首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low MR sensitivity of the sodium nucleus and its low concentration in the human body constrain acquisition time. The use of both single‐quantum and triple‐quantum sodium imaging is, therefore, restricted. In this work, we present a novel MRI sequence that interleaves an ultra‐short echo time radial projection readout into the three‐pulse triple‐quantum preparation. This allows for simultaneous acquisition of tissue sodium concentration weighted as well as triple‐quantum filtered images. Performance of the sequence is shown on phantoms. The method is demonstrated on six healthy informed volunteers and is applied to three cases of brain tumors. A comparison with images from tumor specific O‐(2‐[18F]fluoroethyl)‐L ‐tyrosine positron emission tomography and standard MR images is presented. The combined information of the triple‐quantum‐filtered images with single‐quantum images may enable a better understanding of tissue viability. Future studies can benefit from the evaluation of both contrasts with shortened acquisition times. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo imaging was recently introduced, producing high‐resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted‐averaging‐based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal‐to‐noise ratio‐optimized version of the phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three‐step prescribed signal evolution while those in the second acquisition are calculated using a two‐step pseudo‐steady state signal transition with a high flip‐angle pseudo‐steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip‐angle pseudo‐steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal‐to‐noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid‐attenuated imaging. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
A technique for generation of positive contrast near susceptibility alterations utilizing echo‐shifts in k‐space is introduced, based on altered Larmor‐frequencies and resulting phase‐shifts accumulating during the echo‐time at the site of local magnetic field gradients. 3D gradient‐echo raw‐data is acquired and weighted with an inverse Hanning filter. The filter partly suppresses central raw‐data points, while maintaining outer areas. Reconstruction of the filtered raw‐data results in images where pixels with apparent magnetic field gradients are highlighted against homogeneous pixels. Further processing steps are introduced to remove remaining intensities in the homogeneous parts of the filtered image. Feasibility is shown by an agar phantom containing magnetically labeled cells, with concentrations of 25, 50, 100, and 250 cells/μL, and by images of the human head. The technique allows detection of echo‐shifted pixels with automatic suppression of magnetically homogeneous parts while keeping post‐processing time short. Fewer than four labeled cells per pixel were clearly displayed with positive contrast. Application to the human head shows bright veins and complete suppression of homogeneous regions. The presented technique has high potential for specific detection of low concentrations of labeled cells or susceptibility altered regions in vivo with positive contrast, whereas areas with low spin density are not highlighted. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Functional MRI (fMRI) based on the detection of intermolecular double‐quantum coherences (iDQC) has previously been shown to provide pronounced activation signal. For fMRI in small animals at very high magnetic fields, the essential fast gradient echo‐based readout methods become problematic. Here, rapid intermolecular double‐quantum coherence (iDQC) imaging was implemented, combining the iDQC preparation sequence with a Turbo spin echo‐like readout. Four‐step phase cycling and a novel intensity‐ordered k‐space encoding scheme with separate acquisition of odd and even echoes were essential to optimize signal to noise ratio efficiency. Compared with a single echo readout of iDQC signal, acceleration of factor 16 was achieved in phantoms using the novel method at 17.6 Tesla. In vivo, echo trains consisting of 32 echoes were possible and images of the mouse brain were obtained in 30 s. The blood oxygen level dependent (BOLD) effect in the mouse brain upon change of breathing gas was observed as average signal change of (6.3 ± 1.1)% in iDQC images. Signal changes in conventional multi spin echo images were (4.4 ± 2.3)% and (8.3 ± 3.8)% with gradient echo methods. Combination of T2*‐weighting with the fast iDQC sequence may yield higher signal changes than with either method alone, and establish fast iDQC imaging a robust tool for high field fMRI in small animals. Magn Reson Med 60:850–859, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Diffusion‐weighted MRI is an intrinsically low signal‐to‐noise ratio application due to the application of diffusion‐weighting gradients and the consequent longer echo times. The signal‐to‐noise ratio worsens with increasing image resolution and diffusion imaging methods that use multiple and higher b‐values. At low signal‐to‐noise ratios, standard magnitude reconstructed diffusion‐weighted images are confounded by the existence of a rectified noise floor, producing poor estimates of diffusion metrics. Herein, we present a simple method of rectified noise floor suppression that involves phase correction of the real data. This approach was evaluated for diffusion‐weighted imaging data, obtained from ethanol and water phantoms and the brain of a healthy volunteer. The parameter fits from monoexponential, biexponential, and stretched‐exponential diffusion models were computed using phase‐corrected real data and magnitude data. The results demonstrate that this newly developed simple approach of using phase‐corrected real images acts to reduce or even suppress the confounding effects of a rectified noise floor, thereby producing more accurate estimates of diffusion parameters. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
This study was undertaken to qualitatively and quantitatively compare fast MRI of hips with and without parallel imaging using SENSE (sensitivity encoding). 27 patients underwent MRI of the hips with coronal T1 turbo spin echo (TSE) (repetition time (TR) 500 ms, effective echo time (TEeff) 15 ms, Turbo Factor 4), coronal IR-TSE (TR 2000 ms, TEeff 30 ms, inversion time (TI) 160 ms, Turbo Factor 20) and axial T2 TSE (TR 3000 ms, TEeff 80 ms, Turbo Factor 20) weighted images acquired with and without SENSE with a reduction factor of 2. Conventional imaging was performed in 8 min and 36 s. Images acquired with SENSE were acquired in 5 min and 31 s without a discernible reduction in image quality or a significant quantitative reduction in image signal to noise ratio, contrast to noise ratio or edge enhancement.  相似文献   

7.
Multiple‐quantum filtered pulse sequences simplify overlapping metabolite spectra by the elimination of peaks from uncoupled spin species, most notably from methyl groups and water, and the minimization of unwanted coupled‐spin peaks. However, it is shown in this study that a significant contaminant water signal can pass through this family of filters in the form of intermolecular multiple‐quantum coherences. An imaging evaluation of a single‐voxel multiple quantum filter experiment confirms that the water contamination is excited from outside of the voxel of interest, thus having an increased potential for broad spectral contamination. Phantom and in vivo experiments at 3.0 T are used to illustrate, first, significant water contamination of a single‐voxel double quantum filter experiment optimized for the observation of glutamate, and second, the elimination of the unwanted water signal with conventional phase cycling and optimized filter gradient orientations. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
While most diffusion‐weighted imaging (DWI) is acquired using single‐shot diffusion‐weighted spin‐echo echo‐planar imaging, steady‐state DWI is an alternative method with the potential to achieve higher‐resolution images with less distortion. Steady‐state DWI is, however, best suited to a segmented three‐dimensional acquisition and thus requires three‐dimensional navigation to fully correct for motion artifacts. In this paper, a method for three‐dimensional motion‐corrected steady‐state DWI is presented. The method uses a unique acquisition and reconstruction scheme named trajectory using radially batched internal navigator echoes (TURBINE). Steady‐state DWI with TURBINE uses slab‐selection and a short echo‐planar imaging (EPI) readout each pulse repetition time. Successive EPI readouts are rotated about the phase‐encode axis. For image reconstruction, batches of cardiac‐synchronized readouts are used to form three‐dimensional navigators from a fully sampled central k‐space cylinder. In vivo steady‐state DWI with TURBINE is demonstrated in human brain. Motion artifacts are corrected using refocusing reconstruction and TURBINE images prove less distorted compared to two‐dimensional single‐shot diffusion‐weighted‐spin‐EPI. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Conventional T2‐weighted turbo/fast spin echo imaging is clinically accepted as the most sensitive method to detect brain lesions but generates a high signal intensity of cerebrospinal fluid (CSF), yielding diagnostic ambiguity for lesions close to CSF. Fluid‐attenuated inversion recovery can be an alternative, selectively eliminating CSF signals. However, a long time of inversion, which is required for CSF suppression, increases imaging time substantially and thereby limits spatial resolution. The purpose of this work is to develop a phase‐sensitive, dual‐acquisition, single‐slab, three‐dimensional, turbo/fast spin echo imaging, simultaneously achieving both conventional T2‐weighted and fluid‐attenuated inversion recovery–like high‐resolution whole‐brain images in a single pulse sequence, without an apparent increase of imaging time. Dual acquisition in each time of repetition is performed, wherein an in phase between CSF and brain tissues is achieved in the first acquisition, while an opposed phase, which is established by a sequence of a long refocusing pulse train with variable flip angles, a composite flip‐down restore pulse train, and a short time of delay, is attained in the second acquisition. A CSF‐suppressed image is then reconstructed by weighted averaging the in‐ and opposed‐phase images. Numerical simulations and in vivo experiments are performed, demonstrating that this single pulse sequence may replace both conventional T2‐weighted imaging and fluid‐attenuated inversion recovery. Magn Reson Med 63:1422–1430, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Spin‐echo‐based pulse sequences are desirable for the application of high‐resolution imaging of trabecular bone but tend to involve high‐power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal‐to‐noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three‐dimensional, fast spin‐echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab‐selective excitation pulse, low‐power nonselective refocusing pulses, and phase cycling to cancel undesired out‐of‐slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss. Magn Reson Med 63:719–727, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.

Purpose:

To extend susceptibility weighted imaging (SWI) to multiple echoes with an adapted homodyne filtering of phase images for the computation of venograms with improved signal to noise ratio (SNR) and contrast to noise ratio (CNR) and to produce high resolution maps of R2* relaxation.

Materials and Methods:

Three‐dimensional multi echo gradient echo data were acquired with five equidistant echoes ranging from 13 to 41 ms. The phase images of each echo were filtered with filter parameters adjusted to the echo time, converted into a phase mask, and combined with the corresponding magnitude images to obtain susceptibility weighted images. The individual images were then averaged. Conventional single echo data were acquired for comparison. Maps of R2* relaxation rates were computed from the magnitude data. Field maps derived from the phase data were used to correct R2* for the influences from background inhomogeneities of the static magnetic field.

Results:

Compared with the single echo images, the combined images had an increase in SNR by 46% and an improvement in CNR by 34 to 80%, improved visibility of small venous vessels and reduced blurring along the readout direction. The R2* values of different tissue types are in good agreement with values from the literature.

Conclusion:

Acquisition of SWI with multiple echoes leads to an increase in SNR and CNR and it allows the computation of high resolution maps of R2* relaxation. J. Magn. Reson. Imaging 2010;31:185–191. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The poor prognosis for patients with high‐grade glioma is partly due to the invasion of tumor cells into surrounding brain tissue. The goal of the present work was to develop a mouse model of glioma that included the potential to track cell invasion using MRI by labeling GL261 cells with iron oxide contrast agents prior to intracranial injection. Two types of agents were compared with several labeling schemes to balance between labeling with sufficient iron to curb the dilution effect of cell division while avoiding overwhelming signal loss that could prevent adequate visualization of tumor boundaries. The balanced steady‐state free precession (bSSFP) pulse sequence was evaluated for its suitability for imaging glioma tumors and compared to T2‐weighted two‐dimensional fast spin echo (FSE) and T1‐weighted spoiled gradient recalled echo (SPGR) at 3 T in terms of signal‐to‐noise ratio and contrast‐to‐noise ratio efficiencies. Ultimately, a three‐dimensional bSSFP protocol consisting of a set of two images with complementary contrasts was developed, allowing excellent tumor visualization with minimal iron contrast when using pulse repetition time = 6 ms and α = 40°, and extremely high sensitivity to iron when using pulse repetition time = 22 ms and α = 20°. Quantitative histologic analysis validated that the strong signal loss seen in balanced steady state free precession pulse sequence images of iron‐loaded tumors correlated well with the presence of iron. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
A modification of the Stejskal‐Tanner diffusion‐weighting preparation with a single refocusing RF pulse is presented which involves three gradient lobes that can be adjusted to null eddy currents with any given decay rate to reduce geometric distortions in diffusion‐weighted echo‐planar imaging (EPI). It has a very similar compensation performance as the commonly used double‐spin‐echo preparation but (i) is less sensitive to flip angle imperfections, e.g. along the slice profile, and B1 inhomogeneities and (ii) can yield shorter echo times for moderate b values, notably for longer echo trains as required for higher spatial resolution. It therefore can provide an increased signal‐to‐noise ratio as is simulated numerically and demonstrated experimentally in water phantoms and the human brain for standard EPI (2.0 × 2.0 mm2) and high‐resolution EPI of inner field‐of‐views using 2D‐selective RF excitations (0.5 × 1.0 mm2). Thus, the presented preparation may help to overcome current limitations of diffusion‐weighted EPI, in particular at high static magnetic fields. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
A variety of magnetic resonance imaging acoustic radiation force imaging (MR‐ARFI) pulse sequences as the means for image guidance of focused ultrasound therapy have been recently developed and tested ex vivo and in animal models. To successfully translate MR‐ARFI guidance into human applications, ensuring that MR‐ARFI provides satisfactory image quality in the presence of patient motion and deposits safe amount of ultrasound energy during image acquisition is necessary. The first aim of this work was to study the effect of motion on in vivo displacement images of the brain obtained with 2D Fourier transform spin echo MR‐ARFI. Repeated bipolar displacement encoding configuration was shown less sensitive to organ motion. The optimal signal‐to‐noise ratio of displacement images was found for the duration of encoding gradients of 12 ms. The second aim was to further optimize the displacement signal‐to‐noise ratio for a particular tissue type by setting the time offset between the ultrasound emission and encoding based on the tissue response to acoustic radiation force. A method for measuring tissue response noninvasively was demonstrated. Finally, a new method for simultaneous monitoring of tissue heating during MR‐ARFI acquisition was presented to enable timely adjustment of the ultrasound energy aimed at ensuring the safety of the MR‐ARFI acquisition. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.

Purpose:

To investigate the impact of T2 relaxation of the carotid wall on measurements of its thickness.

Materials and Methods:

The common carotid artery wall was imaged using a spin echo sequence acquired at four echo times (17 ms to 68 ms) in 65 participants as part of VALIDATE study. Images were acquired transverse to the artery 1.5 cm proximal to the flow divider. Mean wall thickness, mean wall signal intensity, lumen area, and outer wall area were measured for each echo. Contours were also traced on the image from the fourth echo and then propagated to the images from the preceding echoes. This was repeated using the image from the first echo. Mean wall signal intensity measurements at the four echo times were fit to a mono‐exponential decay curve to derive the mean T2 relaxation time for each set of contours.

Results:

Mean wall thickness decreased with increasing echo time, with an average thickness reduction of 8.6% between images acquired at the first and last echo times (TE) (0.93 mm at TE 17 ms versus 0.85 mm at TE 68 ms, P < 0.001). Average T2 relaxation time of the carotid wall decreased by 3% when the smaller contours from the last echo were used, which excluded the outer‐most layer (54.3 ± 7.6 ms versus 52.7 ± 6.6 ms, P = 0.03).

Conclusion:

Carotid wall thickness measurements decrease with echo time as expected by the fast T2 relaxation time of the outer‐most layer, namely the adventitia. A short echo time is needed for thickness measurements to include adventitia, which plays an important role in plaque development. J. Magn. Reson. Imaging 2013;37:1493–1498. © 2012 Wiley Periodicals, Inc.  相似文献   

16.

Purpose

To assess the feasibility of half‐Fourier‐acquisition single‐shot turbo spin‐echo (HASTE) of the lung at 3 Tesla (T) using parallel imaging with a prototype of a 32‐channel torso array coil, and to determine the optimum acceleration factor for the delineation of intrapulmonary anatomy.

Materials and Methods

Nine volunteers were examined on a 32‐channel 3T MRI system using a prototype 32‐channel‐torso‐array‐coil. HASTE‐MRI of the lung was acquired at both, end‐inspiratory and end‐expiratory breathhold with parallel imaging (Generalized autocalibrating partially parallel acquisitions = GRAPPA) using acceleration factors ranging between R = 1 (TE = 42 ms) and R = 6 (TE = 16 ms). The image quality of intrapulmonary anatomy and subjectively perceived noise level was analyzed by two radiologists in consensus. In addition quantitative measurements of the signal‐to‐noise ratio (SNR) of HASTE with different acceleration factors were assessed in phantom measurements.

Results

Using an acceleration factor of R = 4 image blurring was substantially reduced compared with lower acceleration factors resulting in sharp delineation of intrapulmonary structures in expiratory scans. For inspiratory scans an acceleration factor of 2 provided the best image quality. Expiratory scans had a higher subjectively perceived SNR than inspiratory scans.

Conclusion

Using optimized multi‐element coil geometry HASTE‐MRI of the lung is feasible at 3T with acceleration factors up to 4. Compared with nonaccelerated acquisitions, shorter echo times and reduced image blurring are achieved. Expiratory scanning may be favorable to compensate for susceptibility associated signal loss at 3T. J. Magn. Reson. Imaging 2009;30:541–546. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The selective multiple quantum coherence technique is combined with a read gradient to accelerate the measurement of a specific scalar‐coupled metabolite. The sensitivities of the localization using pure phase encoding and localization with the read gradient are compared in experiments at high magnetic field strength (17.6 T). Multiple spin‐echoes of the selective multiple quantum coherence edited metabolite are acquired using frequency‐selective refocusing of the specified molecule group. The frequency‐selective refocusing does not affect the J‐modulation of a coupled spin system, and the echo time is not limited to a multiple of 1/J to acquire pure in‐phase or antiphase signal. The multiple echoes can be used to accelerate the metabolite imaging experiment or to measure the apparent transverse relaxation T2. A simple phase‐shifting scheme is presented, which enables the suppression of editing artifacts resulting from the multiple spin‐echoes of the water resonance. The experiments are carried out on phantoms, in which lactate and polyunsaturated fatty acids are edited, and in vivo on tumors, in which lactate content and T2 are imaged. The method is of particular interest when a fast and sensitive selective multiple quantum coherence editing is necessary, e.g., for spatial three dimensional experiments. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The measurement of full metabolic profiles at ultrahigh fields including low concentrated or fast‐relaxing metabolites is usually achieved by applying short echo time sequences. One sequence beside stimulated echo acquisition mode that was proposed in this regard is spin echo full intensity‐acquired localized spectroscopy. Typical problems that are still persistent for spin echo full intensity‐acquired localized spectroscopy are B1 inhomogeneities especially for signal acquisition with surface coils and chemical shift displacement artifacts due to limited B1 amplitudes when using volume coils. In addition, strong lipid contaminations in the final spectrum can occur when only a limited number of outer volume suppression pulses is used. Therefore, an adiabatic short echo time (= 19 ms) spin echo full intensity‐acquired localized spectroscopy semilocalization by adiabatic selective refocusing sequence is presented that is less sensitive to strong B1 variations and that offers increased excitation and refocusing pulse bandwidths than regular spin echo full intensity acquired localized spectroscopy. Furthermore, the existence of the systematic lipid artifact is identified and linked to unfavorable effects due to the preinversion localization pulse. A method to control this artifact is presented and validated in both phantom and in vivo measurements. The viability of the proposed sequence was further assessed for in vivo measurements by scanning 17 volunteers using a surface coil and moreover acquiring additional volume coil measurements. The results show well‐suppressed lipid artifacts, good signal‐to‐noise ratio, and reproducible fitting results in accordance with other published studies. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
Development of GRASE (gradient‐ and spin‐echo) pulse sequences for single‐shot 3D imaging has been motivated by physiologic studies of the brain. The duration of echo‐planar imaging (EPI) subsequences between RF refocusing pulses in the GRASE sequence is determinant of image distortions and susceptibility artifacts. To reduce these artifacts the regular Cartesian trajectory is modified to a circular trajectory in 2D and a cylindrical trajectory in 3D for reduced echo train time. Incorporation of “fly‐back” trajectories lengthened the time of the subsequences and proportionally increased susceptibility artifact but the unipolar readout gradients eliminate all ghost artifacts. The modified cylindrical trajectory reduced susceptibility artifact and distortion artifact while raising the signal‐to‐noise ratio in both phantom and human brain images. Magn Reson Med 60:976–980, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号