首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulating evidence suggests that microglial cells in the spinal cord play an important role in the development of neuropathic pain. However, it remains largely unknown how glia interact with neurons in the spinal cord after peripheral nerve injury. Recent studies suggest that the chemokine fractalkine may mediate neural/microglial interaction via its sole receptor CX3CR1. We have examined how fractalkine activates microglia in a neuropathic pain condition produced by spinal nerve ligation (SNL). SNL induced an upregulation of CX3CR1 in spinal microglia that began on day 1, peaked on day 3, and maintained on day 10. Intrathecal injection of a neutralizing antibody against CX3CR1 suppressed not only mechanical allodynia but also the activation of p38 MAPK in spinal microglia following SNL. Conversely, intrathecal infusion of fractalkine produced a marked p38 activation and mechanical allodynia. SNL also induced a dramatic reduction of the membrane-bound fractalkine in the dorsal root ganglion, suggesting a cleavage and release of this chemokine after nerve injury. Finally, application of fractalkine to spinal slices did not produce acute facilitation of excitatory synaptic transmission in lamina II dorsal horn neurons, arguing against a direct action of fractalkine on spinal neurons. Collectively, our data suggest that (a) fractalkine cleavage (release) after nerve injury may play an important role in neural-glial interaction, and (b) microglial CX3CR1/p38 MAPK pathway is critical for the development of neuropathic pain.  相似文献   

2.
ABSTRACT: BACKGROUND: Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA)-induced monoarthritis (MA). In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. RESULTS: Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker) or the glia fibrillary acidic protein (GFAP, an astrocytic marker). These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs) alpha2/delta-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC alpha2/delta-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC alpha2/delta-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p.) gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA) suppressed the activation of spinal microglia, downregulated spinal VGCC alpha2/delta-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. CONCLUSIONS: Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia activation induced by joint inflammation. We also show that the VGCC alpha2/delta-1 subunits might be involved in these events.  相似文献   

3.
Fractalkine is a unique chemokine reported to be constitutively expressed by neurons. Its only receptor, CX3CR1, is expressed by microglia. Little is known about the expression of fractalkine and CX3CR1 in spinal cord. Given that peripheral nerve inflammation and/or injury gives rise to neuropathic pain, and neuropathic pain may be partially mediated by spinal cord glial activation and consequent glial proinflammatory cytokine release, there must be a signal released by affected neurons that triggers the activation of glia. We sought to determine whether there is anatomical evidence implicating spinal fractalkine as such a neuron-to-glia signal. We mapped the regional and cellular localization of fractalkine and CX3CR1 in the rat spinal cord and dorsal root ganglion, under basal conditions and following induction of neuropathic pain, employing both an inflammatory (sciatic inflammatory neuropathy; SIN) as well as a traumatic (chronic constriction injury; CCI) model. Fractalkine immunoreactivity and mRNA were observed in neurons, but not glia, in the rat spinal cord and dorsal root ganglia, and levels did not change following either CCI or SIN. By contrast, CX3CR1 was expressed by microglia in the basal state, and the microglial cellular concentration was up-regulated in a regionally specific manner in response to neuropathy. CX3CR1-expressing cells were identified as microglia by their cellular morphology and positive OX-42 and CD4 immunostaining. The cellular distribution of fractalkine and CX3CR1 in the spinal circuit associated with nociceptive transmission supports a potential role in the mechanisms that contribute to the exaggerated pain state in these models of neuropathy.  相似文献   

4.
The loss of noradrenergic neurons and subsequent reduction of brain noradrenaline (NA) levels are associated with the progression of Alzheimer's disease (AD). This seems to be due mainly to the ability of NA to reduce the activation of microglial cells. We previously observed that NA induces the production of the chemokine Fractalkine/CX3CL1 in neurons. The activation of microglial CX3CR1, sole receptor for CX3CL1, reduces the activation of microglia, which is known to largely contribute to the neuronal damage characteristic of AD. Therefore, alterations of CX3CR1 production in microglia could translate into the enhancement or inhibition of CX3CL1 anti‐inflammatory effects. In order to determine if microglial CX3CR1 production is altered in AD and if NA can control it, CX3CR1 expression and synthesis were analyzed in 5xFAD mice and human AD brain samples. In addition, the effects of NA and its reuptake inhibitor reboxetine were analyzed in microglial cultures and mice respectively. Our results indicate that in AD CX3CR1 production is increased in the brain cortex and that reboxetine administration further increases it and enhances microglial reactivity toward amyloid beta plaques. However, direct administration of NA to primary rat microglia or human HMC3 cells inhibits CX3CR1 production, suggesting that microglia responses to NA may be altered in the absence of CX3CL1‐producing neurons or other nonmicroglial external factors.  相似文献   

5.
Recent evidence suggests that spinal cord glia can contribute to enhanced nociceptive responses. However, the signals that cause glial activation are unknown. Fractalkine (CX3C ligand-1; CX3CL1) is a unique chemokine expressed on the extracellular surface of spinal neurons and spinal sensory afferents. In the dorsal spinal cord, fractalkine receptors are primarily expressed by microglia. As fractalkine can be released from neurons upon strong activation, it has previously been suggested to be a neuron-to-glial signal that induces glial activation. The present series of experiments provide an initial investigation of the spinal pain modulatory effects of fractalkine. Intrathecal fractalkine produced dose-dependent mechanical allodynia and thermal hyperalgesia. In addition, a single injection of fractalkine receptor antagonist (neutralizing antibody against rat CX3C receptor-1; CX3CR1) delayed the development of mechanical allodynia and/or thermal hyperalgesia in two neuropathic pain models: chronic constriction injury (CCI) and sciatic inflammatory neuropathy. Intriguingly, anti-CX3CR1 reduced nociceptive responses when administered 5-7 days after CCI, suggesting that prolonged release of fractalkine may contribute to the maintenance of neuropathic pain. Taken together, these initial investigations of spinal fractalkine effects suggest that exogenous and endogenous fractalkine are involved in spinal sensitization, including that induced by peripheral neuropathy.  相似文献   

6.
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation‐bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well‐defined. In this study, we investigate the role of CX3CR1, a microglia‐specific receptor, in regulating microglia‐mediated degeneration using the well‐established rd10 mouse model of RP. We found that in CX3CR1‐deficient (CX3CR1GFP/GFP) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1‐sufficient (CX3CR1GFP/+) rd10 littermates. CX3CR1‐deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at‐risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1‐CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1‐CX3CR1 signaling is a molecular mechanism capable of modulating microglial‐mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479–1491  相似文献   

7.
Following peripheral nerve transection, CX3CR1 and TGF-beta1 are increased in a time-dependent manner within the injured facial motor nucleus. To explore the relationship between TGF-beta1 and CX3CR1 in the CNS, the effects of TGF-beta1 on CX3CR1 mRNA, protein and fractalkine-dependent stimulation of signal transduction cascades in primary cultures of rat microglia were examined. TGF-beta1 increased steady state levels of CX3CR1 mRNA, 125I-fractalkine binding sites and blunted fractalkine-stimulated ERK1/2 phosphorylation. The half-life of CX3CR1 mRNA was unaltered by TGF-beta1 and two potential Smad binding elements (SBEs) were identified in the rat CX3CR1 promoter. TGF-beta1 may shift fractalkine-dependent signaling away from activation of ERK1/2 towards other pathways and/or may provide a mechanism for microglia to more strongly adhere to neurons.  相似文献   

8.
Hughes PM  Botham MS  Frentzel S  Mir A  Perry VH 《Glia》2002,37(4):314-327
In this study, we investigate the expression of fractalkine (CX3CL1) and the fractalkine receptor (CX3CR1) in the naive rat and mouse central nervous system (CNS). We determine if the expression of this chemokine and its receptor are altered during chronic or acute inflammation in the CNS. In addition, we determine if CX3CL1, which has been reported to be chemoattractant to leukocytes in vitro, is capable of acting as a chemoattractant in the CNS in vivo. Immunohistochemistry was performed using primary antibodies recognizing soluble and membrane-bound CX3CL1 and the N-terminus of the CX3CR1. We found that neurons in the naive rodent brain are immunoreactive for CX3CL1 and CX3CR1, both showing a perinuclear staining pattern. Resident microglia associated with the parenchyma and macrophages in the meninges and choroid plexus constituitively express CX3CR1. In a prion model of chronic neurodegeneration and inflammation, CX3CL1 immunoreactivity is upregulated in astrocytes and CX3CR1 expression is elevated on microglia. In surviving neurons, expression of CX3CL1 appears unaltered relative to normal neurons. There is a decrease in neuronal CX3CR1 expression. Acute inflammatory responses in the CNS, induced by stereotaxic injections of lipopolysaccharide or kainic acid, results in activation of microglia and astrocytes but no detectable changes in the glial expression of CX3CL1 or CX3CR1. The expression of CX3CL1 and CX3CR1 by glial cells during inflammation in the CNS may be influenced by the surrounding cytokine milieu, which has been shown to differ in acute and chronic neuroinflammation.  相似文献   

9.
The exact roles of activated microglia and fractalkine (CX3CL1)/fractalkine receptor (CX3CR1) signaling are not fully understood in brain ischemic injury and the findings reported are controversial. Here, we investigated the effects of CX3CR1 siRNA on the expression of CX3CR1, p38 mitogen-activated protein kinase (p38MAPK), Protein Kinase C (PKC) and inflammatory cytokines, microglia activation, white matter lesions, and cognitive function in mice treated with bilateral common carotid artery stenosis (BCAS) in vivo as well as effects of exogenous CX3CL1, CX3CR1 siRNA, and SB2035080 on expression of inflammatory cytokines in BV2 microglia treated with oxygen–glucose deprivation (OGD) in vitro. We showed that CX3CR1 siRNA significantly inhibited the increased expression of CX3CR1, p38MAPK, PKC as well as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and also attenuated microglia activation, white matter lesions, and cognitive deficits induced by BCAS in mice brain. We also showed that exogenous CX3CL1 could induce a further enhancement in TNF-α and IL-1β expression, which could be suppressed by CX3CR1 siRNA or by the p38MAPK inhibitor in OGD-treated BV2 microglial cells in vitro. Our findings indicated that CX3CL1/CX3CR1-mediated microglial activation plays a detrimental role in ischemic brain via p38MAPK/PKC signaling and also suggested that CX3CL1/CX3CR1 axis might be a putative therapeutic target to disrupt the cascade of deleterious events that lead to brain ischemic injury.  相似文献   

10.
The chemokine CX3CL1 and its receptor CX3CR1 are constitutively expressed in the nervous system. In this study, we used in vivo murine models of permanent middle cerebral artery occlusion (pMCAO) to investigate the protective potential of CX3CL1. We report that exogenous CX3CL1 reduced ischemia-induced cerebral infarct size, neurological deficits, and caspase-3 activation. CX3CL1-induced neuroprotective effects were long lasting, being observed up to 50 d after pMCAO in rats. The neuroprotective action of CX3CL1 in different models of brain injuries is mediated by its inhibitory activity on microglia and, in vitro, requires the activation of adenosine receptor 1 (A?R). We show that, in the presence of the A?R antagonist 1,3-dipropyl-8-cyclopentylxanthine and in A?R?/? mice, the neuroprotective effect of CX3CL1 on pMCAO was abolished, indicating the critical importance of the adenosine system in CX3CL1 protection also in vivo. In apparent contrast with the above reported data but in agreement with previous findings, cx3cl1?/? and cx3cr1(GFP/GFP) mice, respectively, deficient in CX3CL1 or CX3CR1, had less severe brain injury on pMCAO, and the administration of exogenous CX3CL1 increased brain damage in cx3cl1?/? ischemic mice. We also report that CX3CL1 induced a different phagocytic activity in wild type and cx3cl1?/? microglia in vitro during cotreatment with the medium conditioned by neurons damaged by oxygen-glucose deprivation. Together, these data suggest that acute administration of CX3CL1 reduces ischemic damage via an adenosine-dependent mechanism and that the absence of constitutive CX3CL1-CX3CR1 signaling changes the outcome of microglia-mediated effects during CX3CL1 administration to ischemic brain.  相似文献   

11.
Human glioblastoma multiforme (GBM) is the most malignant form of human brain tumors. A characteristic of GBM is the marked presence of tumor infiltrated microglia/macrophages and lymphocytes. The goal of this study was directed toward understanding the role of the chemokine system CX3CL1 and its receptor CX3CR1 in the GL261 murine model of malignant glioma. In situ hybridization analysis identified CX3CL1 and CX3CR1 expression in GL261 tumors. The impact of CX3CR1 deletion on the growth of intracranial GL261 gliomas and associated immune cell infiltration was evaluated in CX3CR1 gene-disrupted C57BL/6 mice. A slight increase in the tumor growth rate in CX3CR1-/- mice was evident with similar numbers of microglia and CD4+, CD8+, FoxP3+, or Ly49G2+ lymphocytes within tumors established in CX3CR1 +/- and -/- mice. These data indicate that CX3CR1 has little or no effects on either gliomagenesis or the migration of microglia and lymphocytes into GL261 tumors.  相似文献   

12.
Although fractalkine is one of chemokines involved in mediation of neuronal/microglial interaction, it is not known whether fractalkine/CX3CR1-mediated pathogenesis occurs in the rat brain following epileptogenic insults. In order to elucidate the roles of the fractalkine/CX3CR1 system in microglial activation and neurodegeneration induced by status epilepticus (SE), we investigated changes in fractalkine/CX3CR1 system within the rat hippocampus following SE. In non-SE induced animals, fractalkine and CX3CR1 immunoreactivity was detected in neurons and microglia, respectively. Following SE, fractalkine immunoreactivity was transiently increased in neurons and astrocytes. CX3CR1 immunoreactivity was also transiently detected in neurons (particularly in CA1 pyramidal cells). Intracerebroventricular infusions of recombinant rat fractalkine aggravated SE-induced neuronal damage, while fractalkine IgG or CX3CR1 IgG infusion alleviated it, compared to saline-infused animals. These findings suggest that fractalkine/CX3CR1 system may play an important role in SE-induced neuronal damages via neuron-microglial interactions.  相似文献   

13.
Fractalkine is a chemokine that is tethered to the extracellular surface of neurons. Fractalkine can be released, forming a diffusible signal. Spinal fractalkine (CX3CL1) is expressed by sensory afferents and intrinsic neurons, whereas its receptor (CX3CR1) is predominantly expressed by microglia. Pain enhancement occurs in response both to intrathecally administered fractalkine and to spinal fractalkine endogenously released by peripheral neuropathy. The present experiments examine whether fractalkine-induced pain enhancement is altered by a microglial inhibitor (minocycline) and/or by antagonists/inhibitors of three putative glial products implicated in pain enhancement: interleukin-1 (IL1), interleukin-6 (IL6) and nitric oxide (NO). In addition, it extends a prior study that demonstrated that intrathecal fractalkine-induced mechanical allodynia is blocked by a neutralizing antibody to the rat fractalkine receptor, CX3CR1. Here, intrathecal anti-CX3CR1 also blocked fractalkine-induced thermal hyperalgesia. Furthermore, blockade of microglial activation with minocycline prevented both fractalkine-induced mechanical allodynia (von Frey test) and thermal hyperalgesia (Hargreaves test). Microglial activation appears to lead to the release of IL1, given that pretreatment with IL1 receptor antagonist blocked both fractalkine-induced mechanical allodynia and thermal hyperalgesia. IL1 is not the only proinflammatory cytokine implicated, as a neutralizing antibody to rat IL6 also blocked fractalkine-induced pain facilitation. Lastly, NO appears to be importantly involved, as l-NAME, a broad-spectrum NO synthase inhibitor, also blocked fractalkine-induced effects. Taken together, these data support that neuronally released fractalkine enhances pain via activation of spinal cord glia. Thus, fractalkine may be a neuron-to-glia signal triggering pain facilitation.  相似文献   

14.
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons accompanied by an inflammatory reaction. The neuron-derived chemokine fractalkine (CX3CL1) is an exclusive ligand for the receptor CX3CR1 expressed on microglia. The CX3CL1/CX3CR1 signaling is important for sustaining microglial activity. Using a recently developed PD model, in which the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin is delivered intranasally, we hypothesized that CX3CR1 could play a role in neurotoxicity and glial activation. For this, we used CX3CR1 knock-in mice and compared results with those obtained using the classical PD models through intraperitonal MPTP or intrastriatal 6-hydroxydopamine (6-OHDA). The striatum from all genotypes (CX3CR1+/+, CX3CR1+/GFP and CX3CR1-deficient mice) showed a significant dopaminergic depletion after intranasal MPTP inoculation. In contrast to that, we could not see differences in the number of dopaminergic neurons in the substantia nigra of CX3CR1-deficient animals. Similarly, after 6-OHDA infusion, the CX3CR1 deletion decreased the amphetamine-induced turning behavior observed in CX3CR1+/GFP mice. After the 6-OHDA inoculation, a minor dopaminergic neuronal loss was observed in the substantia nigra from CX3CR1-deficient mice. Distinctly, a more extensive neuronal cell loss was observed in the substantia nigra after the intraperitoneal MPTP injection in CX3CR1 disrupted animals, corroborating previous results. Intranasal and intraperitoneal MPTP inoculation induced a similar microgliosis in CX3CR1-deficient mice but a dissimilar change in the astrocyte proliferation in the substantia nigra. Nigral astrocyte proliferation was observed only after intraperitoneal MPTP inoculation. In conclusion, intranasal MPTP and 6-OHDA lesion in CX3CR1-deficient mice yield no nigral dopaminergic neuron loss, linked to the absence of astroglial proliferation.  相似文献   

15.
Complex regional pain syndrome type 1 (CRPS‐I) remains one of the most clinically challenging neuropathic pain syndromes and its mechanism has not been fully characterized. Cannabinoid receptor 2 (CB2) has emerged as a promising target for treating different neuropathic pain syndromes. In neuropathic pain models, activated microglia expressing CB2 receptors are seen in the spinal cord. Chemokine fractalkine receptor (CX3CR1) plays a substantial role in microglial activation and neuroinflammation. We hypothesized that a CB2 agonist could modulate neuroinflammation and neuropathic pain in an ischemia model of CRPS by regulating CB2 and CX3CR1 signaling. We used chronic post‐ischemia pain (CPIP) as a model of CRPS‐I. Rats in the CPIP group exhibited significant hyperemia and edema of the ischemic hindpaw and spontaneous pain behaviors (hindpaw shaking and licking). Intraperitoneal administration of MDA7 (a selective CB2 agonist) attenuated mechanical allodynia induced by CPIP. MDA7 treatment was found to interfere with early events in the CRPS‐I neuroinflammatory response by suppressing peripheral edema, spinal microglial activation and expression of CX3CR1 and CB2 receptors on the microglia in the spinal cord. MDA7 also mitigated the loss of intraepidermal nerve fibers induced by CPIP. Neuroprotective effects of MDA7 were blocked by a CB2 antagonist, AM630. Our findings suggest that MDA7, a novel CB2 agonist, may offer an innovative therapeutic approach for treating neuropathic symptoms and neuroinflammatory responses induced by CRPS‐I in the setting of ischemia and reperfusion injury.  相似文献   

16.
Tetanic stimulation of the sciatic nerve(TSS)triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1-CX3CR1 signaling is an important pathway in neuronalmicroglial activation. Nuclear factor κB(NF-κB) is a key signal transduction molecule that regulates neuroinflammation and neuropathic pain. Here, we set out to determine whether and how NF-κB and CX3CR1 are involved in the mechanism underlying the pathological changes induced by TSS. After unilateral TSS, significant bilateral mechanical allodynia was induced, as assessed by the von Frey test. The expression of phosphorylated NF-κB(pNF-κB) and CX3CR1 was significantly up-regulated in the bilateral dorsal horn. Immunofluorescence staining demonstrated that pNF-KB and NeuN co-existed, implying that the NF-κB pathway is predominantly activated in neurons following TSS. Administration of either the NF-κB inhibitor ammonium pyrrolidine dithiocarbamate or a CX3CR1-neutralizing antibody blocked the development and maintenance of neuropathic pain. In addition, blockade of NF-κB downregulated the expression of CX3 CL1-CX3CR1 signaling,and conversely the CX3CR1-neutralizing antibody also down-regulated pNF-κB. These findings suggest an involvement of NF-κB and the CX3CR1 signaling network in the development and maintenance of TSS-induced mechanical allodynia. Our work suggests the potential clinical application of NF-κB inhibitors or CX3CR1-neutralizing antibodies in treating pathological pain.  相似文献   

17.
Leukocyte migration and activation play an important role in immune surveillance and the pathogenesis of a variety of neurodegenerative disorders, including human immunodeficiency virus (HIV)-1-associated dementia (HAD). A novel chemokine named fractalkine (FKN, CX3CL1), which exists in both membrane-anchored and soluble isoforms, has been proposed to participate in the generation and progression of inflammatory brain disorders. Upon binding to the CX3C receptor one (CX3CR1), FKN induces adhesion, chemoattraction, and activation of leukocytes, including brain macrophages and microglia (MP). Constitutively expressed in the central nervous system (CNS), mainly by neurons, FKN is up-regulated and released in response to proinflammatory stimuli. Importantly, FKN is up-regulated in the brain tissue and cerebrospinal fluid (CSF) of HAD patients. Together, these observations suggest that FKN and its receptor have a unique role in regulating the neuroinflammatory events underlying disease. This review will examine how FKN contributes to the recruitment and activation of CX3CR1-expressing MP, which are critical events in the neuropathogenesis of HAD.  相似文献   

18.
Excitotoxicity is a cell death caused by excessive exposure to glutamate (Glu), contributing to neuronal degeneration in many acute and chronic CNS diseases. We explored the role of fractalkine/CX3CL1 on survival of hippocampal neurons exposed to excitotoxic doses of Glu. We found that: CX3CL1 reduces excitotoxicity when co-applied with Glu, through the activation of the ERK1/2 and PI3K/Akt pathways, or administered up to 8 h after Glu insult; CX3CL1 reduces the Glu-activated whole-cell current through mechanisms dependent on intracellular Ca2+; CX3CL1 is released from hippocampal cells after excitotoxic insult, likely providing an endogenous protective mechanism against excitotoxic cell death.  相似文献   

19.
Although traditional models of carcinogenesis have largely focused on neoplastic cells, converging data have revealed the importance of non‐neoplastic stromal cells in influencing tumor growth and progression. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1)‐associated optic glioma, we now demonstrate that stromal microglia express the CX3CR1 chemokine receptor, such that reduced CX3CR1 expression decreases optic nerve microglia. Moreover, genetic reduction of Cx3cr1 expression in Nf1 optic glioma mice delays optic glioma formation. Coupled with previous findings demonstrating that microglia maintain optic glioma growth, these new findings provide a strong preclinical rationale for the development of future stroma‐directed glioma therapies in children. ANN NEUROL 2013;73:303–308  相似文献   

20.
Previous studies have shown that microglia impact the proliferation and differentiation of neurons during hippocampal neurogenesis via the fractalkine/CX3 chemokine receptor 1 (CX3CR1) signaling pathway. However, whether microglia can influence the maturation and dendritic growth of newborn neurons during hippocampal neurogenesis remains unclear. In the present study, we found that the number of doublecortin-positive cells in the hippocampus was decreased, and the dendritic length and number of intersections in newborn neurons in the hippocampus were reduced in transgenic adult mice with CX3CR1 deficiency (CX3CR1GFP/GFP). Furthermore, after experimental seizures were induced with kainic acid in these CX3CR1-deficient mice, the expression of c-fos, a marker of neuronal activity, was reduced compared with wild-type mice. Collectively, the experimental findings indicate that the functional maturation of newborn neurons during hippocampal neurogenesis in adult mice is delayed by CX3CR1 deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号