首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood–brain barrier (BBB) leakage plays a key role in cerebral ischemia–reperfusion injury. It is quite necessary to further explore the characteristic and mechanism of BBB leakage during stroke. We induced a focal cerebral ischemia model by transient middle cerebral artery occlusion in male rats for defining the time course of BBB permeability within 120 h following reperfusion and evaluate the specific role of tight junction (TJ) associated proteins claudin-5, occludin, and ZO-1 as well as protein kinase C delta (PKCδ) pathway in BBB leakage induced by reperfusion injury. We verified a bimodal increase in the permeability of the BBB following focal ischemia by Evans blue assay. Two peaks of BBB permeability appeared at 3 h and 72 h of reperfusion after 2 h focal ischemia, respectively. The leak at the endothelial cell was represented at the level of transmission electron microscopy. TTC staining results showed increased infarct size with time after cerebral ischemia reperfusion. The mRNA and protein expression levels of these three TJ associated proteins were significantly decreased compared with the sham-operated group within 120 h of reperfusion, corresponding to the time-dependent change of the biphasic pattern in BBB leakage. The redistribution of claudin-5, occludin, and ZO-1 in ischemia brain microvascular endothelial cells was observed at the same time points. In addition, Western blot assay revealed PKCδ level was also significantly increased in a similar biphasic pattern to above results within 120 h after cerebral ischemia–reperfusion. This study demonstrates the timing of TJ associated proteins claudin-5, occludin, and ZO-1 in light of BBB permeability associated with cerebral ischemia reperfusion, and suggests PKCδ pathway may participate in TJ barrier open and BBB leakage during reperfusion injury in a time-dependent manner.  相似文献   

2.
3.
目的 探讨缺血后处理对大鼠局灶性脑缺血再灌注时Toll样受体2(TLR2)表达的影响。方法 成年雄性SD大鼠90只,分为假手术组、缺血再灌注组、缺血后处理组各30只; 用线栓法建立局灶性大脑中动脉闭塞模型(MCAO),随机分为假手术组(sham)、缺血再灌注组(I/R)、缺血后处理组(IPC),分别于再灌注24、48、72 h后留取大脑皮质组织; 采用Longa的等级评分法进行神经行为学评分,免疫组化和蛋白质印记(Western blot)法检测TLR2蛋白的表达水平,逆转录-聚合酶链反应(RT-PCR)检测TLR2 mRNA表达水平。结果(1)缺血后处理组大鼠神经行为学评分明显改善;(2)缺血再灌注组TLR2蛋白在再灌注24、48、72 h表达水平明显升高(P<0.05); 缺血后处理组TLR2蛋白表达在各时间点均减少(P<0.05); TLR2 mRNA的表达趋势与蛋白表达基本一致。结论 缺血后处理可以降低TLR2表达水平,这可能是其脑保护作用的部分机制之一。  相似文献   

4.
The chemokine CCL2 is considered as one of the main effectors driving postischemic infiltration of monocytes into the brain parenchyma. New experimental data, however, suggest that CCL2 could also participate in blood-brain barrier (BBB) 'opening' during the transmigration of monocytes. The current study examines the role of CCL2 in regulating BBB permeability after ischemia in vitro. To address this issue, an in vitro BBB model (coculture of astrocytes and brain endothelial cells) was subjected to 5 h of oxygen glucose deprivation, followed by reoxgenation (in vitro ischemia/reperfusion (I/R)) for 0 to 48 h. During reperfusion, there was a biphasic enhancement of barrier permeability, with a 200-fold increase in barrier permeability to FITC-albumin at 6 h and a further period of disruption around 24 h. The latter coincided with increased secretion of CCL2 by both astrocytes and brain endothelial cells and increased levels of the CCL2 receptor, CCR2. Applying antisense oligonucleotide or neutralizing antibody to block CCL2 significantly decreased I/R-induced enhancement of BBB permeability (approximately twofold) and redistribution of tight-junction (TJ) proteins (occludin, zonula occluden-1, 2, claudin-5). Similarly, absence of CCR2 from endothelial cells caused stabilization of TJ complexes and decreased the permeability of brain endothelial barrier during in vitro I/R. These data suggest CCL2/CCR2 has an important role in regulating brain endothelial permeability and might be a potential novel therapeutic target for stroke.  相似文献   

5.
The brain's resistance to ischemic injury can be transiently augmented by prior exposure to a sub-lethal stress stimulus, i.e. preconditioning. It has been reported that Toll-like receptors (TLRs) are involved in the preconditioning-induced protective effect against ischemic brain injury. In this study, we investigated the effect of preconditioning with a TLR2 specific ligand, Pam3CSK4, on focal cerebral ischemia/reperfusion (I/R) injury in mice. Pam3CSK4 was administered systemically 24 h before the mice were subjected to focal cerebral ischemia (1 h) followed by reperfusion. Cerebral infarct size was determined, blood brain barrier (BBB) permeability was evaluated, and expression of tight-junction proteins were examined after focal cerebral I/R. Results showed that pre-treatment with Pam3CSK significantly reduced brain infarct size (1.9+/-0.5% vs 9.4+/-2.2%) compared with the untreated I/R group. Pam3CSK4 pre-treatment also significantly reduced acute mortality (4.3% vs 24.2%), preserved neurological function (8.22+/-0.64 vs 3.91+/-0.57), and attenuated brain edema (84.61+/-0.08% vs 85.29+/-0.09%) after cerebral I/R. In addition, Pam3CSK4 pre-treatment preserved BBB function as evidenced by decreased leakage of serum albumin (0.528+/-0.026 vs 0.771+/-0.059) and Evans Blue (9.23+/-0.72 mug/mg vs 12.56+/-0.65 mug/mg) into brain tissue. Pam3CSK4 pre-treatment also attenuated the loss of the tight junction protein occludin in response to brain I/R injury. These results suggest that TLR2 is a new target of ischemic preconditioning in the brain and preconditioning with a TLR2 specific ligand will protect the brain from I/R injury.  相似文献   

6.
目的探讨缺血后处理(Postcond)对大鼠局灶性脑缺血再灌注损伤热休克蛋白70(HSP70)表达的影响,以探讨其脑保护的机制。方法成年健康SD大鼠45只,随机分为假手术组、缺血再灌注组、缺血后处理组,应用线栓法建立大脑中动脉闭塞(MCAO)再灌注模型,于灌注24h后断头留取大脑皮质组织,用免疫组化、Western blot检测HSP70蛋白的含量;逆转录聚合酶链反应(RT-PCR)方法检测HSP70mRNA表达水平。结果局灶性脑缺血再灌注24h后脑皮质内HSP70mRNA和HSP70蛋白的表达增加(P0.05)。应用缺血后处理能显著地促进脑缺血再灌注后脑组织HSP70mRNA和HSP70蛋白的表达(P0.05)。结论缺血后处理促进大鼠局灶性脑缺血再灌注皮质内HSP70的表达,这可能是其脑保护作用的部分机制。  相似文献   

7.
In cerebral ischemia, matrix metalloproteinases (MMPs) have a dual role by acutely disrupting tight junction proteins (TJPs) in the blood–brain barrier (BBB) and chronically promoting angiogenesis. Since TJP remodeling of the neurovascular unit (NVU) is important in recovery and early inhibition of MMPs is neuroprotective, we hypothesized that short-term MMP inhibition would reduce infarct size and promote angiogenesis after ischemia. Adult spontaneously hypertensive rats had a transient middle cerebral artery occlusion with reperfusion. At the onset of ischemia, they received a single dose of the MMP inhibitor, GM6001. They were studied at multiple times up to 4 weeks with immunohistochemistry, biochemistry, and magnetic resonance imaging (MRI). We observed newly formed vessels in peri-infarct regions at 3 weeks after reperfusion. Dynamic contrast-enhanced MRI showed BBB opening in new vessels. Along with the new vessels, pericytes expressed zonula occludens-1 (ZO-1) and MMP-3, astrocytes expressed ZO-1, occludin, and MMP-2, while endothelial cells expressed claudin-5. The GM6001, which reduced tissue loss at 3 to 4 weeks, significantly increased new vessel formation with expression of TJPs and MMPs. Our results show that pericytes and astrocytes act spatiotemporally, contributing to extraendothelial TJP formation, and that MMPs are involved in BBB restoration during recovery. Early MMP inhibition benefits neurovascular remodeling after stroke.  相似文献   

8.
Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.  相似文献   

9.
10.
Lipocalin-2 (LCN2) is a secreted protein of the lipocalin family, but little is known about the expression or the role of LCN2 in the central nervous system. Here, we investigated the role of LCN2 in ischemic stroke using a rodent model of transient cerebral ischemia. Lipocalin-2 expression was highly induced in the ischemic brain and peaked at 24 hours after reperfusion. After transient middle cerebral artery occlusion, LCN2 was predominantly expressed in astrocytes and endothelial cells, whereas its receptor (24p3R) was mainly detected in neurons, astrocytes, and endothelial cells. Brain infarct volumes, neurologic scores, blood–brain barrier (BBB) permeabilities, glial activation, and inflammatory mediator expression were significantly lower in LCN2-deficient mice than in wild-type animals. Lipocalin-2 deficiency also attenuated glial neurotoxicity in astrocyte/neuron cocultures after oxygen-glucose deprivation. Our results indicate LCN2 has a critical role in brain injury after ischemia/reperfusion, and that LCN2 may contribute to neuronal cell death in the ischemic brain by promoting neurotoxic glial activation, neuroinflammation, and BBB disruption.  相似文献   

11.
钙拮抗剂对大鼠脑缺血后血脑屏障通透性的影响   总被引:1,自引:0,他引:1  
目的 研究钙离子拮抗剂对大鼠脑缺血再灌注后血脑屏障(BBB)通透性和脑梗死灶体积的影响. 方法 插线法制作大鼠脑缺血再灌注模型.缺血2 h后再灌注.将150只大鼠按随机数字表法分尼莫地平组和对照组,每组分再灌注6h、12h、24 h、48h、72 h五个时间段,再灌注后尼莫地平组和对照组立即分别腹腔注射尼莫地平和生理盐水2 mg/kg.每12小时注射一次,用甲酰胺荧光法及透射电镜观察不同时段BBB通透性破坏的情况,TTC染色后计算梗死灶体积百分比.结果 大鼠脑缺血再灌注后BBB通透性和梗死灶体积百分比随时间延长逐渐增加.且BBB通透性的增加呈现两个高峰,第一个高峰在再灌注后12 h,第二个高峰在再灌注后48 h.尼莫地平组BBB通透性及脑梗死灶体积百分比的增加均较对照组明显,差异有统计学意义(P<0.05). 结论 脑缺血再灌注增加BBB的通透性和脑梗死灶体积百分比.再灌注后给予尼莫地平可加重这些病理变化.  相似文献   

12.
目的探讨黄体酮对大鼠局灶性脑缺血再灌注后血脑屏障紧密连接蛋白ZO-1、occludin表达及血脑屏障通透性的影响。 方法将42只健康雄性SD大鼠按随机数字表法分为假手术组(6只)和缺血再灌注组,后者再按再灌注时间分为缺血2h再灌注3h、6h、12h、24 h、48 h及72h组(各6只)。缺血再灌注组用线栓法制备成大鼠大脑中动脉缺血再灌注模型。采用荧光分光光度法测定缺血侧脑组织中伊文氏蓝(EB)含量来评价血脑屏障的通透性,Western blotting法检测脑组织ZO-1和occludin的表达。取EB漏出最多组的时间点,增设黄体酮干预组和溶剂对照组(各6只),与相同时间点的缺血再灌注组比较,观察黄体酮对ZO-1、occludin表达及血脑屏障通透性的影响。 结果 缺血2h再灌注3h时脑组织EB含量开始增加,再灌注24 h时达高峰;ZO-1、occludin的表达在缺血2h再灌注3h时开始下降,再灌注24 h时达最低。黄体酮干预组EB含量明显低于缺血2h再灌注24 h组,差异有统计学意义(P<0.05)。黄体酮干预组ZO-1和occludin的表达水平均明显高于缺血2h再灌注24 h组,差异有统计学意义(P<0.05)。 结论 黄体酮町抑制缺血再灌注大鼠紧密连接蛋白ZO-1和occludin表达的降低,从而起到保护血脑屏障的作用。  相似文献   

13.
Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L- tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.  相似文献   

14.
Matrix metalloproteinases (MMPs) disrupt the blood-brain barrier (BBB) during reperfusion. Occludin and claudins are recently described tight junction proteins (TJPs) that form the BBB. We hypothesized that the opening of the BBB was because of the degradation of TJPs by the MMPs. Spontaneously hypertensive rats had a 90 mins middle cerebral artery occlusion with reperfusion for 2, 3, or 24 h. Matrix metalloproteinases were measured by immunohistochemistry and in situ and gel zymography. Real-time polymerase chain reaction (PCR) measured mRNAs of MMP-2 and -9, furin, membrane-type MMP (MT1-MMP), occludin, and claudin-5. There was opening of the BBB in the piriform cortex after 3 h of reperfusion, and an MMP inhibitor, BB-1101 (30 mg/kg), prevented the opening. At 3 h, in situ zymograms showed gelatinase activity. Zymography and PCR showed greater increases in MMP-2 than in MMP-9. There were increased mRNA and immunohistochemistry for MT1-MMP and furin, which activate MMP-2. Claudin-5 and occludin mRNA expression decreased at 2 h in both hemispheres with fragments of both proteins seen on Western blot by 3 h on the ischemic side; treatment with BB-1101 reversed the degradation of the TJPs. Immunohistochemistry at 3 h showed fragmented TJPs within the endothelial cell clefts. By 24 h, in situ zymography showed gelatinase activity and gel zymography showed elevated levels of MMP-9. Disrupted TJPs previously seen in endothelial cells appeared in the surrounding astrocytes. Our results provide direct evidence that MMPs open the BBB by degrading TJPs and that an MMP inhibitor prevents degradation of the TJPs by MMPs.  相似文献   

15.
Lenzsér G  Kis B  Bari F  Busija DW 《Brain research》2005,1051(1-2):72-80
Brain edema formation due to blood-brain barrier (BBB) disruption is a major consequence of cerebral ischemia. Previously, we demonstrated that targeting mitochondrial ATP-sensitive potassium channels (mitoK(ATP)) protects neuronal tissues in vivo and in vitro, however, the effects of mitoK(ATP) openers on cerebral endothelial cells and on BBB functions have never been examined. We investigated the effects of mitoK(ATP) channel opener diazoxide on BBB functions during ischemia/reperfusion injury (I/R). Rats were treated with 6, 20 or 40 mg/kg diazoxide ip for 3 days then exposed to global cerebral ischemia for 30 min. BBB permeability was assessed by administering Evan's-blue (EB) and Na-fluorescein (NaF) at the beginning of the 30 min reperfusion. I/R increased BBB permeability for the large molecular weight EB (ng/mg) in the cortex (control: 146 +/- 12, n = 7; I/R: 1049 +/- 152, n = 11) which was significantly attenuated in diazoxide-treated rats (575 +/- 99, n = 9; 582 +/- 104, n = 8; 20 and 40 mg/kg doses). Diazoxide pretreatment also significantly inhibited the extravasation of the low molecular weight NaF. Edema formation in the cortex was also decreased after diazoxide pretreatment. In cultured cerebral endothelial cells, diazoxide depolarized the mitochondrial membrane, suggesting a direct diazoxide effect on the endothelial mitochondria. Our results demonstrate that preconditioning of cerebral endothelium with diazoxide protects the BBB against ischemic stress.  相似文献   

16.
Disruption of blood–brain barrier (BBB) and subsequent edema are major contributors to the pathogenesis of ischemic stroke, for which the current clinical therapy remains unsatisfied. Cerebralcare Granule® (CG) is a compound Chinese medicine widely used in China for treatment of cerebrovascular diseases. CG has been demonstrated efficacy in attenuating the cerebral microcirculatory disturbance and hippocampal neuron injury following global cerebral ischemia. However, the effects of CG on BBB disruption following cerebral ischemia have not been investigated. In this study, we examined the therapeutic effect of CG on the BBB disruption in a focal cerebral ischemia/reperfusion (I/R) rat model. Male Sprague–Dawley rats (250 to 300 g) were subjected to 1 h middle cerebral artery occlusion (MCAO). CG (0.4 g/kg or 0.8 g/kg) was administrated orally 3 h after reperfusion for the first time and then once daily up to 6 days. The results showed that Evans blue extravasation, brain water content, albumin leakage, infarction volume and neurological deficits increased in MCAO model rats, and were attenuated significantly by CG treatment. T2-weighted MRI and electron microscopy further confirmed the brain edema reduction in CG-treated rats. Treatment with CG improved cerebral blood flow (CBF). Western blot analysis and confocal microscopy showed that the tight junction proteins claudin-5, JAM-1, occludin and zonula occluden-1 between endothelial cells were significantly degradated, but the protein expression of caveolin-1, the principal marker of caveolae in endothelial cells, increased after ischemia, all of which were alleviated by CG treatment. In conclusion, the post-treatment with CG significantly reduced BBB permeability and brain edema, which were correlated with preventing the degradation of the tight junction proteins and inhibiting the expression of caveolin-1 in the endothelial cells. These findings provide a novel approach to the treatment of ischemic stroke.  相似文献   

17.
Protection of the blood-brain barrier (BBB) is correlated with improved outcome in stroke. Sphingosine kinase (SphK)-directed production of sphingosine-1-phosphate, which we previously documented as being vital to preconditioning-induced stroke protection, mediates peripheral vascular integrity via junctional protein regulation. We used a hypoxic preconditioning (HPC) model in adult wild-type and SphK2-null mice to examine the isoform-specific role of SphK2 signaling for ischemic tolerance to transient middle cerebral artery occlusion and attendant BBB protection. Reductions in infarct volume and BBB permeability in HPC-treated mice were completely lost in SphK2-null mice. Hypoxic preconditioning-induced attenuation of postischemic BBB disruption in wild types, evidenced by reduced extravascular immunoglobulin G intensity, suggests direct protection of BBB integrity. Measurement of BBB junctional protein status in response to HPC revealed SphK2-dependent increases in triton-insoluble claudin-5 and VE-cadherin, which may serve to strengthen the BBB before stroke. Postischemic loss of VE-cadherin, occludin, and zona occludens-1 in SphK2-null mice with prior HPC suggests that SphK2-dependent protection of these adherens and tight junction proteins is compulsory for HPC to establish a vasculoprotective phenotype. Further elucidation of the mediators of this endogenous, HPC-activated lipid signaling pathway, and their role in protecting the ischemic BBB, may provide new therapeutic targets for cerebrovascular protection in stroke patients.  相似文献   

18.
Stroke is the third leading cause of death in the USA. Antithrombotic therapy targeting platelet activation is one of the treatments for ischemic stroke. Here we investigate the role of one of the thrombin receptors, protease-activated receptor 4 (PAR4), in a mouse transient middle cerebral artery occlusion (MCAO) model. After a 60 min MCAO and 23 h reperfusion, leukocyte and platelet rolling and adhesion on cerebral venules, blood–brain barrier (BBB) permeability, and cerebral edema were compared in PAR4-deficient mice and wild-type mice. Cerebral infarction volume and neuronal death were also measured. PAR4−/− mice had more than an 80% reduction of infarct volume and significantly improved neurologic and motor function compared with wild-type mice after MCAO. Furthermore, deficiency of PAR4 significantly inhibits the rolling and adhesion of both platelets and leukocytes after MCAO. BBB disruption and cerebral edema were also attenuated in PAR4−/− mice compared with wild-type animals. The results of this investigation indicate that deficiency of PAR4 protects mice from cerebral ischemia/reperfusion (I/R) injury, partially through inhibition of platelet activation and attenuation of microvascular inflammation.  相似文献   

19.
Delayed administration of vascular endothelial growth factor (VEGF) promotes functional recovery after focal cerebral ischemia. However, early intravenous injection of VEGF increases blood-brain barrier (BBB) leakage, hemorrhagic transformation and infarct volume whereas its application to cortical surface is neuroprotective. We have investigated whether or not early intracerebroventricular administration of VEGF could replicate the neuroprotective effect observed with topical application and the mechanism of action of this protection. Mice were subjected to 90 mins middle cerebral artery (MCA) occlusion and 24 h of reperfusion. Vascular endothelial growth factor (8 ng, intracerebroventricular) was administered 1 or 3 h after reperfusion. Compared with the vehicle-treated (intracerebroventricular) group, VEGF decreased the infarct volume along with BBB leakage in both treatment groups. Neurologic disability scores improved in parallel to the changes in infarct volume. Independently of the decrease in infarct size, VEGF also reduced the number of TUNEL-positive apoptotic neurons. Phospo-Akt levels were significantly higher in ischemic hemispheres of the VEGF-treated mice. Contrary to intracerebroventricular route, intravenous administration of VEGF (15 microg/kg) enhanced the infarct volume as previously reported for the rat. In conclusion, single intracerebroventricular injection of VEGF protects brain against ischemia without adversely affecting BBB permeability, and has a relatively long therapeutic time window. This early neuroprotective action, observed well before recovery-promoting actions such as angiogenesis, possibly involves activation of the PI-3-Akt pathway.  相似文献   

20.
In the present study, we aimed at evaluating the potential neuroprotective effect and the underlying mechanism of anemonin against cerebral ischemia and reperfusion (I/R) injury. Anemonin was administered to rats by the intraperitoneally (i.p.) route once daily for 7 days before middle cerebral artery occlusion (MCAO). Focal cerebral ischemia was induced by 90 min of MCAO followed by 24 h of reperfusion. After that, animals were sacrificed by decapitation, brain was removed, and various biochemical estimations, neurological status, and assessment of cerebral infarct size were carried out. MCAO followed by 24 h of reperfusion caused a significant increase in infarct size, neurological deficit score, malondialdehyde (MDA) content, reactive oxygen species (ROS) level, and DNA fragmentation, as well as a decrease in the activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and Na+, K+-ATPase in the brain. Furthermore, elevated Bax expression, increased caspase-3 cleavage, and decreased Bcl-2 expression were observed in nontreated rats in response to focal cerebral I/R injury. However, pretreatment with anemonin significantly reversed these levels of biochemical parameters, reduced cerebral infarct size, and improved the neurologic score in cerebral ischemic animals. Additionally, a wide distribution of anemonin in plasma and brain tissues and the brain-to-plasma partition coefficient (Ri) ratio of 0.7 at 90 min indicated that this compound could penetrate the blood-brain barrier (BBB). These results showed that pretreatment with anemonin provided a significant protection against cerebral I/R injury in rats by, at least in part, its antioxidant action and consequent inhibition of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号