首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voluntary wheel‐running induces a rapid increase in proliferation and neurogenesis by neural precursors present in the adult rodent hippocampus. In contrast, the responses of hippocampal and other central nervous system neural precursors following longer periods of voluntary physical activity are unclear and are an issue of potential relevance to physical rehabilitation programs. We investigated the effects of a prolonged, 6‐week voluntary wheel‐running paradigm on neural precursors of the CD1 mouse hippocampus and forebrain. Examination of the hippocampus following 6 weeks of running revealed two to three times as many newly born neurons and 60% more proliferating cells when compared with standard‐housed control mice. Among running mice, the number of newly born neurons correlated with the total running distance. To establish the effects of wheel‐running on hippocampal precursors dividing during later stages of the prolonged running regime, BrdU was administered after 3 weeks of running and the BrdU‐retaining cells were analyzed 18 days later. Quantifications revealed that the effects of wheel‐running were maintained in late‐stage proliferating cells, as running mice had two to three times as many BrdU‐retaining cells within the hippocampal dentate gyrus, and these yielded greater proportions of both mature neurons and proliferative cells. The effects of prolonged wheel‐running were also detected beyond the hippocampus. Unlike short‐term wheel‐running, prolonged wheel‐running was associated with higher numbers of proliferating cells within the ventral forebrain subventricular region, a site of age‐associated decreases in neural precursor proliferation and neurogenesis. Collectively, these findings indicate that (i) prolonged voluntary wheel‐running maintains an increased level of hippocampal neurogenesis whose magnitude is linked to total running performance, and (ii) that it influences multiple neural precursor populations of the adult mouse brain. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Formation of new neurons in the adult brain takes place in the subventricular zone and in the subgranule layer of the dentate gyrus throughout life. Neurogenesis is thought to play a role in hippocampus‐ and olfaction‐dependent learning and memory. However, whether impairments in neurogenesis take place in learning and memory disorders, such as Alzheimer's disease, is yet to be established. Importantly, it remains to be elucidated whether neurogenic impairments play a role in the course of the disease or are the result of extensive neuropathology. We now report that transgenic mice harboring familial Alzheimer's disease‐linked mutant APPswe/PS1ΔE9 exhibit severe impairments in neurogenesis that are evident as early as 2 months of age. These mice exhibit a significant reduction in the proliferation of neural progenitor cells and their neuronal differentiation. Interestingly, levels of hyperphosphorylated tau, the cytotoxic precursor of the Alzheimer's disease hallmark neurofibrillary tangles, are particularly high in the neurogenic niches. Isolation of neural progenitor cells in culture reveals that APPswe/PS1ΔE9‐expressing neurospheres exhibit impaired proliferation and tau hyperphosphorylation compared with wildtype neurospheres isolated from nontransgenic littermates. This study suggests that impaired neurogenesis is an early critical event in the course of Alzheimer's disease that may underlie memory impairments, at least in part, and exacerbate neuronal vulnerability in the hippocampal formation and olfaction circuits. Furthermore, impaired neurogenesis is the result of both intrinsic pathology in neural progenitor cells and extrinsic neuropathology in the neurogenic niches. Finally, hyperphosphorylation of the microtubule‐associated protein tau, a critical player in cell proliferation, neuronal maturation, and axonal transport, is a major contributor to impaired neurogenesis in Alzheimer's disease. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Transforming growth factor-β signaling through Smad3 inhibits cell proliferation in many cell types. As cell proliferation in the brain is an integral part of neurogenesis, we sought to determine the role of Smad3 in adult neurogenesis through examining processes and structures important to neurogenesis in adult Smad3 null mice. We find that there are fewer proliferating cells in neurogenic regions of adult Smad3 null mouse brains and reduced migration of neuronal precursor cells from the subventricular zone to the olfactory bulb. Alterations in astrocyte number and distribution within the rostral migratory stream of Smad3 null mice give rise to a smaller and more disorganized structure that may impact on neuronal precursor cell migration. However, the proportion of proliferating cells that become neurons is similar in wild type and Smad3 null mice. Our results suggest that signaling through Smad3 is needed to maintain the rate of cell division of neuronal precursors in the adult brain and hence the amount of neurogenesis, without altering neuronal cell fate.  相似文献   

4.
Adult neurogenesis is influenced by blood‐borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood‐borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Neurogenesis in the adult mammalian CNS occurs in the subventricular zone (SVZ) and dentate gyrus. The receptor for ciliary neurotrophic factor (CNTF), CNTFRalpha, is expressed in the adult subventricular zone. Because the in vitro effects of CNTF on neural precursors have been varied, including proliferation and differentiation into neurons or glia, we investigated its role in vivo. Injection of CNTF in the adult C57BL/6 mice forebrain increased the number of cells labeled with ip BrdU in both neurogenic regions. In the dentate gyrus, CNTF also appeared to enhance differentiation of precursors into neurons, i.e., increased the proportion of NeuN+/BrdU+ cells from approximately 14 to approximately 29%, but did not affect differentiation into astrocytes (GFAP+) or oligodendrocytes (CNPase+). In the SVZ, CNTF increased the proportion of GFAP+/BrdU+ cells from approximately 1 to approximately 2%. CNTF enhanced the distance of migration of new neurons into the granule cell layer. Intraventricular injection of neutralizing anti-CNTF antibodies reduced the number of BrdU-labeled cells in the SVZ. These results suggest that endogenous CNTF regulates adult neurogenesis by increasing proliferation of neural stem cells and/or precursors. Alternatively, CNTF could maintain cells longer in the S-phase, resulting in increased BrdU labeling. In the neurogenic region of the SVZ, CNTFRalpha was exclusively present in GFAP-positive process-bearing cells, suggesting that CNTF affects neurogenesis indirectly via neighboring astroglia. Alternatively, these cells may be part of the neural precursor lineage. The restricted expression of CNTF within the nervous system makes it a potential selective drug target for cell replacement strategies.  相似文献   

6.
Neurogenesis occurs in two neurogenic regions of the adult mammalian brain: the subgranular zone and the subventricular zone. We have recently demonstrated that the number of bromodeoxyuridine-positive and doublecortin-positive cells is decreased in the subgranular zone of amyloid precursor protein with a Swedish mutation and presenilin-1 with a deletion of exon 9 transgenic mice, an animal model of Alzheimer's disease. In this study, we characterized neurogenesis in the subventricular zone of amyloid precursor protein with a Swedish mutation and presenilin-1 with a deletion of exon 9 transgenic mice at 9 months of age and compared it with neurogenesis in the subgranular zone. In the subventricular zone, the number of proliferating cell nuclear antigen-positive and bromodeoxyuridine-positive cells were normal. In the subgranular zone, the number of proliferating cell nuclear antigen-positive cells was normal; however, the number of bromodeoxyuridine-positive cells was significantly decreased. These results suggest that neurogenesis, probably reflecting the survival of neural progenitor cells, differs between the subgranular zone and the subventricular zone.  相似文献   

7.
An understanding of the regulators of neurogenesis in the normal and diseased brain is necessary in order to recruit endogenously produced neural precursors for cell replacement in neurodegenerative disorders such as Parkinson's disease. The location of dopaminergic projections from the midbrain to the neostriatum and nucleus accumbens overlaps with the most active region of neurogenesis in the adult brain, the subventricular zone of the anterior lateral ventricle. This suggests that dopamine may contribute to regulation of the subventricular niche of adult neurogenesis. Here, we show in adult mice that destruction of the dopaminergic neurons in the substantia nigra and ventral tegmental area in a 6-hydroxydopamine model of Parkinson's disease reduced the number of proliferating neural precursors in the subventricular zone of the anterior lateral ventricle by approximately 40%. The effect on neural precursor proliferation correlated with the extent of dopaminergic denervation in the neighboring neostriatum. This identifies dopamine as one of the few known endogenous regulators of adult neurogenesis with implications for the potential use of endogenous neural precursors in cell replacement strategies for Parkinson's disease.  相似文献   

8.
The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo . Taking advantage of the recombination characteristics of a nestin::CreER T2 allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER T2 -expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER T2 -expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER T2 -targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.  相似文献   

9.
Alzheimer’s disease (AD) affects cognitive modalities that are known to be regulated by adult neurogenesis, such as hippocampal‐ and olfactory‐dependent learning and memory. However, the relationship between AD‐associated pathologies and alterations in adult neurogenesis has remained contentious. In the present study, we performed a detailed investigation of adult neurogenesis in the triple transgenic (3xTg) mouse model of AD, a unique model that generates both amyloid plaques and neurofibrillary tangles, the hallmark pathologies of AD. In both neurogenic niches of the brain, the hippocampal dentate gyrus and forebrain subventricular zone, we found that 3xTg mice had decreased numbers of (i) proliferating cells, (ii) early lineage neural progenitors, and (iii) neuroblasts at middle age (11 months old) and old age (18 months old). These decreases correlated with major reductions in the addition of new neurons to the respective target areas, the dentate granule cell layer and olfactory bulb. Within the subventricular zone niche, cytological alterations were observed that included a selective loss of subependymal cells and the development of large lipid droplets within the ependyma of 3xTg mice, indicative of metabolic changes. Temporally, there was a marked acceleration of age‐related decreases in 3xTg mice, which affected multiple stages of neurogenesis and was clearly apparent prior to the development of amyloid plaques or neurofibrillary tangles. Our findings indicate that AD‐associated mutations suppress neurogenesis early during disease development. This suggests that deficits in adult neurogenesis may mediate premature cognitive decline in AD.  相似文献   

10.
In the brain of adult rats neurogenesis persists in the subventricular zone of the lateral ventricles and in the dentate gyrus of the hippocampus. By contrast, low proliferative activity was observed in the hypothalamus. We report here that, after intracerebroventricular treatment with insulin‐like growth factor I (IGF‐I), cell proliferation significantly increased in both the periventricular and the parenchymal zones of the whole hypothalamus. Neurons, astrocytes, tanycytes, microglia and endothelial cells of the local vessels were stained with the proliferative marker 5‐bromo‐2′‐deoxyuridine (BrdU) in response to IGF‐I. Conversely, we never observed BrdU‐positive ciliated cubic ependymal cells. Proliferation was intense in the subventricular area of a distinct zone of the mid third ventricle wall limited dorsally by ciliated cubic ependyma and ventrally by tanycytic ependyma. In this area, we saw a characteristic cluster of proliferating cells. This zone of the ventricular wall displayed three cell layers: ciliated ependyma, subependyma and underlying tanycytes. After IGF‐I treatment, proliferating cells were seen in the subependyma and in the layer of tanycytes. In the subependyma, proliferating glial fibrillary acidic protein‐positive astrocytes contacted the ventricle by an apical process bearing a single cilium and there were many labyrinthine extensions of the periventricular basement membranes. Both features are typical of neurogenic niches in other brain zones, suggesting that the central overlapping zone of the rat hypothalamic wall could be considered a neurogenic niche in response to IGF‐I.  相似文献   

11.
12.
Journal of Neurology - The adult mammalian brain harbours multi-potent stem/precursor cells supporting self-renewal and differentiation within specialised niches, namely the subventricular zone of...  相似文献   

13.
Interleukin-6 (IL-6) is a proinflammatory cytokine known to modulate neurogenesis. We presently evaluated neural progenitor proliferation, survival, and phenotypic maturation in the hippocampal dentate gyrus, subventricular zone, and the posterior periventricle in the brains of IL-6 knockout mice and their wild-type littermates. In all the three neurogenic regions of the IL-6 mice there was a significant decrease in the number of 5-bromo-2-deoxyuridine positive (BrdU) proliferating progenitors compared with the IL-6 mice. The IL-6 mice also showed a significantly lower progenitor cell survival in the dentate gyrus and subventricular zone compared with the IL-6 mice. In conclusion, a complete lack of IL-6 might be detrimental to neurogenesis in the adult brain.  相似文献   

14.
In the current experiments, we address the emerging hypothesis that transplanted neural precursor cells can respond to local microenvironmental signals in the post-developmental brain and exhibit patterns of differentiation that depend critically on specific location within the brain. HiB5 precursor cells were transplanted into adult mouse cortex, corpus callosum, and multiple positions in striatum, and assessed for differentiation by morphology and immunocytochemistry. Our results indicate that the likelihood of both neuronal and glial differentiation of transplanted precursors depends on proximity to the medial striatum or subventricular zone of the adult host, supporting the concept that microenvironmental signals can critically affect the differentiation fate of neural precursors, and suggesting the potential to manipulate such signals in the adult brain.  相似文献   

15.
Multipotent precursors similar to stem cells of the embryonic neural crest (NC) have been identified in several postnatal tissues, and are potentially useful for research and therapeutic purposes. However, their neurogenic potential, including their ability to produce electrophysiologically active neurons, is largely unexplored. We investigated this issue with regard to skin-derived precursors (SKPs), multipotent NC-related precursors isolated from the dermis of skin. SKP cultures follow an appropriate pattern and time-course of neuronal differentiation, with proliferating nestin-expressing SKPs generating post-mitotic neuronal cells that co-express pan-neuronal and peripheral autonomic lineage markers. These SKP-derived neuron-like cells survive and maintain their peripheral phenotype for at least 5 weeks when transplanted into the CNS environment of normal or kainate-injured hippocampal slices. Undifferentiated SKPs retain key neural precursor properties after multi-passage expansion, including growth factor dependence, nestin expression, neurogenic potential, and responsiveness to embryonic neural crest fate determinants. Despite undergoing an apparently appropriate neurogenic process, however, SKP-derived neuron-like cells possess an immature electrophysiological profile. These findings indicate that SKPs retain latent neurogenic properties after residing in a non-neural tissue, but that additional measures will be necessary to promote their differentiation into electrophysiologically active neurons.  相似文献   

16.
In the adult rodent forebrain, astrocyte‐like neural stem cells reside within the subventricular zone (SVZ) and give rise to progenitors and neuroblasts, which then undergo chain migration along the rostral migratory stream (RMS) to the olfactory bulb, where they mature into fully functional interneurons. Neurogenesis also occurs in the adult human SVZ, where neural precursors similar to the rodent astrocyte‐like stem cell and neuroblast have been identified. A migratory pathway equivalent to the rodent RMS has also recently been described for the human forebrain. In the embryo, the guidance receptor neogenin and its ligands netrin‐1 and RGMa regulate important neurogenic processes, including differentiation and migration. We show in this study that neogenin is expressed on neural stem cells (B cells), progenitor cells (C cells), and neuroblasts (A cells) in the adult mouse SVZ and RMS. We also show that netrin‐1 and RGMa are ideally placed within the neurogenic niche to activate neogenin function. Moreover, we find that neogenin and RGMa are also present in the neurogenic regions of the human adult forebrain. We show that neogenin is localized to cells displaying stem cell (B cell)‐like characteristics within the adult human SVZ and RMS and that RGMa is expressed by the same or a closely apposed cell population. This study supports the hypothesis that, as in the embryo, neogenin regulates fundamental signalling pathways important for neurogenesis in the adult mouse and human forebrain. J. Comp. Neurol. 518:3237–3253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non‐human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co‐expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.  相似文献   

18.
Multipotent neural precursors have been suggested to exist in many parts of the adult mammalian brain. In the present study, we characterized the neurogenic potential in the piriform cortex of adult rats. Proliferation rates as detected by 5'-bromodeoxyuridine-labeling proved to be low when compared with the major neurogenic brain regions (i.e. the hippocampus and the subventricular zone). 5'-Bromodeoxyuridine/NeuN-labeling in accordance with doublecortin, polysialylated neural cell adhesion molecule, and TUC-4-labeling indicated that neuronal differentiation of newborn cells occurs predominantly in layer II of the piriform cortex. Many of the cells exhibited a pyramidal cell morphology. The lack of 5'-bromodeoxyuridine/NeuN-labeled cells 12 weeks after 5'-bromodeoxyuridine administration argued against long-term survival of newborn neurons in the piriform cortex.  相似文献   

19.
20.
Neurogenesis occurs in two regions of the adult brain, namely, the subventricular zone (SVZ) throughout the wall of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG) in hippocampal formation. Adult neurogenesis requires several neurotrophic factors to sustain and regulate the proliferation and differentiation of the adult stem cell population. In the present review, we examine the cellular and functional aspects of a trophic system mediated by fibroblast growth factor-2 (FGF-2) and its receptors (FGFRs) related to neurogenesis in the SVZ and SGZ of the adult rat brain. In the SVZ, FGF-2 is expressed in GFAP-positive cells of SVZ but is not present in proliferating precursor cells, which instead express FGFR-1 and FGFR-2, but not FGFR-3 mRNA, although expressed in the SVZ, and FGFR-4. Therefore, it seems that in the SVZ FGF-2 may be released by GFAP-positive cells, different from the precursor cell lineage, and via volume transmission it reaches the proliferating precursor cells. FGFR-1 mRNA is also expressed in the SGZ and is localized in BrdU-labeled precursor cells, whereas FGFR-2 and FGFR-3 mRNA, although expressed in the SGZ, are not located within proliferating precursor cells. An aged-related decline of proliferating precursor cells in the SVZ and DG of old rats has been well documented, and there is the suggestion that in part it could be the consequence of alterations in growth factor expression levels. Thus, the old precursors may respond to growth factors, suggesting that during aging the basic components for neuronal precursor cell proliferation are retained and the capacity to increase neurogenesis after appropriate stimulation is still preserved. In conclusion, the trophic system mediated by FGF-2 and its receptors contributes to create an important micro-environmental niche that promotes neurogenesis in the adult and aged brain. This article is dedicated to the special issue Brain Plasticity: Aging and Neuropychiatric Disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号