首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ current (L-type) and inward current caused by Ca2+ release from the sarcoplasmic reticulum and carried by electrogenic Na+/Ca2+ exchange have been measured in cultured atrial myocytes from hearts of adult guinea-pigs using whole-cell voltage clamp techniques. The pipette solution, used for internal dialysis of the cells, contained a high concentration, 60 mM or 25 mM, of citrate as a non-saturable low-affinity Ca2+-chelating compound. It has been shown previously that Ca2+-release-dependent inward current under these conditions is carried by electrogenic Na+/Ca2+ exchange. Furthermore, Ca2+-release-dependent inward current (the release signal) can be completely separated from triggering Ca2+ current if brief depolarizations for activating I Ca are used. In the majority of cells that did not produce spontaneous Ca2+ release, conditions could be found that caused the release signal to be split into two components: an early component of variable amplitude and a late component of rather constant amplitude. The delay of the late component with regard to triggering I Ca was inversely related to the amplitude of the first one. Below a certain amplitude of the first component, the second one failed to be elicited. This suggests the second component to be triggered by the first one. Weakly Ca2+-buffered cells produced spontaneous Ca2+ release, resulting in irregular transient inward currents at constant membrane-holding potential. Synchronization by trains of step depolarizations unmasked two components also in the spontaneous release signals. In none of the cells studied was any indication of more than two components of the release signal detected. The results are discussed in terms of two distinct compartments of sarcoplasmic reticulum with different properties of Ca2+ release.Supported by the Deutsche Forschungsgemeinschaft (FG Konzell)  相似文献   

2.
Cl secretion in HT29 cells is regulated by agonists such as carbachol, neurotensin and adenosine 5-triphosphate (ATP). These agonists induce Ca2+ store release as well as Ca2+ influx from the extracellular space. The increase in cytosolic Ca2+ enhances the Cl and K+ conductances of these cells. Removal of extracellular Ca2+ strongly attenuates the secretory response to the above-mentioned agonists. The present study utilises patch-clamp methods to characterise the Ca2+ influx pathway. Inhibitors which have been shown previously to inhibit non-selective cation channels, such as flufenamate (0.1 mmol·l–1, n=6) and Gd3+ (10 mol·l–1, n=6) inhibited ATP (0.1 mmol·l–1) induced increases in whole-cell conductance (G m). When Cl and K+ currents were inhibited by the presence of Cs2SO4 in the patch pipette and gluconate in the bath, ATP (0.1 mmol·l–1) still induced a significant increase in G m from 1.2±0.3 nS to 4.7±1 nS (n=24). This suggests that ATP induces a cation influx with a conductance of approximately 3–4 nS. This cation influx was inhibited by flufenamate (0.1 mmol·l–1, n=6) and Gd3+ (10 mol·l–1, n=9). When Ba2+ (5 mmol·l–1) and 4,4-diisothiocyanatostilbene-2-2-disulphonic acid (DIDS, 0.1 mmol·l–1) were added to the KCl/K-gluconate pipette solution to inhibit K+ and Cl currents and the cells were clamped to depolarised voltages, ATP (0.1 mmol·l–1) reduced the membrane current (I m) significantly from 86±14 pA to 54±11 pA (n=13), unmasking a cation inward current. In another series, the cation inward current was activated by dialysing the cell with a KCl/K-gluconate solution containing 5–10 mmol·l–1 1,2-bis-(2-aminoethoxy)ethane-N,N,N,N-tetraacetic acid (EGTA) or 1,2-bis-(2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA). The zero-current membrane voltage (V m) and I m (at a clamp voltage of +10 mV) were monitored as a function of time. A new steady-state was reached 30–120 s after membrane rupture. V m depolarised significantly from –33±2 mV to –12±1 mV, and I m fell significantly from 17±2 pA to 8.9±1.0 pA (n=71). This negative current, representing a cation inward current, was activated when Ca2+ stores were emptied and was reduced significantly (I m) when Ca2+ and/or Na+ were removed from the bathing solution: removal of Ca2+ in the absence of Na+ caused a I m of 5.0±1.2 pA (n=12); removal of Na+ in the absence of Ca2+ caused a I m of 12.8±3.5 pA (n=4). The cation inward current was also reduced significantly by La3+, Gd3+, and flufenamate. We conclude that store depletion induces a Ca2+/Na+ influx current in these cells. With 145 mmol·l–1 Na+ and 1 mmol·l–1 Ca2+, both ions contribute to this cation inward current. This current is an important component in the agonist-regulated secretory response.  相似文献   

3.
Ca2+ -induced inactivation of L-type Ca2+ channels is proposed as an important negative feedback mechanism regulating Ca2+ entry. Here, for the first time, evidence for modification of heart L-type Ca2+ channel activity by cytoplasmic calcium is provided from excised insideout membrane patches. Ba2+ currents through cardiac L-type Ca2+ channels exhibited only modest inactivation in the absence of cytoplasmic Ca2+. Elevation of cytoplasmic Ca2+ to micromolar concentrations strikingly affected L-type Ca2+ channel activity as evaluated from ensemble average Ba2+ currents. Inactivation was markedly increased concomitant with a reduction of peak inward current, which was almost completely eliminated at about 15 M cytoplasmic Ca2+ concentration. Half maximal suppression of Ba2+ currents was observed at 2.3 M Ca2+. The observed modifications of L-type Ca2+ channel activity show that cytoplasmic Ca2+ induces channel closure. Below 4 M Ca2+, channels can be reversibly reactivated during repetitive depolarizations, while at high Ca2+ concentrations (15 M) most Ca2+ channels reside in a closed state. This may allow for a delicate regulation of Ca2+ entry, and consequently of heart contraction.  相似文献   

4.
In rat pituitary gonadotropes, gonadotropin-releasing hormone (GnRH) stimulates rhythmic release of Ca2+ from stores sensitive to inositol 1,4,5-trisphosphate [Ins(1,4,5)P 3 ], which in turn induces an oscillatory activation of apamin-sensitive Ca2+-activated K+ current, I K(Ca). Since GnRH also activates protein kinase C (PKC), we investigate the action of PKC while simultaneously measuring intracellular Ca2+ concentration ([Ca2+]i) and I K(Ca). Stimulation of PKC by application of phorbol 12-myristate 13-acetate (PMA) did not affect basal [Ca2+]i. However, PMA or phorbol 12,13-dibutyrate (PdBu), but not the inactive 4-phorbol 12,13-didecanoate (4-PDD), reduced the frequency of GnRH-induced [Ca2+]i oscillation and augmented the I K(Ca) induced by any given level of [Ca2+]i. The slowing of oscillations and the enhancement of I K(Ca) were mimicked by synthetic diacylglycerol (1,2-dioctanoyl-sn-glycerol) and could be induced during ongoing oscillations that had been initiated irreversibly in cells loaded with guanosine 5-O-(3-thio-triphosphate) (GTP-[S]). In contrast, when oscillations were initiated by loading cells with Ins(1,4,5)P 3, phorbol esters enhanced I K(Ca) without affecting the frequency of oscillation. The protein kinase inhibitor, staurosporine, reduced I K(Ca) without affecting [Ca2+]i and partially reversed the phorbol-ester-induced slowing of oscillation. Therefore, activation of PKC has two rapid effects on gonadotropes. It slows [Ca2+]i oscillations probably by actions on phospholipase C, and it enhances I K(Ca) probably by a direct action on the channels.  相似文献   

5.
Ca2+ channel activities were recorded in the limb bud of embryonic day 4 chick with Ca2+ sensitive fluorescence (Fura-2) measurements and patch clamp techniques. Rises in intracellular Ca2+ concentrations were evoked by depolarization with the application of 100 mM K+ and this Ca2+ response was abolished by removing extracellular Ca2+. The Ca2+ response was blocked by 10 M nifedipine and enhanced by 5 M Bay K 8644. Long-lasting inward currents were revealed by whole-cell patch clamp recordings from dissociated cells of the limb bud. The inward current was also blocked by 10 M nifedipine. Our study suggested the presence of L-type Ca2+ channels in the limb bud cells.  相似文献   

6.
Intracellular photorelease of Ca2+ from caged Ca2+ (DM-nitrophen or nitr5) and the patch-clamp technique in the whole-cell configuration were used to investigate Ca2+-activated currents in inner hair cells (IHCs) of the mammalian cochlea. Photoliberation of intracellular Ca2+ activated outward currents with a mean amplitude of 260±110 pA when IHCs were voltage-clamped, near the resting membrane potential, at –50 mV. The photoactivated currents were reversibly blocked by extracellular application of tetraethylammonium (TEA, 10 mM), neomycin (1 mM) and charybdotoxin (1 M), but not by apamin. The voltage dependence of membrane currents activated by photolysis of DM-nitrophen demonstrated a reversal potential near the K+ equilibrium potential (E k) and saturation near 0 mV. The presence of Ca2+-activated currents was further confirmed by the effects of extracellular adenosine 5-triphosphate (ATP, 10 M) and the Ca2+ ionophore ionomycin (10 M). Both agents raised intracellular Ca2+ and simultaneously activated outward currents when IHCs were voltage-clamped near the resting membrane potential. In experiments where currents were activated by depolarizing voltage steps, nifedipine (50 M) and Cd2+ (1 mM) reduced significantly (20–50%) the whole-cell outward currents, suggesting the presence of L-type Ca2+ currents activating K+ currents. These results are the first direct evidence for Ca2+-activated K+ currents in mammalian IHCs, these currents being potentially important for cell repolarization during sound-induced depolarization and synaptic transmission.  相似文献   

7.
The effects of externally applied 3-isobutyl-1-methylxanthine (IBMX), in millimolar concentrations, on the membrane currents in dorsal root ganglia (DRG) neurones isolated from newborn rats were investigated using the amphotericin-based perforated patch-clamp technique. In some experiments, simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]in) were performed using fura-2 microfluorimetry. Applications of IBMX induced elevation of [Ca2+]in resulting from Ca2+ release from caffeine-ryanodine-sensitive internal stores. In addition to Ca2+ release, IBMX produced a biphasic membrane current response comprised of an inward current transiently interrupted by outward current. The onset of the inward current slightly preceded the onset of the [Ca2+]in transient, while the interrupting outward current developed synchronously with the [Ca2+]in rise. The development of IBMX-induced outward current ultimately needed the [Ca2+]in elevation. After the depletion of Ca2+ stores by IBMX or caffeine exposure, the subsequent IBMX challenge failed to produce both the [Ca2+]in transient and outward membrane current, although the inward current remained unchanged. Both components of the IBMX-induced membrane current response had a reversal potential close to the K+ equilibrium potential and the IBMX-induced membrane current response disappeared while dialysing the cell interior with K+-free, Cs+-containing solutions suggesting their association with K+ channel activity. External administration of 10 mM tetraethylammonium chloride (TEA-Cl) evoked an inward current similar to that observed in response to IBMX; in the presence of TEA-Cl, IBMX application was almost unable to induce additional inward current. IBMX (5 mM) effectively (50%) inhibited K+ currents evoked by step depolarizations of membrane potential. We suggest that IBMX affects membrane permeability via activation of Ca2+-regulated K+ channels and direct inhibition of TEA-sensitive K+ channels.  相似文献   

8.
Isolated smooth muscle cells (SMC) from guinea pig taenia coli were employed. Suspension of cells were externally loaded in saline with the fluorescent calcium indicators quin-2/AM or fura-2/AM at 20–40 M or 4 M respectively, resulting in an estimated intracellular concentration of 100–200 M for quin-2 or 10–20 M fura-2 (free acid). On addition of 100 M carbachol or high K o + (80 mM) depolarization, fura-2 loaded cells contracted (104±47 m,n=121 rest: 39±13 m,n=59 contracted) identically to control (103±35 m,n=232 rest: 39±16 m,n=89 contracted) cells, whereas quin-2 loaded cells were unresponsive to these protocols and there was no significant length change. The Ca i 2+ of fura-2 loaded cells was 100±18 nM (mean±SD,n=15) and was not significantly different from quin-2 loaded cells 107±26 nM (n=13). Treatment of fura-2 loaded cells with 100 M ouabain saline for 10–60 min progressively elevated the Ca i 2+ to a mean of 266±83 nM (n=15). Reduction of Na p + (96% Li+ replaced) significantly increased Ca i 2+ to 317±77 nM (n=8). After pretreatment with ouabain (100 M), Na o + replacement (Li+) increased Ca i 2+ at a significantly faster rate [3.6 nM min–1 (control) cf. 19.8 nM min–1 (ouabain)].  相似文献   

9.
The purpose of the present study was to determine the mechanism by which bradykinin activates the small conductance, inwardly rectifying, Ca2+-activated K+ channel (KCa) found in cultured bovine aortic endothelial cells. Channel activity was studied using the patch-clamp technique in whole-cell, cell-attached, inside-out and outside-out configurations. Channel conductance at potentials positive to 0 mV was 10±2 pS and at potentials negative to 0 mV 30±3 pS (n=7) when examined in symmetrical K+ (150 mmol/l) solutions. The channel open probability (P o) was only weakly voltage dependent changing approximately 0.2 units over 160 mV. In contrast, raising the intracellular Ca2+ concentration from 100 nmol/l to 10 mol/l at –60 mV produced a graded increase in channel P o from 0.15 to 0.96; the concentration required for half-maximum response (apparent K0.5) was 719 nmol/l. At a constant Ca2+ concentration, application of guanosine triphosphate (GTP) to the cytoplasmic surface of the patch increased channel P o. This effect was dependent upon the simultaneous presence of both GTP and Mg2+, and was reversed by the subsequent application of the guanosine diphosphate (GDP) analogue, guanosine-5-O-(2-thiodiphosphate) (GDPS). The hydrolysis-resistant GTP analogue, guanosine-5-O-(3-thiotriphosphate) (GTPS), induced a long-lasting increase in channel P o. In the presence of Mg2+-GTP, the apparent K0.5 for Ca2+ decreased from a control value of 722 nmol/l to 231 nmol/l. Addition of bradykinin to outside-out patches previously exposed to intracellular Mg2+-GTP further enhanced KCa activity, shifting the apparent K0.5 for Ca2+ from 228 nmol/l to 107 nmol/l. This activation by bradykinin was not observed in patches following prior exposure to GDPS. These results suggest that bradykinin can activate the KCa channel of vascular endothelial cells via a G-protein-mediated change in the sensitivity of the channel for Ca2+. We postulate that vasoactive agonists may use this mechanism to maintain an elevated K+ permeability as the intracellular Ca2+ concentration returns towards normal resting levels.  相似文献   

10.
The influence of internal Ca2+ ions has been investigated during intracellular perfusion of isolated neurones from pedal ganglia of Helix pomatia in which serotonin (5-HT) induces a cyclic-adenosine-monophosphate-(cAMP)-dependent enhancement of high-threshold Ca2+ current (I Ca). Internal free Ca2+ ([Ca2+]i) was varied between 0.01 and 10 M by addition of Ca2+-EGTA [ethylenebis(oxonitrilo)tetraacetate] buffer. Elevation of [Ca2+]i depressed the 5-HT effect. The dose/ effect curve for the Ca2+ blockade had a biphasic character and could be described by the sum of two Langmuir's isotherms for tetramolecular binding with dissociation constants K d1=0.063 M and K d2=1 M. Addition of calmodulin (CM) antagonists (50 M trifluoperazine or 50 M chlorpromazine), phosphodiesterase (PDE) antagonists [100 M isobutylmethylxanthine (IBMX) or 5 mM theophylline] and protein phosphatase antagonists [2 M okadaic acid (OA)] in the perfusion solution caused anticalcium action and modified the Ca2+ binding isotherm. Using the effect of OA and IBMX, two components of the total Ca2+ inhibition were separated and evaluated. In the presence of one of these blockers tetramolecular curves with K d1=0.04 M and K d2=0.69 M were obtained describing the activation of the retained unblocked enzyme — PDE or calcineurin (CN) correspondingly. The sum of these isotherms gave a biphasic curve similar to that in control. Leupeptin (100 M), a blocker of Ca2+-dependent proteases did not influence the amplitude of 5-HT effect, indicating that channel proteolysis is not involved in the depression. Our findings show that the molecular mechanism of Ca2+-induced suppression of the cAMP-dependent upregulation of Ca2+ channels is due to involvement of two Ca2+-CM-dependent enzymes: PDE reducing the cAMP level, and CN causing channel dephosphorylation. No other processes are involved in the investigated phenomenon at a Ca2+ concentration of less than or equal to 10 M.  相似文献   

11.
Effects of exogenous adenosine 5-triphosphate (ATP) were studied by measurements of intracellular Ca2+ concentration ([Ca2+]i) and membrane currents in myocytes freshly isolated from the human saphenous vein. At a holding potential of –60 mV, ATP (10 M) elicited a transient inward current and increased [Ca2+]i. These effects of ATP were inhibited by ,-methylene adenosine 5-triphosphate (AMPCPP, 10 M). The ATP-gated current corresponded to a non-selective cation conductance allowing Ca2+ entry. The ATP-induced [Ca2+]i rise was abolished in Ca2+-free solution and was reduced to 30.1±5.5% (n=14) of the control response when ATP was applied immediately after caffeine, and to 23.7±3.8% (n=11) in the presence of thapsigargin. The Ca2+-induced Ca2+ release blocker tetracaine inhibited the rise in [Ca2+]i induced by both caffeine and ATP, with apparent inhibitory constants of 70 M and 100 M, respectively. Of the ATP-induced increase in [Ca2+]i 29.3±3.9% (n=8) was tetracaine resistant. It is concluded that the effects of ATP in human saphenous vein myocytes are only mediated by activation of P2x receptor channels. The ATP-induced [Ca2+]i rise is due to both Ca2+ entry and Ca2+ release activated by Ca2+ ions that enter the cell through P2x receptor channels.  相似文献   

12.
Neuropeptide Y(NPY) inhibits Ca2+-activated K+ channels reversibly in vascular smooth muscle cells from the rat tail artery. NPY (200 M) had no effect in the absence of intracellular adenosine 5triphosphate (ATP) and when the metabolic poison cyanide-M-chlorophenyl hydrozone (10 M) was included in the intracellular pipette solution. NPY was also not effective when ATP was substituted by the non-hydrolysable ATP analogue adenosine 5-[, -methylene]-triphosphate (AMP-PCP). NPY inhibited Ca2+-activated K+ channel activity when ATP was replaced by adenosine 5-O-(3-thiotriphosphate) (ATP [-S]) and the inhibition was not readily reversed upon washing. Protein kinase inhibitor (1 M), a specific inhibitor of adenosine 3, 5-cyclic monophosphatedependent protein kinase, had no significant effect on the inhibitory action of NPY. The effect of NPY on single-channel activity was inhibited by the tyrosine kinase inhibitor genistein (10 M) but not by daidzein, an inactive analogue of genistein. These observations suggest that the inhibition by NPY of Ca2+-activated K+ channels is mediated by ATP-dependent phosphorylation. The inhibitory effect of NPY was antagonized by the tyrosine kinase inhibitor genistein.  相似文献   

13.
Single channel Ca2+ currents inHelix pomatia neurons   总被引:4,自引:0,他引:4  
Unitary Ca2+ currents of TEA injected Helix neurons were recorded in the Giga seal situation (6, 7) from microscopic membrane patches exposed to 50 mM [Ca2+]o, O [Na+]o, 20 mM [TEA+]o and 2.5 M [TTX]o. Constant field assumptions yield a channel permeability of 2.9±1.0×10–14 cm3s–1 corresponding to slope conductances of 5 to 15 pS between 0 and –30 mV. Frequency of occurrence of the units strongly increased with depolarization. Mean open time of the Ca2+ channels was about 3 ms without obvious dependence on voltage. A similar open time was seen with [Ba2+]o, yielding about double the current strength when compared with [Ca2+]o.  相似文献   

14.
The whole-cell configuration of the patch-clamp technique was used to examine K+ currents in HeLa cells. Under quasi-physiological ionic gradients, using an intracellular solution containing 10–7 mol/l free Ca2+, mainly outward currents were observed. Large inwardly rectifying currents were elicited in symmetrical 145 mmol/l KCl. Replacement of all extracellular K+ by isomolar Na+, greatly decreased inward currents and shifted the reversal potential as expected for K+ selectivity. The inwardly rectifying K+ currents exhibited little or no apparent voltage dependence within the range of from –120 mV to 120 mV. A square-root relationship between chord conductance and [K+]0 at negative potentials could be established. The inwardly rectifying nature of the currents was unaltered after removal of intracellular Mg2+ and chelation with ATP and ethylenediaminetetraacetic acid (EDTA). Permeability ratios for other monovalent cations relative to K+ were: K+ (1.0)>Rb+ (0.86)>Cs+ (0.12)>Li+ (0.08)>Na+ (0.03). Slope conductance ratios measured at –100 mV were: Rb+ (1.66)>K+ (1.0)>Na+ (0.09)>Li+ (0.08)>Cs+ (0.06). K+ conductance was highly sensitive to intracellular free Ca2+ concentration. The relationship between conductance at 0 mV and Ca2+ concentration was well described by a Hill expression with a dissociation constant, K D, of 70 nmol/l and a Hill coefficient, n, of 1.81. Extracellular Ba2+ blocked the currents in a concentration- and voltage-dependent manner. The dependence of the K D for the blockade was analysed using a Woodhull-type treatment, locating the ion interaction site at 19 % of the distance across the electrical field of the membrane and a K D (0 mV) of 7 mmol/l. Tetraethylammonium and 4-aminopyridine were without effect whilst quinine and quinidine blocked the currents with concentrations for half-maximum effects equal to 7 mol/l and 3.5 mol/l, respectively. The unfractionated venom of the scorpion Leiurus quinquestriatus (LQV) blocked the K+ currents of HeLa cells. The toxins apamin and scyllatoxin had no detectable effect whilst charybdotoxin, a component of LQV, blocked in a voltage-dependent manner with half-maximal concentrations of 40 nmol/l at –120 mV and 189 nmol/l at 60 mV; blockade by charybdotoxin accounts for the effect of LQV. Application of ionomycin (5–10 mol/l), histamine (1 mmol/l) or bradykinin (1–10 mol/l) to cells dialysed with low-buffered intracellular solutions induced K+ currents showing inward rectification and a lack of voltage dependence.  相似文献   

15.
The effects of phorbol esters on Ca2+ channel currents in human neuroblastoma SH-SY5Y cells were studied using whole-cell patch-clamp recordings. Bath application of 12-O-tetradecanoylphorbol-13-acetate (TPA) or phorbol 12,13-dibutyrate (PDBu; 100 nM to 1 M), known activators of protein kinase C (PKC), enhanced Ca2+ channel currents in a voltage-dependent manner similar to that of Bay K 8644. TPA also enhanced Ca2+ channel currents during cell dialysis with the PKC pseudosubstrate, PKC(19–36), and in cells which had been pre-incubated with 500 nM staurosporine, and which were exposed to staurosporine during recordings. Application of 4-phorbol12, 13-didecanoate (4-PDD; 100 nM), which does not activate PKC, caused current enhancement similar to the effects of TPA. However, intracellular dialysis of TPA was without effect on Ca2+ channel currents. Residual Ca2+ channel currents recorded after exposure to 1 M -conotoxin GVIA were still enhanced by TPA, but in the presence of either Bay K 8644 (5 M) or nifedipine (5 M), TPA was without effect. When cells were pre-incubated for 10 min at 37° C with 100 nM TPA, currents subsequently recorded in its absence were enhanced as compared to untreated cells; 5 M nifedipine still inhibited currents to the same degree. This enhancement was not mimicked by 4PDD, and was inhibited by staurosporine. Our results indicate that acute applications of phorbol esters (at concentrations commonly used to activate PKC) enhance L-type Ca2+ channel currents in SH-SY5Y cells via a PKC-independent mechanism which appears similar to that induced by Bay K 8644. By contrast, pre-incubation with TPA enhances both L- and N-type currents via activation of PKC.  相似文献   

16.
Responses to adrenaline in mouse peritoneal macrophages were investigated with perforated and cell-attached patch-clamp recording, and with a combination of the perforated-patch recording and fura-2 fluorescence measurements. Extracellularly applied adrenaline induced a transient outward current (4–10s in duration, 100–500 pA in amplitude) at –40 mV associated with a marked increase in conductance. The adrenaline-induced current [I o (Adr)] reversed polarity near –80 mV. The reversal potential depended distinctly on the external K+ concentration but not on external Cl concentration. Removal of external Ca2+ did not affect I o(Adr) within 2–4 min but subsequent responses to adrenaline were progressively depressed. In contrast, treatment with an intracellular Ca2+ chelator, the acetoxymethyl ester of 1,2-bis-(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid completely abolished I o(Adr). Furthermore, I o(Adr) was blocked by bath-applied quinidine and charybdotoxin, but not by tetraethylammonium or apamin. Extracellular application of an 1-adrenoceptor agonist phenylephrine and of noradrenaline mimicked I o(Adr). On the other hand, I o(Adr) was antagonized by a non-selective -adrenoceptor antagonist phentolamine (0.2 M) and an 1-adrenoceptor antagonist prazosin (0.2 M), but was not affected by an 2-adrenoceptor antagonist yohimbine (1 M) or a -adrenoceptor antagonist propranolol (1 M). Cell-attached single-channel recordings with the pipette solution containing 145 mM KCl revealed the activation of single-channel currents with a conductance of 40 pS during application of adrenaline outside the patch. Parallel measurements of membrane current and fura-2 fluorescence in the same cell demonstrated a correlation between the rise in [Ca2+]i and an increase in K+ conductance. Therefore, it is concluded that adrenaline activates a Ca2+-dependent K+ conductance by release of Ca2+ from internal stores through an activation of an 1-adrenoceptor.  相似文献   

17.
In the isolated-perfused frog (Rana pipiens) kidney the question of whether transepithelial transport of Ca2+ is a passive voltage driven process or involves active mechanisms was investigated. With conventional and ion-sensitive microelectrodes transepithelial electrical and electrochemical potential differences were measured. Luminal activities and transepithelial net fluxes of Ca2+ and Cl were evaluated. Different transepithelial electrical voltages in a wide range (+20 to–4 mV) were generated by chemical voltage clamping and the dependence of Ca2+ net fluxes on these voltages investigated. The hormonal control of both Cl and Ca2+ transport was studied by evaluating the effect of the cell-permeable cAMP analogue, db-cAMP and of the adenylate cyclase stimulator, forskolin. The experiments reveal that: (a) Ca2+ is reabsorbed along the diluting segment of frog kidney. (b) Ca2+ reabsorption is inhibited by furosemide because of the elimination of the transepithelial voltage. (c) There is a direct relationship between transepithelial voltage and Ca2+ reabsorption. (d) Neither Cl nor Ca2+ reabsorption are affected by db-cAMP or forskolin.We conclude that Ca2+ reabsorption is passive, driven by the lumen-positive transepithelial voltage. It most likely occurs via the paracellular shunt pathway.  相似文献   

18.
Evoked quantal release from sections of frog endplates contained in an extracellular electrode has been investigated with Ca2+ inflow prevented by superfusing the extracellular space with a Ringer's solution containing Cd e 2+ or with an intracellular, EGTA-buffered solution containing less than 0.1 M Ca e 2+ . Pulse application and recording were by a perfused macro-patch-clamp electrode. The muscle outside the electrode (bath) was superfused with Ringer's solutions containing Cd b 2+ to block Ca2+ inflow and normal (1.8mM) or elevated (10 mM) Ca b 2+ . The depolarization level of the terminal during current pulses that generated maximal Ca2+ inflow was used as unit relative depolarization. Starting from a threshold above 0.5 relative depolarization, the average release increased by a factor of about 1000 with increasing depolarization, reaching a plateau above 1.2 relative depolarization. The high level of plateau release extended to at least a relative depolarization of 4, i.e. to about +200 mV. When Ca2+ inflow was prevented in the section of the terminal within the electrode, release was depressed strongly for relative depolarizations around 1, i.e. at potentials at which Ca2+ inflow is high. However, for large depolarizations (>1.5 relative units), the depression of release by block of Ca2+ inflow was weak or absent. The time course of release, measured in distributions of the delays of quanta after the depolarizing pulse, was unaffected by block of Ca2+ inflow. If the extra-electrode superfusion of Ca b 2+ of the muscle was elevated to 10 mM and Cd b 2+ was 0.1 mM or 0.5 mM, perfusion of the electrode with solutions below 0.1M Ca e 2+ raised the average release paradoxically. With 0.5 mM Cd b 2+ this paradoxical increase of release was, on average, 4-fold at 6 °C, and 19-fold at 16 °C. Quantal endplate currents recorded in less than 0.1 M Ca e 2+ had slightly increased amplitudes, and decay time constants were prolonged by about 50%. The results are interpreted to support the Ca2+/voltage theory of release, which proposes that evoked, phasic release is controlled by both intracellular Ca2+ concentration and another membrane-depolarization-related factor. If the resting intracellular Ca2+ concentration is sufficiently high, large depolarizations can elicit release independent of the presence or absence of Ca2+ inflow.  相似文献   

19.
Calcium transport systems of isolated ileal epithelial cells were investigated. The concentration of cytosolic free calcium ions, [Ca2+]i, was monitored with a fluorescent Ca2+ dye, fura-2. The fluorescence intensity ratio (I 340/I 380) was used as an index of [Ca2+]i. [Ca2+]i of the cells suspended in the nominally Ca2+-free solution was estimated at 52±3 nM. Ca2+ uptake was followed for as long as 5 min in the presence of 100–1000 M added CaCl2. Most of the experiments were performed at 200 M CaCl2. The Ca2+ uptake was abolished by 0.8 mM Ni2+ and 50 M Mn2+ and partitally antagonized by 50 M verapamil and 50 M diltiazem but not affected by 20 M nifedipine. The Ca2+ entry was reduced by increasing concentrations of extracellular K+ in the presence of valinomycin, suggesting a voltage-dependent nature of the uptake. On the other hand, the Ca2+ transport doubled in the presence of Bay K8644 (8 M), a Ca2+ channel agonist. The Bay-K-8644-induced uptake was inhibited by either 10 M nifedipine, 10 M verapamil or 10 M diltiazem and was relatively independent of extracellular K+ concentration. These results suggest that there are at least two distinct Ca2+ transport systems in the rat ileal epithelial cells, one resistant to organic Ca2+ channel blockers but relatively sensitive to membrane potential (basal uptake) and another inducible by Bay K 8644 and sensitive to the channel blockers but relatively independent of membrane potential.  相似文献   

20.
Ca2+ channel blockers (CCB) have been shown to be protective against ischaemic damage of the kidney, suggesting an important role for intracellular Ca2+ ([Ca2+]i) in generating cell damage. To delineate the mechanism behind this protective effect, we studied [Ca2+]i in cultured proximal tubule (PT) cells during anoxia in the absence of glycolysis and the effect of methoxyverapamil (D600) and felodipine on [Ca2+]i during anoxia. A method was developed whereby [Ca2+]i in cultured PT cells could be measured continuously with a fura-2 imaging technique during anoxic periods up to 60 min. Complete absence of O2 was realised by inclusion of a mixture of oxygenases in an anoxic chamber. [Ca2+]i in PT cells started to rise after 10 min of anoxia and reached maximal levels at 30 min, which remained stable up to 60 min. The onset of this increase and the maximal levels reached varied markedly among individual cells. The mean values for normoxic and anoxic [Ca2+]i were 118±2 (n=98) and 662±22 (n=160) nM, respectively. D600 (1 M), but not felodipine (10 M), significantly reduced basal [Ca2+]i in normoxic incubations. During anoxia 1 M and 100 M D 600 significantly decreased anoxic [Ca2+]i levels by 22 and 63% respectively. Felodipine at 10 M was as effective as 1 M D600. Removal of extracellular Ca2+ and addition of 0.1 mM La3+ completely abolished anoxia-induced increases in [Ca2+]i. We conclude that anoxia induces increases in [Ca2+]i in rabbit PT cells in primary culture, which results from Ca2+ influx. Since this Ca2+ influx is partially inhibited by low doses of CCBs, Ltype Ca2+ channels may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号