首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Balanced steady-state free precession (SSFP) techniques provide excellent contrast between myocardium and blood at a high signal-to-noise ratio (SNR). Hence, SSFP imaging has become the method of choice for assessing cardiac function at 1.5T. The expected improvement in SNR at higher field strength prompted us to implement SSFP at 3.0T. In this work, an optimized sequence protocol for cardiac SSFP imaging at 3.0T is derived, taking into account several partly adverse effects at higher field, such as increased field inhomogeneities, longer T(1), and power deposition limitations. SSFP contrast is established by optimizing the maximum amplitude of the radiofrequency (RF) field strength for shortest TR, as well as by localized linear or second-order shimming and local optimization of the resonance frequency. Given the increased SNR, sensitivity encoding (SENSE) can be employed to shorten breath-hold times. Short-axis, long-axis, and four-chamber cine views obtained in healthy adult subjects are presented, and three different types of artifacts are discussed along with potential methods for reducing them.  相似文献   

3.
The resolution in conventional BOLD FMRI is considerably lower than can be achieved with other MRI methods, and is insufficient for many important applications. One major difficulty in robustly improving spatial resolution is the poor image quality in BOLD FMRI, which suffers from distortions, blurring, and signal dropout. This work considers the potential for increased resolution with a new FMRI method based on balanced SSFP. This method establishes a blood oxygenation sensitive steady-state (BOSS) signal, in which the frequency sensitivity of balanced SSFP is used to detect the frequency shift of deoxyhemoglobin. BOSS FMRI is highly SNR efficient and does not suffer from image distortions or signal dropout, making this method an excellent candidate for high-resolution FMRI. This study presents the first demonstration of high-resolution BOSS FMRI, using an efficient 3D stack-of-segmented EPI readout and combined acquisition at multiple center frequencies. BOSS FMRI is shown to enable high-resolution FMRI data (1 x 1 x 2 mm(3)) in both visual and motor systems using standard hardware at 1.5 T. Currently, the major limitation of BOSS FMRI is its sensitivity to temporal and spatial field drift.  相似文献   

4.

Purpose

To analyze steady‐state signal distortions in interleaved balanced steady‐state free precession (bSSFP) caused by slightly unbalanced eddy‐current fields and develop a general strategy for mitigating these artifacts.

Materials and Methods

We considered bSSFP sequences in which two gradient waveforms are interleaved in a “groupwise” fashion, ie, each waveform is executed consecutively two or more times before switching to the other waveform (we let “N” count the number of times each waveform is executed consecutively). The steady‐state signal profile over the bSSFP passband was calculated using numerical Bloch simulations and measured experimentally in a uniform phantom. The proposed “grouped” interleaved bSSFP strategy was applied to cardiac velocity mapping using interleaved phase‐contrast imaging with N = 2 and N = 6 in one healthy volunteer.

Results

Simulation and phantom measurements show that signal distortions are systematically reduced with increasing grouping number N. For most tissues, significant suppression was achieved with N = 4, and increasing N beyond this value produced only marginal gains. However, signal distortions for blood remain relatively high even for N > 4. In vivo cardiac velocity mapping using interleaved phase‐contrast imaging with N = 6 demonstrated reduced image artifact levels compared to the N = 2 acquisition.

Conclusion

Gradient waveform “grouping” offers a simple and general strategy for mitigating steady‐state eddy‐current distortions in bSSFP sequences that interleave two different gradients. Blood exhibits significant distortion even with “grouping,” which is a major obstacle for cardiovascular bSSFP approaches that interleave multiple gradient waveforms. The grouping concept may also benefit applications that acquire images during the transient approach to steady state. J. Magn. Reson. Imaging 2009;29:745–750. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Magnetization transfer imaging (MTI) by means of MRI exploits the mobility of water molecules in tissue and offers an alternative contrast mechanism beyond the more commonly used mechanisms based on relaxation times. A cardiac MTI method was implemented on a commercially available 1.5 T MR imager. It is based on the acquisition of two sets of cardiac‐triggered cine balanced steady‐state free precession (bSSFP) images with different levels of RF power deposition. Reduction of RF power was achieved by lengthening the RF excitation pulses of a cine bSSFP sequence from 0.24 ms to 1.7 ms, while keeping the flip angle constant. Normal volunteers and patients with acute myocardial infarcts were imaged in short and long axis views. Normal myocardium showed an MT ratio (MTR) of 33.0 ± 3.3%. In acute myocardial infarct, MTR was reduced to 24.5 ± 9.2% (P < 0.04), most likely caused by an increase in water content due to edema. The method thus allows detection of acute myocardial infarct without the administration of contrast agents. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
A comparative study is presented, analyzing quantitatively the impact of 15 shim strategies on the homogeneity of the main magnetic field over the three‐dimensional breast region in 3T MRI. The results obtained in 12 female volunteers, spanning a wide range of body and breast types, indicate that the inclusion of the back and heart in the shim region of interest leads to considerable decrease in field homogeneity, and needs to be avoided. Comparison between shim strategies using volumetric B0 maps, covering the entire breast region, and 1–6 plane B0 maps indicate only minimally reduced performance for the latter. Interestingly, however, no single shim strategy relying on a limited number of B0 maps as input was found to work best in all volunteers. This was attributed to the limited capability of a small number of B0 maps to capture the B0 variability existent within breast. On the average, a rectangular shim region of interest, encompassing the breast region alone, worked best for the cohort studied here. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Cine balanced steady‐state free precession (SSFP) is the most widely used sequence for assessing cardiac ventricular function at 1.5 T because it provides high signal‐to‐noise ratio efficiency and strong contrast between myocardium and blood. At 3 T, the use of SSFP is limited by susceptibility‐induced off‐resonance, resulting in either banding artifacts or the need to use a short‐sequence pulse repetition time that limits the readout duration and hence the achievable spatial resolution. In this work, we apply wideband SSFP, a variant of SSFP that uses two alternating pulse repetition times to establish a steady state with wider band spacing in its frequency response and overcome the key limitations of SSFP. Prospectively gated cine two‐dimensional imaging with wideband SSFP is evaluated in healthy volunteers and compared to conventional balanced SSFP, using quantitative metrics and qualitative interpretation by experienced clinicians. We demonstrate that by trading off temporal resolution and signal‐to‐noise ratio efficiency, wideband SSFP mitigates banding artifacts and enables imaging with approximately 30% higher spatial resolution compared to conventional SSFP with the same effective band spacing. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Chemical shift-based multipoint water-fat separation methods have been applied in balanced steady-state free precession (bSSFP) sequences because of the high signal-to-noise-ratio (SNR) attainable. In this approach the echo formation is approximated to occur concurrently for both water and fat at an echo time (TE) equal to half the repetition time (TR/2 approximation). However, the degree to which the imaging conditions underlying the TR/2 approximation are satisfied can significantly vary in vivo depending upon the imaging region of interest (ROI) and the pixels across a field of view (FOV). The consequence of the TR/2 approximation on chemical shift-based multipoint water-fat separation was investigated. The influence of a mismatch between the pass-band profiles of water and fat (pass-band mismatch) on fat quantification was also examined. Theoretical and experimental results demonstrate that the TR/2 approximation can result in spatially dependent noise performance of multipoint water-fat separation methods, and the pass-band mismatch can render the precision of fat quantification spatially dependent. Given that local tissue characteristics in affected liver can be substantially variable, this study is of particular importance in liver imaging.  相似文献   

9.
10.
11.
12.
13.
The steady-state free precession (SSFP) method has been shown to exhibit strong potential for distortion-free functional magnetic resonance imaging (fMRI). One major challenge of SSFP fMRI is that the frequency band corresponding to the highest functional sensitivity is extremely narrow, leading to substantial loss of functional contrast in the presence of magnetic field drifts. In this study we propose a frequency stabilization scheme whereby an RF pulse with small flip angle is applied before each image scan, and the initial phase of the free induction decay (FID) signals is extracted to reflect temporal field drifts. A simple infinite impulse response (IIR) filter is further employed to obtain a low-pass-filtered estimate of the central reference frequency for the upcoming scan. Experimental results suggest that the proposed scheme can stabilize the frequency settings in accordance with field drifts, with oscillation amplitudes of <0.5 Hz. Phantom studies showed that both slow drifts and fast fluctuations were prominently reduced, resulting in less than 5% signal variations. Visual fMRI at submillimeter in-plane resolution further demonstrated 15% activation signals that were nicely registered in the microvessels within the sulci. It is concluded that the IIR-filtered frequency stabilization is an effective technique for achieving reliable SSFP fMR images at high field strengths.  相似文献   

14.
15.
A new technique for acquiring T2-weighted, balanced steady-state free precession (b-SSFP) images is presented. Based on the recently proposed transition into driven equilibrium (TIDE) method, T2-TIDE uses a special flip angle scheme to achieve T2-weighted signal decay during the transient phase. In combination with half-Fourier image acquisition, T2-weighted images can be obtained using T2-TIDE. Numerical simulations were performed to analyze the signal behavior of T2-TIDE in comparison with TSE and b-SSFP. The results indicate identical signal evolution of T2-TIDE and TSE during the transient phase. T2-TIDE was used in phantom experiments, and quantitative ROI analysis shows a linear relationship between TSE and T2-TIDE SNR values. T2-TIDE was also applied to abdominal and head imaging on healthy volunteers. The resulting images were analyzed quantitatively and compared with standard T2-weighted and standard b-SSFP methods. T2-TIDE images clearly revealed T2 contrast and less blurring compared to T2-HASTE images. In combination with a magnetization preparation technique, STIR-weighted images were obtained. T2-TIDE is a robust technique for acquiring T2-weighted images while exploiting the advantages of b-SSFP imaging, such as high signal-to-noise ratio (SNR) and short TRs.  相似文献   

16.
This work reports preliminary results from the first human cardiac imaging at 7 Tesla (T). Images were acquired using an eight‐channel transmission line (TEM) array together with local B1 shimming. The TEM array consisted of anterior and posterior plates closely positioned to the subjects' thorax. The currents in the independent elements of these arrays were phased to promote constructive interference of the complex, short wavelength radio frequency field over the entire heart. Anatomic and functional images were acquired within a single breath hold to reduce respiratory motion artifacts while a vector cardiogram (VCG) was used to mitigate cardiac motion artifacts and gating. SAR exposure was modeled, monitored, and was limited to FDA guidelines for the human torso in subject studies. Preliminary results including short‐axis and four‐chamber VCG‐retrogated FLASH cines, as well as, short‐axis TSE images demonstrate the feasibility of safe and accurate human cardiac imaging at 7T. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
PURPOSE: To examine the dependence of steady-state free-precession (SSFP) -based myocardial blood-oxygen-level-dependent (BOLD) contrast on field strength using theoretical and experimental models. MATERIALS AND METHODS: Numerical simulations using a two-pool exchange model and a surgically prepared dog model were used to assess the SSFP-based myocardial BOLD signal changes at 1.5T and 3.0T. Experimental studies were performed in eight canines with pharmacological vasodilation under various levels of left circumflex coronary artery stenosis. Experimentally obtained BOLD signal changes were correlated against microsphere-based true flow changes. RESULTS: Theoretical results showed that, at 3.0T, relative to 1.5T, a threefold increase in oxygen sensitivity can be expected. Experimental studies in canines showed near similar results-a 2.5 +/- 0.2-fold increase in BOLD sensitivity at 3.0T relative to 1.5T (P < 0.05). Based on the scatter gram of BOLD data and microsphere data, it was found that the minimum regional flow difference that can be detected with SSFP-based myocardial BOLD imaging at 1.5T and 3.0T were 2.9 and 1.6, respectively (P < 0.05). CONCLUSION: This study demonstrated that SSFP-based myocardial BOLD sensitivity is substantially greater at 3.0T compared with 1.5T. The findings here suggest that SSFP-based myocardial BOLD imaging at 3.0T may have the necessary sensitivity to detect the clinically required minimum flow difference of 2.0.  相似文献   

18.

Purpose

To propose a new black‐blood (BB) pulse sequence that provides BB cine cardiac images with high blood‐myocardium contrast. The proposed technique is based on the conventional steady‐state free precession (SSFP) sequence.

Materials and Methods

Numerical simulations of the Bloch equation were conducted to compare the resulting signal‐to‐noise ratio (SNR) to that of conventional BB imaging, including the effects of changing the imaging flip angle and heart rates. Simulation results were verified using a gel phantom experiment and five normal volunteers were scanned using the proposed technique.

Results

The new sequence showed higher SNR and contrast‐to‐noise ratio (CNR) (≈100%) compared to the conventional BB imaging. Also, the borders of the left ventricle (LV) and right ventricle (RV) appear more distinguishable than the conventional SSFP. We were also able to cover about 80% of the cardiac cycle with short breath‐hold time (≈10 cardiac cycles) and with reasonable SNR and CNR.

Conclusion

Based on an SSFP conventional sequence, the new sequence provides BB cines that cover most of the cardiac cycle and with higher SNR and CNR than the conventional BB sequences. J. Magn. Reson. Imaging 2009;30:94–103. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
A balanced fast field echo (FFE) sequence (also referred to as true fast imaging with steady precession (true FISP)), based on projection reconstruction (PR) is evaluated in combination with real-time reconstruction and interactive scanning capabilities for cardiac function studies. Cardiac image sequences obtained with the balanced PR-FFE method are compared with images obtained with a spin-warp (2D Fourier transform (2DFT)) technique. In particular, the representation of motion artifacts in both techniques is investigated. Balanced PR-FFE provides a similar contrast to spin-warp-related techniques, but is less sensitive to motion artifacts. The use of angular undersampling within balanced PR-FFE is examined as a means to increase temporal resolution while causing only minor artifacts. Furthermore, a modification of the profile order allows the reconstruction of PR images at different spatial and temporal resolution levels from the same data. This study shows that balanced PR-FFE is a robust tool for cardiac function studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号