首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present the radiochemical synthesis of the novel compound [N‐methyl‐11C]methylene blue. The synthesis of [N‐methyl‐11C]methylene blue was accomplished by means of 11C‐methylation of commercially available Azure B using [11C]methyl trifluoromethanesulfonate ([11C]methyl triflate). Following purification [N‐methyl‐11C]methylene blue was obtained with a radiochemical purity greater than 97% in a 4–6% decay corrected radiochemical yield. The synthesis was completed in an average of 35 min following the end of bombardment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
[14C]‐N‐(6‐Chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5B ), an IKK inhibitor, was synthesized from [14C]‐barium carbonate in two steps in an overall radiochemical yield of 41%. The intermediate, [carboxyl‐14C]‐2‐methylnicotinic acid, was prepared by the lithiation and carbonation of 3‐bromo‐2‐methylpyridine. [13C4,D3]‐N‐(6‐chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5C ) was synthesized from [1,2,3,4‐13C4]‐ethyl acetoacetate and [D4]‐methanol in six steps in an overall yield of 2%. [13C4]‐2‐methylnicotic acid, was prepared by condensation of [13C4]‐ethyl 3‐aminocrotonate and acrolein, followed by hydrolysis with lithium hydroxide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A fast and convenient microwave assisted one‐pot synthesis of methyl‐[14C]‐isothiocyanate 4 was shown. The continued one‐pot synthesis with 4 to a highly refined material like [5‐14C]‐dimethylsulfanyltriazolepyridines 8 and 13 without any intermediate purification, six steps in the same pot from [14C]KCN. Oxidation of the sulfur provided access to triazole‐ethers upon reaction with alcohols. The triazole‐ethers, 15, were obtained at fair to good yields and specific activities above 2 GBq/mmol. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A convenient synthesis of chloramphenicol labelled with carbon‐14 in the dichloroacetyl group at the 1 position is described. It was prepared as part of a 4‐step sequence from [1 ‐ 14C] glycine and the product was purified by preparative HPLC. A radiochemical yield of 47% was obtained based on [1 ‐ 14C] glycine and the product had a specific activity of 0.47 mCi/mmol. The procedure can be employed for the synthesis of high specific activity [14C] chloramphenicol, labelled at 1, 2 or both the positions of dichloroacetyl group. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
[thiazolium‐2,2′‐14C2]‐SAR97276A, a bis(thiazolium) antimalarial development candidate, was synthesized from [14C]‐thiourea with an overall radiochemical yield of 15%. The synthetic route involves a modified procedure for the synthesis of [14C]‐sulfurol, also a key intermediate in thiamine synthesis, which was developed due to unlabelled chemistry proving irreproducible with the radiolabelled substrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Radio‐labelled coenzyme Q10, labelled at the 3′‐position with 14C, was synthesized starting from natural solanesol and ethyl [3‐14C] acetoacetate. The radiochemical yield was 8.0% from ethyl [3‐14C] acetoacetate. The specific radioactivity of the product was 44.8 μCi, 1.66 MBq/mg. The specific radioactivity and radiochemical purity are sufficiently high to enable us to use this labelled form of coenzyme Q10 in metabolic studies. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐[methyl11C]thymine ([11C]FMAU) [11C]‐ 1 was synthesised via a palladium‐mediated Stille coupling reaction of 1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐5‐(trimethylstannyl)uracil 2 with [11C]methyl iodide in a one‐pot procedure. The reaction conditions were optimized by screening various catalysts and solvents, and by altering concentrations and reaction temperatures. The highest yield was obtained using Pd2(dba)3 and P(o‐tolyl)3 in DMF at 130°C for 5 min. Under these conditions the title compound [11C]‐ 1 was obtained in 28±5% decay‐corrected radiochemical yield calculated from [11C]methyl iodide (number of experiments=7). The radiochemical purity was >99% and the specific radioactivity was 0.1 GBq/μmol at 25 min after end of bombardment. In a typical experiment 700–800 MBq of [11C]FMAU [11C]‐ 1 was obtained starting from 6–7 GBq of [11C]methyl iodide. A mixed 11C/13C synthesis to yield [11C]‐ 1 /(13C)‐ 1 followed by 13C‐NMR analysis was used to confirm the labelling position. The labelling procedure was found to be suitable for automation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
2‐[14C]‐N‐(6‐Chloro‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐3‐pyridinecarboxamide (9A , also referred to as [14C]‐PS‐1145) was synthesized from [14C]‐paraformaldehyde in five steps in an overall radiochemical yield of 15%. The key intermediate 1‐[14C]‐6‐chloro‐1,2,3,4‐tetrahydro‐β‐carboline was obtained by Pictet–Spengler cyclization of chlorotryptamine with [14C]‐paraformaldehyde. Similar reactions were conducted with tryptamine to address the generality of the methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Carbon‐14 labeled StraterraTM (Atomoxetine HCl, LY139603, (‐)‐N‐methyl‐3‐(2‐methylphenoxy)‐benzenepropanamine hydrochloride), a potent inhibitor of the presynaptic norepinephrine transporter, and two of its major metabolites were synthesized. The key component, S‐(+)‐3‐chloro‐l‐phenyl‐l‐propanol‐[1‐14C] was synthesized by Stille coupling of benzoyl chloride‐[carbonyl‐14C] with vinyl trin‐butylstannane, followed by HCl addition to the vinyl ketone, and asymmetric reduction of the ketone by Corey's CBS reagent. Mitsunobu reaction of this S‐(+)‐3‐chloro‐l‐phenyl‐l‐propanol‐[1‐14C] with various phenol derivatives, followed by converting the chloride to amines, gave desired products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
[carboxyl14C]Celivarone was synthesised from barium [14C]carbonate with overall radiochemical yields in the range 49–53%. The synthetic route involves [14C]carbonylation methodology, which both decreased the number of synthetic steps and increased the yields obtained from previous synthetic routes.  相似文献   

11.
Five hundred mCi of Potassium [14C]cyanide at a specific activity of 51 mCi/mmol was used to diastereoselectively introduce the carbon‐14 label into 1,6‐hexanedial via a thermodynamically controlled asymmetric Strecker reaction using (R)‐(‐)‐2‐phenylglycinol as the chiral auxiliary. The expected and predominant (R,S/S,R) diastereomer ( 2 ) was separated by preparative normal phase HPLC. The chiral auxiliary was removed by oxidation with lead tetraacetate and the resulting benzylimino nitrile exhaustively hydrolyzed in hydrochloric acid to give (S,S)‐2,7‐diamino[1,8‐14C2]suberic acid ( 6 ). Subsequent acylation with di‐tert‐butyldicarbonate gave the title compound ( 1 ) with a radiochemical purity of 95.5%, a specific activity of 113 mCi/mmol, and an enantiomeric purity of 95.5% e.e. To our knowledge this is the first report of the asymmetric Strecker methodology being applied to the synthesis of a carbon‐14 labeled amino acid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
[11C]Paraquat was synthesized by the reaction of [11C]methyl triflate with the mono‐triflate salt of 1‐methyl‐[4,4′]bipyridinyl. The product was selectively separated from the precursor by a microcolumn of Chelex 100 ion exchange resin. The method was applied to the synthesis of a variety of [N‐methyl‐11C]bisquaternary ammonium compounds. This is the first reported use of a chelating cation exchange resin for the selective purification of organic dications. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
[13CD3]‐TAK‐459 (1A), an HSP90 inhibitor, was synthesized from [13CD3]‐sodium methoxide in three steps in an overall yield of 29%. The key intermediate [13CD3]‐2‐methoxy‐6‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)pyridine was synthesized in two steps from 2,6‐dibromopyridine and stable isotope‐labeled sodium methoxide. [14C]‐TAK‐459 (1B) was synthesized from [14C(U)]‐guanidine hydrochloride in five steps in an overall radiochemical yield of 5.4%. The key intermediate, [14C]‐(R)‐2‐amino‐7‐(2‐bromo‐4‐fluorophenyl)‐4‐methyl‐7,8‐dihydropyrido[4,3‐d]pyrimidin‐5(6H)‐one, was prepared by microwave‐assisted condensation.  相似文献   

14.
A new approach for 11C–C bond formation via a Sonogashira‐like cross‐coupling reaction of terminal alkynes with [11C]methyl iodide was exemplified by the synthesis of 17α‐(3′‐[11C]prop‐1‐yn‐1‐yl)‐3‐methoxy‐3,17β‐estradiol. The LC‐purified title compound was obtained in decay‐corrected radiochemical yields of 27–47% (n=8) based on [11C]methyl iodide within 21–27 min after EOB. In a typical synthesis starting from 9.6 GBq [11C]methyl iodide, 1.87 GBq of 17α‐(3′‐[11C]prop‐1‐yn‐1‐yl)‐3‐methoxy‐3,17β‐estradiol was synthesized in radiochemical purity >99%. The specific radioactivity ranged between 10 and 19 GBq/µmol, and the labeling position was verified by 13C‐NMR analysis of the corresponding 13C‐labeled compound. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
14C‐Labelled myosmine ([2′‐14C]‐3‐(1‐pyrrolin‐2‐yl)pyridine) was synthesized for autoradiography studies starting from [carboxyl‐14C]‐nicotinic acid by initial esterification of the latter in the presence of 1,1,1‐triethoxyethane. Without any purification the ethyl nicotinate formed was directly reacted with N‐vinyl‐2‐pyrrolidinone in the presence of sodium hydride, yielding 14C‐labelled myosmine. The product was purified by silica gel column chromatography. The radiochemical yield was 15% and the specific activity 55.2 mCi/mmol. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis of the precursor for [11C]carfentanil and the precursor labelling with 11C have both been improved. The problem ‘bottleneck’ step in the carfentanil precursor synthesis, due to low chemical yield (14%) of intermediates nitrile into amide conversion, has been solved. Application of a H2O2/K2CO3/DMSO reaction method significantly increased the yield of this chemical transformation (up to 84%). A simple and straight‐forward synthesis of [11C]carfentanil was achieved by combining in‐loop methylation of the ammonia salt of the precursor by [11C]CH3I, using tetrabutylammonium hydroxide as a base, with a previously developed product purification procedure using a C2 extraction disc. A decay corrected yield with respect to [11C]CH3I of [11C]carfentanil was 64±12% (n=6) with the synthesis time of 21 min. The radiochemical purity was >98%. Comparatively high specific radioactivity of [11C]carfentanil [11.2±4.8 Ci/μmol (EOS, n=5)] was partially attributed to the use of [11C]methane target gas for production of carbon‐11 methyl iodide. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2‐Methyl‐1‐[11C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 μmol) were needed. 1‐Iodo‐2‐[11C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1‐iodo‐2‐[11C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11C]2‐methyl‐1‐propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/μmol at the end of synthesis. Altogether, the syntheses of 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol were achieved and applied as proof of their applicability.  相似文献   

18.
Human Factor Xa is a trypsin‐like serine protease, which serves a critical role in blood coagulation events. LY517717 is currently under clinical investigation as a Factor Xa inhibitor. To support the ADME studies, LY517717 was synthesized using D ‐phenylglycine with a carbon‐14 labeled carboxyl moiety. This key component, D ‐phenylglycine‐[carboxyl‐14C], was synthesized by a Strecker synthesis on benzaldehyde with potassium [14C]cyanide, followed by a resolution of DL ‐phenyl‐glycine methyl ester‐[carbonyl‐14C] with (+)‐tartaric acid in the presence of benzaldehyde. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Racemic (±) verapamil is a well characterized substrate for P‐glycoprotein (P‐gp). However, the in vivo pharmacokinetics and pharmacodynamics of both enantiomers are reported to be different. In the preparation of evaluation studies of both enantiomers in animals and humans, the purpose of the present study was to optimize and automate the synthesis of (R)‐ and (S)‐[11C]verapamil. (R)‐ and (S)‐[11C]verapamil were prepared from (R)‐ and (S)‐desmethyl‐verapamil, respectively, by methylation with no‐carrier added [11C]methyliodide or [11C]methyltriflate. Different conditions of the methylation reaction were studied: reaction time, temperature, base and solvent, and chemical form of the precursor using either the hydrochloric acid salt or the free base of the starting material. After optimization, the synthesis was fully automated using home‐made modules and performed according to GMP guidelines. Optimal yields of 60–70% for the methylation reaction were obtained using 1.5 mg of the free base of (R)‐ or (S)‐desmethyl‐verapamil in 0.5 ml of acetonitrile at 50°C for 5 min with [11C]methyltriflate as methylating agent. Under the same reaction conditions, but with a reaction temperature of 100°C, the radiochemical yield starting with [11C]methyliodide as methylation reagent was 40%. The specific activity of (R)‐ and (S)‐[11C]verapamil was >20 GBq/μmol and the radiochemical purity was >99% for both methods. The total synthesis time was 45 min. The automated high yield synthesis of (R)‐ and (S)‐[11C]verapamil provides the means for evaluating both enantiomers as in vivo tracers of P‐gp function. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Empagliflozin, (2S,3R,4R,5S,6R)‐2‐[4‐chloro‐3‐[[4‐[(3S)‐oxolan‐3‐yl]oxyphenyl]methyl]phenyl]‐6‐(hydroxymethyl)oxane‐3,4,5‐triol was recently approved by the FDA for the treatment of chronic type 2 diabetes mellitus. Herein, we report the synthesis of carbon‐13 and carbon‐14 labeled empagliflozin. Carbon‐13 labeled empagliflozin was prepared in five steps and in 34% overall chemical yield starting from the commercially available α‐D‐glucose‐[13C6]. For the radiosynthesis, the carbon‐14 atom was introduced in three different positions of the molecule. In the first synthesis, Carbon‐14 D‐(+)‐gluconic acid δ‐lactone was used to prepare specifically labeled empagliflozin in carbon‐1 of the sugar moiety in four steps and in 19% overall radiochemical yield. Carbon‐14 labeled empagliflozin with the radioactive atom in the benzylic position was obtained in eight steps and in 7% overall radiochemical yield. In the last synthesis carbon‐14 uniformly labeled phenol was used to give [14C]empagliflozin in eight steps and in 18% overall radiochemical yield. In all these radiosyntheses, the specific activities of the final compounds were higher than 53 mCi/mmol, and the radiochemical purities were above 98.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号