced apoptosis and could prevent cartilage destruction in an experimental model of osteoarthritis (OA) in rats. Isolated chondrocytes were treated with various concentrations of NAC (0–2 mM). Apoptosis was induced by 0.75 mM sodium nitroprusside (SNP) dehydrate, which produces NO. Cell viability was assessed by MTT assay, while apoptosis was evaluated by Hoechst 33342 and TUNEL staining. Intracellular reactive oxygen species (ROS) and glutathione levels were measured, and expression of p53 and caspase‐3 were determined by Western blotting. To determine whether intraarticular injection of NAC prevents cartilage destruction in vivo, cartilage samples of an OA model were subjected to H&E, Safranin O, and TUNEL staining. NAC prevented NO‐induced apoptosis, ROS overproduction, p53 up‐regulation, and caspase‐3 activation. The protective effects of NAC were significantly blocked by buthionine sulfoximine, a glutathione synthetase inhibitor, indicating that the apoptosis‐preventing activity of NAC was mediated by glutathione. Using a rat model of experimentally induced OA, we found that NAC also significantly prevented cartilage destruction and chondrocyte apoptosis in vivo. These results indicate that NAC inhibits NO‐induced apoptosis of chondrocytes through glutathione in vitro, and inhibits chondrocyte apoptosis and articular cartilage degeneration in vivo. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:156–163, 2010  相似文献   

11.
12.
BACKGROUND: Platonin, a cyanine photosensitizing dye, is a potent immunomodulator that suppresses acute inflammation. Platonin not only inhibits interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha production but also improves circulatory failure in septic rats. In addition, platonin reduces plasma nitric oxide (NO) formation during sepsis. However, the effects of platonin on inducible NO synthase (iNOS) and cationic amino-acid transporter (including CAT-2, CAT-2 A, and CAT-2B) expressions during sepsis remain uninvestigated. METHODS: Five groups of confluent murine macrophages (RAW264.7 cells) were randomly allocated to receive a 1-h pretreatment of one of five doses of platonin (0.1 microM, 1 microM, 10 microM, 100 microM, or 1000 microM) followed by lipopolysaccharide (LPS; 100 ng ml(-1)). For negative, positive, and platonin control, three other groups of cell cultures were randomly allocated to receive phosphate-buffered saline, LPS, or platonin (1000 microM). The cultures were harvested after exposing them to LPS for 18 h or a comparable duration in those groups without LPS. NO production, L-arginine transport, and expression of the relevant enzymes were then evaluated. RESULTS: Platonin significantly attenuated LPS-induced up-regulation of iNOS expression and NO production in stimulated murine macrophages in a dose-dependent manner. Platonin also significantly inhibited up-regulation of CAT-2 and CAT-2B expression as well as L-arginine transport in LPS-stimulated murine macrophages in a dose-dependent manner. In contrast, CAT-2 A expression in murine macrophages was not affected by LPS and/or platonin. CONCLUSIONS: Platonin attenuates NO production and L-arginine transport in LPS-stimulated murine macrophages possibly through inhibiting iNOS, CAT-2, and CAT-2B expression.  相似文献   

13.
We studied the involvement of NOV/CCN3, whose function is poorly understood, in chondrocyte differentiation. NOV was found to upregulate TGF-beta2 and type X collagen and to act as a downstream effector of TGF-beta1 in ATDC5 and primary chondrocytes. Thus, NOV is a positive modulator of chondrogenesis. INTRODUCTION: NOV/CCN3 is a matricellular protein that belongs to the CCN family. A growing body of evidence indicates that NOV could play a role in cell differentiation, particularly in chondrogenesis. During chick embryo development, NOV expression is tightly regulated in cartilage, and a high expression of NOV has been associated with cartilage differentiation in Wilms' tumors. However, a precise role for NOV and potential target genes of NOV in chondrogenesis are unknown. MATERIALS AND METHODS: ATDC5 cells and primary chondrocytes were either treated with NOV recombinant protein or transfected with a NOV-specific siRNA to determine, using quantitative RT-PCR, the effect of NOV on the expression of several molecules involved in chondrocyte differentiation. Stable ATDC5 clones expressing NOV were also established to show that NOV was a downstream effector of TGF-beta1. RESULTS: We established that NOV/CCN3 expression increases in ATDC5 cells at early stages of chondrogenic differentiation and precedes the appearance of TGF-beta2 and of several chondrocytic markers such as SOX9 or type X collagen. When exogenously administered, NOV recombinant protein up-regulates TGF-beta2 and type X collagen mRNA levels both in ATDC5 cells and in primary mouse chondrocytes but does not influence SOX9 expression. This regulation also occurs at the endogenous level because downregulation of NOV expression is correlated with an inhibition of TGF-beta2 and type X collagen in primary chondrocytes. Furthermore, we found that NOV expression is downregulated when chondrocytes are exposed to TGF-beta1-dedifferentiating treatment in chondrocytes, further providing evidence that NOV may counteract TGF-beta1 effects on chondrocytes. CONCLUSIONS: This study provides the first characterization of two new targets of NOV involved in chondrocyte differentiation, shows that NOV acts with TGF-beta1 in a cascade of gene regulation, and indicates that NOV is a positive modulator of chondrogenesis.  相似文献   

14.
Animal models of arthritis in NOS2-deficient mice.   总被引:12,自引:0,他引:12  
OBJECTIVE: To study the role of nitric oxide (NO) in cartilage destruction in murine models of arthritis and osteoarthritis. METHODS: Joint inflammation was induced in the knee joint by intraarticular injection of Zymosan. Osteoarthritis was induced by local injection of bacterial collagenase, causing joint instability. The effect of NO deficiency was studied by comparing the effects in normal mice and mice with genetically disrupted NOS2 (inducible NO synthase). Impact on articular cartilage was evaluated by histology and measurement of chondrocyte 35S-proteoglycan synthesis. RESULTS: NOS2 deficiency prevented chondrocyte proteoglycan synthesis inhibition in the arthritic cartilage and restored normal responsiveness to IGF-1. Net cartilage proteoglycan depletion was markedly reduced in the absence of NOS2, although inflammation was hardly affected. Osteoarthritic joint pathology was also significantly reduced, including diminished cartilage lesions and osteophyte formation. CONCLUSION: NO plays a major role in cartilage damage in both arthritic and osteoarthritic conditions.  相似文献   

15.
Nitric oxide (NO) can regulate chondrocyte activities. This study was aimed to evaluate the molecular mechanisms of NO donor sodium nitroprusside (SNP)‐induced insults to human chondrocytes. Exposure of human chondrocytes to SNP increased cellular NO levels but decreased cell viability in concentration‐ and time‐dependent manners. SNP time dependently induced DNA fragmentation and cell apoptosis. Treatment with 2‐phenyl‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl 3‐oxide, an NO scavenger, significantly lowered SNP‐induced cell injuries. Administration of SNP interrupted F‐actin and microtubule cytoskeletons and stimulated phosphorylation of mitogen‐activated protein kinase kinase kinase‐1 (MEKK1) and c‐Jun N‐terminal kinase (JNK). Similar to SNP, cytochalasin D, an inhibitor of F‐actin formation, disturbed F‐actin polymerization and increased MEKK1 and JNK activations. Overexpression of a dominant negative mutant of MEKK1 (dnMEK1) in human chondrocytes significantly ameliorated SNP‐induced cell apoptosis. Exposure to SNP promoted Bax translocation from the cytoplasm to mitochondria, but application of dnMEKK1 lowered the translocation. SNP time dependently decreased the mitochondrial membrane potential, complex I NADH dehydrogenase activity, and cellular ATP levels, but increased the release of cytochrome c from mitochondria to the cytoplasm. Activities of caspase‐9, ‐3, and ‐6 were sequentially increased by SNP administration. This study shows that SNP can induce apoptosis of human chondrocytes through sequential events, including cytoskeletal remodeling, activation of MEKK1/JNK, Bax translocation, mitochondrial dysfunction, cytochrome c release, caspase activation, and DNA fragmentation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1018–1026, 2008  相似文献   

16.
Desmosterolosis is an autosomal recessive disease caused by mutations in the 3β-hydroxysterol-Delta24 reductase (DHCR24) gene, with severe developmental anomalies including short limbs. We utilized DHCR24 knockout (KO) mice to study the underlying bone pathology. Because the KO mice died within a few hours after birth, we cultured metatarsal bones from newborn mice. The growth of bones from KO mice was significantly retarded after 1 week of culture. Absence of proliferating chondrocytes in the growth plate and abnormal hypertrophy of prehypertrophic chondrocytes were observed in the bones from KO mice. Hypertrophic differentiation was evidenced by higher expression of Indian hedgehog, alkaline phosphatase, and matrix metalloproteinase 13. Since elevated levels of reactive oxygen species (ROS) during chondrogenesis are known to inhibit proliferation and to initiate chondrocyte hypertrophy in the growth plate, and since DHCR24 acts as a potent ROS scavenger, we hypothesized that the abnormal chondrocyte proliferation and differentiation in KO mice were due to decreased ROS scavenging activity. Treatment with an antioxidant, N-acetyl cysteine, could correct the abnormalities observed in the bones from KO mice. Treatment of bones from wild-type mice with U18666A, a chemical inhibitor of DHCR24, resulted in short broad bones with a disrupted proliferating zone. Treatment of ATDC cells with hydrogen peroxide (H2O2) induced hypertrophic changes as evidenced by the expression of the marker genes specific for hypertrophic chondrocyte differentiation. H2O2-induced hypertrophic change was prevented by adenoviral delivery of DHCR24. Induction of chondrocyte differentiation in ATDC cells by insulin was associated with increased ROS production that was markedly enhanced by treatment of ATDC5 cells with DHCR24 siRNA. This is the first demonstration that DHCR24 plays an important role in long bone growth by protecting chondrocytes from ROS  相似文献   

17.
Lin WC  Tsai PS  Huang CJ 《Anesthesia and analgesia》2005,101(1):226-32, table of contents
Catecholamines enhance inducible nitric oxide synthase (iNOS) expression that results in nitric oxide (NO) overproduction in lipopolysaccharide (LPS)-stimulated macrophages. L-arginine transport mediated by cationic amino acid transporters (including CAT-1, CAT-2, CAT-2A, and CAT-2B) is crucial in regulating iNOS activity. We sought to assess the effects of catecholamines on L-arginine transport and CAT isozyme expression in stimulated macrophages. Confluent RAW264.7 cells were cultured with LPS with or without catecholamines (epinephrine or norepinephrine, 5 x 10(-6) M) for 18 h. NO production, L-arginine transport, and enzyme expression were determined. Our data revealed that LPS co-induced iNOS, CAT-2, and CAT-2B expression, whereas CAT-1 and CAT-2A expression remained unaffected. Significant increases in NO production and L-arginine transport (approximately eight-fold and three-fold increases, respectively) were found in activated macrophages. Catecholamines significantly enhanced NO production and L-arginine transport (approximately 30% and 20% increases, respectively) in activated macrophages. Catecholamines also enhanced the expression of iNOS, CAT-1, and CAT-2A but not CAT-2 or CAT-2B in LPS-stimulated macrophages. Furthermore, the enhancement effects of catecholamines were inhibited by either dexamethasone or propranolol. We provide the first evidence to indicate that L-arginine transport in activated macrophages could be enhanced by catecholamines. Furthermore, this catecholamine-enhanced L-arginine transport might involve CAT-1 and CAT-2A but not CAT-2 or CAT-2B.  相似文献   

18.
Background: Endotoxin induces nitric oxide synthase (NOS), resulting in relaxation of gastric smooth muscle. The authors examined the effect of NO produced in response to lipopolysaccharide (LPS) treatment on gastric emptying in rats, and they also examined the effects of a selective inhibitor of inducible NOS (iNOS), aminoguanidine, and a suppressor of iNOS gene expression, dexamethasone.

Methods: Male Wistar rats weighing 200-250 g were used. LPS-treated rats received LPS (0.2-10 mg/kg) diluted in physiologic saline intraperitoneally. Before and at different intervals up to 8 h after administration of LPS, measurements of gastric emptying were performed in groups of 3-5 rats, by determining the amount of phenol red remaining in the stomach 20 min after intragastric instillation. In additional group of LPS (2 mg/kg)-treated rats, the gastric fundus was isolated 6 h after administration, and the tension changes in response to L-arginine, a substrate for NOS, and electrical transmural stimulation (3 Hz, 5 s) were recorded isometrically.

Results: (1) Gastric emptying was delayed by pretreatment with LPS in a dose- and time-dependent fashion (reduction from 68 +/- 12% to 22 +/- 7% with a dose of 2 mg/kg for 6 h). Aminoguanidine (50 mg/kg) or dexamethasone (5 mg/kg) partially inhibited the delay (to 39 +/- 4% or to 40 +/- 10%, respectively). (2) L-arginine (0.1 mM) produced a relaxation (28 +/- 2% reduction in active tension) in the gastric fundus strips isolated from LPS-treated rats but not from LPS-untreated rats. The relaxation was inhibited by aminoguanidine (1 mM). In contrast, the relaxation response to the electrical stimulation was not affected by aminoguanidine (0.1-1 mM).  相似文献   


19.
OBJECTIVE: To investigate the in vitro effects of dehydroepiandrosterone (DHEA) on neonatal rat chondrocytes. DESIGN: Chondrocytes isolated from neonatal rat cartilage were cultured in three-dimensionally agarose beads and were treated with DHEA. METHODS: Primary culture of chondrocytes was harvested from newborn Wistar rats. The DHEA effects on chondrocyte activities were evaluated by analyzing chondrocyte proliferation, matrix protein synthesis, gene expressions of collagen, matrix metalloproteinase-1, -3 and -13 (MMP-1, -3 and -13), and cyclooxygenase-2 (COX-II), and protein synthesis of interleukin-6 (IL-6), prostaglandin E2 (PGE2) and tissue inhibitor of metalloproteinase-1 (TIMP-1). RESULTS: The DHEA treatment did affect chondrocyte proliferation and glycosaminoglycan (GAG) synthesis. DHEA suppressed the expression of MMP-1, -3 and -13 genes and PGE2 protein synthesis enhanced by lipopolysaccharide (LPS) while the COX-II and inducible nitric oxide synthase (iNOS) gene expressions were down-regulated by DHEA. CONCLUSIONS: Our study demonstrates that DHEA has an ability to modulate the imbalance between MMPs and PGE2 in the neonatal chondrocytes which suggest that it has a potential protective role against articular cartilage damage.  相似文献   

20.
Mechanical loading is an important factor regulating cartilage metabolism maintained by chondrocytes. However, some of its underlying mechanisms remain poorly understood. In this study, we employed a chondrogenic cell line ATDC5 to investigate roles of P2Y2 and GRK2 in chondrocyte mechanotransduction. We first confirmed the expression of chondrocyte markers in differentiated ATDC5 cells. We then exposed both differentiated and undifferentiated ATDC5 cells to oscillatory fluid flow, and found that differentiated ATDC5 cells responded to oscillatory fluid flow by increasing COX‐2 and aggrecan expressions. More importantly, fluid flow induced ERK1/2 response in differentiated cells was increased more than 10 times compared to those in undifferentiated cells. Furthermore, we found that P2Y2 mRNA and protein levels in differentiated ATDC5 cells were significantly higher than those in undifferentiated cells. In contrast, GRK2 protein levels in differentiated cells were significantly lower than those in undifferentiated cells. Finally, overexpressions of P2Y2 and GRK2 in differentiated ATDC5 cells result in a 34% increase and a 21% decrease of the ERK1/2 phosphorylation, respectively, in response to oscillatory fluid flow, suggesting important roles of P2Y2 and GRK2 in chondrocyte mechanotransduction. © 2010 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:828–833  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号