首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
γ‐Aminobutyric acid (GABA) regulates the proliferation and migration of olfactory bulb (OB) interneuron progenitors derived from the subventricular zone (SVZ), but the role of GABA in the differentiation of these progenitors has been largely unexplored. This study examines the role of GABA in the differentiation of OB dopaminergic interneurons using neonatal forebrain organotypic slice cultures prepared from transgenic mice expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (Th) gene promoter (ThGFP). KCl‐mediated depolarization of the slices induced ThGFP expression. The addition of GABA to the depolarized slices further increased GFP fluorescence by inducing ThGFP expression in an additional set of periglomerular cells. These findings show that GABA promoted differentiation of SVZ‐derived OB dopaminergic interneurons and suggest that GABA indirectly regulated Th expression and OB dopaminergic neuron differentiation through an acceleration of the maturation rate for the dopaminergic progenitors. Additional studies revealed that the effect of GABA on ThGFP expression required activation of L‐ and P/Q‐type Ca2+ channels as well as GABAA and GABAB receptors. These voltage‐gated Ca2+ channels and GABA receptors have previously been shown to be required for the coexpressed GABAergic phenotype in the OB interneurons. Together, these findings suggest that Th expression and the differentiation of OB dopaminergic interneurons are coupled to the coexpressed GABAergic phenotype and demonstrate a novel role for GABA in neurogenesis. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
γ‐Aminobutyric acid (GABA)‐ and serotonin (5‐HT)‐mediated cell signaling, neuronal survival enhancement, and reduced neuronal death in brainstem during liver injury followed by active liver regeneration have a critical role in maintaining routine bodily functions. In the present study, GABAB and 5‐HT2A receptor functional regulation, interrelated actions of neuronal survival factors, and expression of apoptotic factors in the brainstem during GABA and 5‐HT chitosan nanoparticles‐induced active liver regeneration in partially hepatectomized rats were evaluated. Partially hepatectomized rats were treated with the nanoparticles, and receptor assays and confocal microscopic studies of GABAB and 5‐HT2A receptors, gene expression studies of GABAB and 5‐HT2A receptors, nuclear factor‐κB (NF‐κB), tumor necrosis factor‐α (TNF‐α), Akt‐1, phospholipase C, Bax, and caspase‐8 were performed with the brainstems of experimental animals. A significant decrease in GABAB and 5‐HT2A receptor numbers and gene expressions denoted a homeostatic adjustment by the brain to trigger the sympathetic innervations during elevated DNA synthesis in the liver. The neuronal apoptosis resulting from the loss of liver function after partial hepatectomy was minimized by nanoparticle treatment in rats compared with rats with no treatment during regeneration. This was confirmed from the gene expression patterns of NF‐κB, TNF‐α, Akt‐1, phospholipase C, Bax, and caspase‐8. The present study revealed the potential of GABA and 5‐HT chitosan nanoparticles for increasing neuronal survival in the brainstem during liver injury following regeneration, which avoids many neuropsychiatric problems. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Purpose: Febrile seizures (FS), the most frequent seizure type during childhood, have been linked to temporal lobe epilepsy (TLE) in adulthood. Yet, underlying mechanisms are still largely unknown. Altered γ‐aminobutyric acid (GABA)ergic neurotransmission in the dentate gyrus (DG) circuit has been hypothesized to be involved. This study aims at analyzing whether experimental FS change inhibitory synaptic input and postsynaptic GABAAR function in dentate granule cells. Methods: We applied an immature rat model of hyperthermia (HT)–induced FS. GABAAR‐mediated neurotransmission was studied using whole‐cell patch‐clamp recordings from dentate granule neurons in hippocampal slices within 6–9 days post‐HT. Key Findings: Frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs) were reduced in HT rats that had experienced seizures, whereas sIPSC amplitudes were enhanced. Whole‐cell GABA responses revealed a doubled GABAAR sensitivity in dentate granule cells from HT animals, compared to that of normothermic (NT) controls. Analysis of sIPSCs and whole‐cell GABA responses showed similar kinetics in postsynaptic GABAARs of HT and NT rats. quantitative real‐time polymerase chain reaction (qPCR) experiments indicated changes in DG GABAAR subunit expression, which was most pronounced for the α3 subunit. Significance: The data support the hypothesis that FS persistently alter neuronal excitability.  相似文献   

5.
The volatile anesthetic sevoflurane, which is widely used in pediatric surgery, has proposed effects on GABAA receptor‐mediated extrasynaptic tonic inhibition. In the developing striatum, medium‐sized spiny projection neurons have tonic GABA currents, which function in the excitatory/inhibitory balance and maturation of striatal neural circuits. In this study, we examined the effects of sevoflurane on the tonic GABA currents of medium spiny neurons in developing striatal slices. Sevoflurane strongly increased GABAA receptor‐mediated tonic conductance at postnatal days 3–35. The antagonist of the GABA transporter‐1, 1‐[2‐[[(diphenylmethylene)imino]oxy]ethyl]‐1,2,5,6‐tetrahydro‐3‐pyridinecarboxylic acid hydrochloride further increased tonic GABA conductance during the application of sevoflurane, thereby increasing the total magnitude of tonic currents. Both GABA (5 μm ) and 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]pyridine‐3‐ol hydrochloride, the δ‐subunit‐containing GABAA receptor agonist, induced tonic GABA currents in medium spiny neurons but not in cholinergic neurons. However, sevoflurane additively potentiated the tonic GABA currents in both cells. Interestingly, 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]pyridine‐3‐ol hydrochloride‐sensitive neurons made a large current response to sevoflurane, indicating the contribution of the δ‐subunit on sevoflurane‐enhanced tonic GABA currents. Our findings suggest that sevoflurane can affect the tone of tonic GABA inhibition in a developing striatal neural network.  相似文献   

6.
GABA (γ‐aminobutyric acid) can mediate inhibition via pre‐ and post/extrasynaptic GABA receptors. In this paper we demonstrate potentially post/extrasynaptic GABAB receptor‐dependent tonic inhibition in L2/3 pyramidal cells of rat medial prefrontal cortex (mPFC) in vitro. First, we show via voltage‐clamp experiments the presence of a tonic GABAB receptor‐dependent outward current in these neurons. This GABABergic current could be induced by ambient GABA when present at sufficient concentrations. To increase ambient GABA levels in the usually silent slice preparation, we amplified network activity and hence synaptic GABA release with a modified artificial cerebrospinal fluid. The amplitude of tonic GABAB current was similar at different temperatures. In addition to the tonic GABAB current, we found presynaptic GABAB effects, GABAB‐mediated inhibitory postsynaptic currents and tonic GABAA currents. Second, we performed current‐clamp experiments to evaluate the functional impact of GABAB receptor‐mediated inhibition in the mPFC. Activating or inactivating GABAB receptors led to rightward (reduction of excitability) or leftward (increase of excitability) shifts, respectively, of the input–output function of mPFC L2/3 pyramidal cells without effects on the slope. Finally, we showed in electrophysiological recordings and epifluorescence Ca2+‐imaging that GABAB receptor‐mediated tonic inhibition is capable of regulating network activity. Blocking GABAB receptors increased the frequency of excitatory postsynaptic currents impinging on a neuron and prolonged network upstates. These results show that ambient GABA via GABAB receptors is powerful enough to modulate neuronal excitability and the activity of neural networks.  相似文献   

7.
Background Excessive greater splanchnic nerve (GSN) activation contributes to the progression of gastric ischemia‐reperfusion (GI‐R) injury. This study was designed to investigate the protective mechanism of cerebellar fastigial nucleus (FN) stimulation against GI‐R injury. Methods The GI‐R injury model was induced in rats by clamping the celiac artery for 30 min, and then reperfusion for 30 min, 1, 3, 6, or 24 h, respectively. Key Results Microinjection of l ‐Glu (3, 6, 12 μg) into the FN dose‐dependently attenuated GI‐R injury and GSN activity. In addition, there was an enhancement of gastric mucosal blood flow in GI‐R rats. Pretreatment with the glutamic acid decarboxylase antagonist into the FN, the GABAA receptor antagonist into the lateral hypothalamic area or lesion of superior cerebellar peduncle all reversed the protective effects of the FN stimulation. Furthermore, the FN stimulation reduced the TUNEL‐positive gastric mucosal cell and Bax‐positive gastric mucosal cell in GI‐R rats. Conclusions & Inferences These results indicate that the protective effects of the FN stimulation against GI‐R injury may be mediated by attenuation of the excessive GSN activation, gastric mucosal cell apoptosis, and Bax expression in GI‐R rats.  相似文献   

8.
Parallel fiber synapses in the cerebellum express a wide range of presynaptic receptors. However, presynaptic receptor expression at individual parallel fiber synapses is quite heterogeneous, suggesting physiological mechanisms regulate presynaptic receptor expression. We investigated changes in presynaptic GABAB receptors at parallel fiber‐stellate cell synapses in acute cerebellar slices from juvenile mice. GABAB receptor‐mediated inhibition of excitatory postsynaptic currents (EPSCs) is remarkably diverse at these synapses, with transmitter release at some synapses inhibited by >50% and little or no inhibition at others. GABAB receptor‐mediated inhibition was significantly reduced following 4 Hz parallel fiber stimulation but not after stimulation at other frequencies. The reduction in GABAB receptor‐mediated inhibition was replicated by bath application of forskolin and blocked by application of a PKA inhibitor, suggesting activation of adenylyl cyclase and PKA are required. Immunolabeling for an extracellular domain of the GABAB2 subunit revealed reduced surface expression in the molecular layer after exposure to forskolin. GABAB receptor‐mediated inhibition of action potential evoked calcium transients in parallel fiber varicosities was also reduced following bath application of forskolin, confirming presynaptic receptors are responsible for the reduced EPSC inhibition. These data demonstrate that presynaptic GABAB receptor expression can be a plastic property of synapses, which may compliment other forms of synaptic plasticity. This opens the door to novel forms of receptor plasticity previously confined primarily to postsynaptic receptors.  相似文献   

9.
10.
The development of the hypothalamic paraventricular nucleus (PVN) involves several factors that work together to establish a cell group that regulates neuroendocrine functions and behaviors. Several molecular markers were noted within the developing PVN, including estrogen receptors (ER), neuronal nitric oxide synthase (nNOS), and brain‐derived neurotrophic factor (BDNF). By contrast, immunoreactive γ‐aminobutyric acid (GABA) was found in cells and fibers surrounding the PVN. Two animal models were used to test the hypothesis that GABA works through GABAA and GABAB receptors to influence the development of the PVN. Treatment with bicuculline to decrease GABAA receptor signaling from embryonic day (E) 10 to E17 resulted in fewer cells containing immunoreactive (ir) ERα in the region of the PVN vs. control. GABABR1 receptor subunit knockout mice were used to examine the PVN at P0 without GABAB signaling. In female but not male GABABR1 subunit knockout mice, the positions of cells containing ir ERα shifted from medial to lateral compared with wild‐type controls, whereas the total number of ir ERα‐containing cells was unchanged. In E17 knockout mice, ir nNOS cells and fibers were spread over a greater area. There was also a significant decrease in ir BDNF in the knockout mice in a region‐dependent manner. Changes in cell position and protein expression subsequent to disruption of GABA signaling may be due, in part, to changes in nNOS and BDNF signaling. Based on the current study, the PVN can be added as another site where GABA exerts morphogenetic actions in development. J. Comp. Neurol. 518:2710–2728, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The effects of the GABA analogues, cis‐ and trans‐4‐aminocrotonic acid (ACA) on GABAA receptor function and GABA uptake, together with the presence of ρ‐1 subunit mRNA and putative GABAC receptors, were studied in primary cultures of neocortical neurons and cerebellar granule cells. Both isomers induced a Cl influx, which was inhibited by bicuculline, t‐butylbicyclophosphorothionate (TBPS), picrotoxinin (PTX), and γ‐hexachlorocyclohexane (γ‐HCH or lindane). [3H]‐flunitrazepam binding was also increased by both isomers and this increase was inhibited by bicuculline. In neocortical neurons, the trans‐isomer completely inhibited the [3H]GABA uptake, whereas the cis‐isomer produced only a 25% inhibition at the highest concentration used. The possible presence of GABAC receptors was investigated only in neocortical cultures by using RT‐PCR in order to detect the presence of the mRNA encoding the ρ‐1 subunit which assembles to form homooligomeric Cl channels. The results presented here show that ρ‐1 subunits, and thus GABAC receptors, may represent a very minor population of GABA receptors in these neuronal preparations. We conclude that both GABA analogues may act as agonists at the GABAA receptors, although with very different potencies. J. Neurosci. Res. 57:95–105, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
We have previously reported that GABA reverses the neuronotoxic effects of ethanol in neuroblast-enriched cultures derived from 3-day-old whole chick embryo (E3WE). In the present study, we examined the effects of GABA agonists and antagonists on morphological growth patterns and on cholinergic neuronal phenotypic expression, using choline acetyltransferase (ChAT) activity as a marker. E3WE neuroblast-enriched cultures showed positive immunoreactivity for neurofilament and as previously reported, control cultures exhibited the characteristic pattern of outgrowth of neurites of varying thickness radiating from the aggregates. In contrast, cultures grown in ethanol consisted of neuronal aggregates lacking fasciculation but having a complex network of individual thin neurites. Both GABA and GABAA agonist muscimol enhanced neuritic fasciculation and arborization in control and ethanol-treated cultures, and this growth enhancement was inhibited by GABAA antagonist bicuculline. No effects were noted with GABAB agonist baclofen. GABA increased ChAT activity in E3WE control cultures, as previously reported. A similar effect was seen with GABAA agonist muscimol, but not with GABAB agonist baclofen. However, the GABA effect was not apparent in the presence of GABAB antagonist phaclofen. Thus, it appears that the cholinotrophic effects of GABA are mediated by both GABAA and GABAB receptors. In ethanol-treated cultures the already-reported ChAT decline was reversed by GABA and muscimol, but not by baclofen. Moreover, the GABA effect in ethanol-treated cultures was not antagonized by GABAB antagonist phaclofen, suggesting that the GABA effect was mediated by a GABAA receptor. We conclude from these findings that the cholinotrophic effects of GABA are mediated by GABAA and GABAB receptors, while the rescuing effects of GABA in the ethanol-treated cultures are mediated via GABAA receptors. © 1996 Wiley-Liss, Inc.  相似文献   

13.
γ‐Aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in adult mammalian brain, mediating its actions chiefly via a pentameric chloride ion channel, the GABAA receptor. Nineteen different subunits (α1‐6, β1‐3, γ1‐3, δ, ε, π, θ, ρ1‐3) can give rise to multiple receptor subtypes that are the site of action of many clinically important drugs. In the developing brain, however, GABAA receptors mediate excitatory actions due to an increased chloride concentration within neurons and seem to control cell proliferation, migration, differentiation, synapse maturation, and cell death. Little is known about the distribution of single subunits in the human brain. Here we describe developmental changes in the immunohistochemical distribution of four subunits (α1, α2, α3, and γ2) in the human rhombencephalon. The γ2 was the most abundant subunit in all rhombencephalic structures during development and in adults, whereas α subunits showed a structure‐ and age‐characteristic distribution. The α1 was expressed prenatally in the molecular and Purkinje cell layer, but only postnatally in the granule cell layer and the dentate nucleus. Expression was completely absent in the inferior olivary nucleus. The α2 gradually increased during development, showing some layer specificity in the cerebellar cortex. The α3‐immunoreactivity in the cerebellar cortex was relatively weak, but it was abundantly observed in different cell populations in the subcortical cerebellar structures. Structure‐ and age‐characteristic colocalization between subunits during development suggests differences in GABAA receptor composition. Interestingly, subunit expression in several instances differed between human and rodent brain, underlining the importance of immunohistochemical studies in humans. J. Comp. Neurol. 524:1805–1824, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
15.
Lateral habenula (LHb) hyperactivity plays a pivotal role in the emergence of negative emotional states, including those occurring during withdrawal from addictive drugs. We have previously implicated cocaine‐driven adaptations at synapses from the entopeduncular nucleus (EPN) to the LHb in this process. Specifically, ionotropic GABAA receptor (R)‐mediated neurotransmission at EPN‐to‐LHb synapses is reduced during cocaine withdrawal, due to impaired vesicle filling. Recent studies have shown that metabotropic GABABR signaling also controls LHb activity, although its role at EPN‐to‐LHb synapses during drug withdrawal is unknown. Here, we predicted that cocaine treatment would reduce GABABR‐mediated neurotransmission at EPN‐to‐LHb synapses. We chronically treated mice with saline or cocaine, prepared brain slices after two days of withdrawal and performed voltage‐clamp recordings from LHb neurons whilst optogenetically stimulating EPN terminals. Compared with controls, mice in cocaine withdrawal exhibited reduced GABAAR‐mediated input to LHb neurons, and a reduced occurrence of GABABR‐signaling at EPN‐to‐LHb synapses. We then assessed the underlying mechanism of this decrease. Application of GABABR agonist baclofen evoked similar postsynaptic responses in EPN‐innervated LHb neurons in saline‐ and cocaine‐treated mice. Release probability at EPN‐to‐LHb GABAergic synapses was also comparable between groups. However, incubating brain slices in glutamine to facilitate GABA vesicle filling, normalized GABABR‐currents at EPN‐to‐LHb synapses in cocaine‐treated mice. Overall, we show that during cocaine withdrawal, together with reduced GABAAR transmission, also GABABR‐mediated inhibitory signaling is diminished at EPN‐to‐LHb synapses, likely via the same presynaptic deficit. In concert, these alterations are predicted to contribute to the emergence of drug withdrawal symptoms, facilitating drug relapse.  相似文献   

16.
Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate‐level noise delayed the emergence of adult‐like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical‐period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABAA receptor subunit β3 in the auditory cortex after noise rearing. Our results show that continuous moderate‐level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABAAβ3. Furthermore, noise rearing also induced a significant decrease in the level of GABAA receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABAAβ3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
In the visual cortex, synaptic plasticity is very high during the early developmental stage known as the critical period and declines with development after the critical period. Changes in the properties of N‐methyl‐D‐aspartate receptor (NMDAR) and γ‐aminobutyric acid type A receptor (GABAAR) have been suggested to underlie the changes in the characteristics of plasticity. However, it is largely unknown how the changes in the two receptors interact to regulate synaptic plasticity. The present study investigates the changes in the properties of NMDAR and GABAAR from 3 to 5 weeks of age in layer 2/3 pyramidal neurons of the rat visual cortex. The impact of these changes on the characteristics of long‐term potentiation (LTP) is also investigated. The amplitude and decay time constant of GABAAR‐mediated currents increased during this period. However, the decay time constant of NMDAR‐mediated currents decreased as a result of the decrease in the proportion of the GluN2B subunit‐mediated component. Induction of NMDAR‐dependent LTP at 3 weeks depended on the GluN2B subunit, but LTP at 5 weeks did not. Enhancement of GABAAR‐mediated inhibition suppressed the induction of LTP only at 5 weeks. However, partial inhibition of the GluN2B subunit with a low concentration of ifenprodil allowed the GABAAR‐mediated suppression of LTP at 3 weeks. These results suggest that changes in the properties of NMDAR‐ and GABAAR‐mediated synaptic transmission interact to determine the characteristics of synaptic plasticity during the critical period in the visual cortex. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the central nervous system. Its role is especially prominent in the cerebellum, where most neuron types are GABAergic. However, little is known about its function in the cerebellum of teleost fish, which is only partly homologous to its mammalian counterpart. Here, we investigated the expression and distribution of GABA, the GABA-synthesizing enzyme glutamic acid decarboxylase 65 (GAD65), and the receptor subunits GABAAα1 and GABAB1 in the cerebellum of adult zebrafish. GABA and GAD65 presented a similar expression pattern that comprised the molecular layer, Purkinje cells and groups of presumed Golgi cells in the granular layer, both in the cerebellar corpus and valve. GABAA receptor subunits are principally found on fine radial fibers in the molecular layer, while GABAB receptor subunits localized prominently to the cell bodies of Purkinje cells in the ganglionic layer, and to their dendrites that span the molecular layer. These results are compared to the expression of the GABAergic system in the mammalian cerebellum.  相似文献   

19.
Rundown is ubiquitously seen in response to repetitive activation of receptor or ion channels as a use‐dependent down‐regulation through various mechanisms. In contrast to AMPA receptors, γ‐aminobutyric acid type A receptor (GABAAR) are believed to display no rapid use‐dependent down‐regulation. We report here a rapid use‐dependent down‐regulation of GABAAR in primary sensory neurons of rat mesencephalic trigeminal nucleus (MTN), which express synaptic GABAARs in addition to extrasynaptic ones, unlike other primary sensory neurons. When muscimol was repetitively puff‐applied to an MTN neuron every 2 min before, during, and after the muscimol bath application for 5 min, both the GABAA responses obtained under both current‐ and voltage‐clamp conditions were almost completely depressed during the bath application. However, the former and latter GABAA responses recovered to 26% ± 7% and 36% ± 7% of their control amplitudes, respectively, 15 min after washout of the bath‐applied muscimol. By contrast, when examined in the presence of chelerythrine, a protein kinase C (PKC) inhibitor, together with a stringent chelation of intracellular Ca2+, the puff responses were almost completely recovered, whereas those were recovered to 40–60% of the control by either chelerythrine or EGTA alone. A phosphatidylinositol 3‐kinase inhibitor (PI3K), wortmannin, which blocks various signal transductions, including vesicular trafficking, significantly enhanced the rundown of the puff responses examined every 2 min. These findings indicate that the rundown of GABAA response in MTN neurons is mediated by the use‐dependent down‐regulation of GABAAR, which is reversed by PKC inhibition together with intracellular Ca2+ chelation, while being facilitated by PI3K inhibition. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
In supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs), γ‐GABA, via activation of GABAA receptors (GABAARs), mediates persistent tonic inhibitory currents (Itonic), as well as conventional inhibitory postsynaptic currents (IPSCs, Iphasic). In the present study, we examined the functional significance of Itonic in SON MNCs challenged by 24‐h water deprivation (24WD). Although the main characteristics of spontaneous IPSCs were similar in 24WD compared to euhydrated (EU) rats, Itonic, measured by bicuculline (BIC)‐induced Iholding shifts, was significantly smaller in 24WD compared to EU rats (P < 0.05). Propofol and diazepam prolonged IPSC decay time to a similar extent in both groups but induced less Itonic in 24WD compared to EU rats, suggesting a selective decrease in GABAA receptors mediating Itonic over Iphasic in 24WD rats. THIP (4,5,6,7‐tetrahydroisoxazolo[5,4‐c]pyridin‐3‐ol), a preferential δ subunit agonist, and L‐655,708, a GABAA receptor α5 subunit selective imidazobenzodiazepine, caused a significantly smaller inward and outward shift in Iholding, respectively, in 24WD compared to EU rats (P < 0.05 in both cases), suggesting an overall decrease in the α5 subunit‐containing GABAARs and the δ subunit‐containing receptors mediating Itonic in 24WD animals. Consistent with a decrease in 24WD Itonic, bath application of GABA induced significantly less inhibition of the neuronal firing activity in 24WD compared to EU SON MNCs (P < 0.05). Taken together, the results of the present study indicate a selective decrease in GABAARs functions mediating Itonic as opposed to those mediating Iphasic in SON MNCs, demonstrating the functional significance of Itonic with respect to increasing neuronal excitability and hormone secretion in 24WD rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号