首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous reports, systemic administration of a stimulatory monoclonal antibody directed against the 4-1BB receptor had no effect on survival or tumor burden in mice inoculated with the poorly immunogenic B16-F10 melanoma. We combined IL-12 gene transfer with 4-1BB costimulation to explore a previously noted cooperative anti-tumor effect against this model tumor. We hypothesize that the innate immune response mediated by IL-12-activated natural killer (NK) cells initiates the activation of the immune system, leading to the priming of T cells, whereas 4-1BB costimulation enhances the function of primed tumor-specific T cells. The effect of the combination therapy on the growth of subcutaneous (s.c.) tumors and pulmonary metastasis was examined. The combination therapy significantly retarded the growth of subcutaneously-inoculated tumors, and 50% of tumor-bearing mice survived with complete tumor regression. In contrast, neither IL-12 gene transfer nor anti-4-1BB antibody administration alone was as effective. Enhanced CTL activity against both B16-F10 tumor cells and TRP-2-pulsed EL4 syngeneic tumor cells was observed in tumor-bearing animals treated with the combination therapy 2 weeks after treatment and, in long-term survivors from this combination therapy, at >120 days. In a pulmonary metastatic model, only the combination therapy generated significant protection against metastasis. In vivo depletion of NK or CD8(+) but not CD4(+) subsets eliminated the protective immunity. Furthermore, NK cell depletion significantly reduced both tumor-specific CTL activity and the number of tumor-specific IFN-gamma-producing cells, suggesting that this synergistic effect requires the participation of both NK and CD8(+) T cells.  相似文献   

2.
Choi BK  Kim YH  Kang WJ  Lee SK  Kim KH  Shin SM  Yokoyama WM  Kim TY  Kwon BS 《Cancer research》2007,67(18):8891-8899
Anti-4-1BB-mediated anticancer effects were potentiated by depletion of CD4+ cells in B16F10 melanoma-bearing C57BL/6 mice. Anti-4-1BB induced the expansion and differentiation of polyclonal tumor-specific CD8+ T cells into IFN-gamma-producing CD11c+CD8+ T cells. The CD4+ cell depletion was responsible for facilitating immune cell infiltration into tumor tissues and removing some regulatory barriers such as T regulatory and indoleamine-2,3-dioxygenase (IDO)+ dendritic cells. Both monoclonal antibodies (mAb) contributed to the efficient induction of MHC class I molecules on the tumor cells in vivo. The effectors that mediated the anti-4-1BB effect were NKG2D+KLRG1+CD11c+CD8+ T cells that accumulated preferentially in the tumor tissues. Blocking NKG2D reduced the therapeutic effect by 20% to 26%, which may indicate that NKG2D contributes partially to tumor killing by the differentiated CD8+ T cells. Our results indicate that the combination of the two mAbs, agonistic anti-4-1BB and depleting anti-CD4, results in enhanced production of efficient tumor-killing CTLs, facilitation of their infiltration, and production of a susceptible tumor microenvironment.  相似文献   

3.
A rational monoclonal antibody (mAb)-based antitumor therapy approach has previously been shown to eradicate various established experimental and carcinogen-induced tumors in a majority of mice. This therapy comprised an agonistic mAb reactive with tumor necrosis factor-related apoptosis-inducing ligand receptor (DR5), expressed by tumor cells, an agonistic anti-CD40 mAb to mature dendritic cells, and an agonistic anti-4-1BB mAb to costimulate CD8(+) T cells. Because agonists of CD40 have been toxic in patients, we were interested in substituting anti-CD40 mAb with other dendritic cell-maturing agents, such as glycolipid ligands recognized by invariant natural killer T (iNKT) cells. Here, we show that CD1d-restricted glycolipid ligands for iNKT cells effectively substitute for anti-CD40 mAb and reject established experimental mouse breast and renal tumors when used in combination with anti-DR5 and anti-4-1BB mAbs (termed "NKTMab" therapy). NKTMab therapy-induced tumor rejection was dependent on CD4(+) and CD8(+) T cells, NKT cells, and the cytokine IFN-gamma. NKTMab therapy containing either alpha-galactosylceramide (alpha-GC) or alpha-C-galactosylceramide (alpha-c-GC) at high concentrations induced similar rates of tumor rejection in mice; however, toxicity was observed at the highest doses of alpha-GC (>250 ng/injection), limiting the use of this glycolipid. By contrast, even very low doses of alpha-c-GC (25 ng/injection) retained considerable antitumor activity when used in combination with anti-DR5/anti-4-1BB, and thus, alpha-c-GC showed a considerably greater therapeutic index. In summary, sequential tumor cell apoptosis and amplification of dendritic cell function by NKT cell agonists represents an exciting and novel approach for cancer treatment.  相似文献   

4.
Melanoma and renal cell carcinoma (RCC) are considered to be the most immunogenic tumors in humans. To generate conditions to induce primary T-cell responses against RCC and to allow further expansion of tumor-specific cytotoxic T lymphocytes (CTL) for adoptive transfer, peripheral blood mononuclear cells from RCC patients were stimulated with primary autologous tumor cells or monocyte-derived dendritic cells (DC) loaded with either tumor lysate (TU-LY) or apoptotic tumor cells (TU-AP). Whereas repetitive stimulation (4x) with tumor cells alone induced a predominant population of CD3(-) natural killer cells, 4 weeks of stimulation with tumor-loaded DC favored induction and expansion of CD4+ T cells (>80%). However, 2 weekly stimulation cycles with tumor-loaded DC followed by restimulation with autologous irradiated tumor cells alone were optimal for induction of tumor-specific CTL responses in vitro. Using these culture conditions a marked increase of CD4+ T cells was observed during the first 2 weeks of stimulation with tumor-loaded DC. Subsequent restimulation with autologous tumor cells alone gave rise to 500-fold expansion of CD8+ T cells. These CD8+ T cells were shown to exhibit strong major histocompatibility complex class I-restricted cytotoxic activity against the autologous tumor. Comparison of TU-LY and TU-AP as a source of tumor antigen for loading DC did not show any difference in stimulating tumor-specific CTL. Length pattern analysis of the complementary determining region 3 (CDR3) of the T-cell receptor Vbeta chain revealed expansion of oligoclonal CTL populations with outgrowth of 1 or 2 clones after prolonged stimulation with autologous tumor cells. Our study demonstrated an efficient method for generating tumor-specific CTL in vitro that may be used to identify tumor cell antigens or that can be expanded for adoptive T-cell transfer in tumor immunotherapy.  相似文献   

5.
The involvement of two phenotypically different regulatory T cells in different stages of tumor growth was investigated. Treatment of BALB/c mice with anti-CD25 monoclonal antibody (mAb) (PC61), but not anti-CD4 mAb (GK1.5) before RL male 1 or Meth A inoculation caused tumor rejection. On the other hand, treatment of BALB/c mice with anti-CD4 mAb (GK1.5) but not anti-CD25 mAb (PC61) on day 6 after inoculation of the same tumors caused rejection. The findings suggest that CD4+CD25+ T cells downregulated the rejection response in the early stage of tumor growth. On the other hand, putative CD4+CD25- T cells downregulated the tumor rejection response in the late stage. Both CD4+CD25+ and putative CD4+CD25- T cells appeared to inhibit the efficient generation of cytotoxic T lymphocytes (CTL). The present study also demonstrated that the treatment of BALB/c mice with anti-CD25 mAb (PC61) at 4 or 6 weeks after 3-methylcholanthrene (3-MC) inoculation retarded tumor occurrence and prolonged survival.  相似文献   

6.
Renal cell carcinoma (RCC), one of the most incurable malignancies, is highly resistant to chemotherapy and radiotherapy. Cytokine immunotherapy has been the standard approach, but the overall response rate is still very low. Administration of agonistic anti-4-1BB monoclonal antibody (mAb) has been shown to induce regression of several animal tumors but its effect on RCC is unknown. We show here that monotherapy with either anti-4-1BB mAb or the cytotoxic drug, 5-fluorouracil (5-FU), has little effect on established RCC, Renca tumors, but combination therapy with anti-4-1BB mAb and 5-FU eradicates the tumors in more than 70 % of mice. The regressing tumor tissues from mice receiving the combination therapy contained more apoptotic tumor cells and tumor infiltrating lymphocytes than tumor tissues from mice receiving 5-FU or anti-4-1BB mAb monotherapy. The number of lymphocytes in the spleens and tumor- draining lymph nodes (TDLNs) of the combination therapy mice was greatly increased compared to that of control or 5-FU monotherapy mice. Mice that had recovered due to the combination therapy rapidly rejected rechallenge with the tumor, pointing to the establishment of long-lasting tumor-specific memory. Our results indicate that targeting tumors with 5-FU, and immune cells with 4-1BB stimulation, could be a useful strategy for treating incurable RCC.  相似文献   

7.
Adoptive immunotherapy with tumor-specific T cells has emerged as a valid approach for prevention or treatment of diseases, such as melanoma and EBV-associated lymphoma. As interleukin (IL) 15 promotes survival of CD8(+) memory CTLs, we hypothesized that it could be used to enhance antitumor immunity in vivo through the maintenance of adoptively transferred memory CTL. To test this, we treated mice bearing P1A(+) tumors with adoptively transferred T cells possessing a transgenic Valpha8(+) T-cell receptor specific for the P1A tumor antigen (called P1CTL). Mice were then randomized to receive daily low-dose IL-15 (0.5 microg/day) or PBS. Mice receiving the transgenic P1CTL and IL-15 experienced a significantly delayed tumor relapse or complete tumor regression (P < 0.002 compared with PBS), with a striking persistence of the CD8(+) Valpha8(+) P1CTL compared with mice receiving the CD8(+) Valpha8(+) P1CTL and PBS vehicle (26.3 versus 5.1% P < 10(-5)). Animals exhibiting complete tumor regression had a significant population of CD8(+) Valpha8(+) P1CTL (46%) that persisted with IL-15 treatment until 140 days after adoptive transfer and successfully defended them against tumor rechallenge without IL-15. Low-dose IL-2 afforded no protection over vehicle and resulted in lower percentages of T cells with an activated memory phenotype, lower Bcl-2 expression, and lower ex vivo antitumor cytotoxicity compared with mice treated with IL-15. Collectively, the data support the notion that exogenous low-dose IL-15 therapy can enhance and even reverse the limited efficacy of adoptively transferred tumor-specific T-cell therapy and may do so in a fashion that is superior and distinct from exogenous IL-2 therapy.  相似文献   

8.
4-1BB is an inducible receptor-like protein expressed rapidly by both CD4 and CD8 T-cells after activation. 4-1BB cross-linking, either by binding to 4-1BBL or by antibody ligation, delivers a costimulatory signal to enhance T-cell activation and proliferation. Previous studies have demonstrated that the administration of 4-1BB monoclonal antibodies (mAbs) induces antitumor immune responses. In the current study using several murine tumors, we examined the systemic effects of 4-1BB mAb on the growth of s.c., intracranial (i.c.), and pulmonary metastases. In addition, the effects of 4-1BB mAb on the generation of antitumor effector T cells were examined. Treatment of 3-day i.c. MCA 205 sarcoma and GL261 glioma with the antibody resulted in prolongation of survival and cure of disease in some mice, whereas only minimal therapeutic effects were observed in established s.c. and pulmonary tumors. No antitumor effects against the poorly immunogenic B16/D5 melanoma were observed. Interestingly, successful treatment of i.c. tumors induced concomitant regression of s.c. tumors. Experiments using severe combined immunodeficient mice and mice depleted of either CD4 or CD8 T cells demonstrated T-cell dependence of the antitumor effects. For generation of effector T cells in the tumor-draining lymph nodes (LNs), administration of 4-1BB mAb had adverse effects, despite the apparent hypertrophy of the LNs. During in vitro activation of tumor-draining LN T cells with anti-CD3 and interleukin 2, the 4-1BB mAb augmented proliferation, resulting in an increase in CD8 T cells. However, they were less therapeutic than not treated LN cells. In adoptive immunotherapy, the coadministration of 4-1BB mAb enhanced the therapeutic efficacy. These results thus demonstrate the limits and potential advantages of 4-1BB antibody interactions with antitumor T cells in vivo and in vitro and suggest that therapeutic interactions of the antibody may be used in a variety of immunotherapeutic approaches.  相似文献   

9.
The role of tumor-specific CD8 and CD4 lymphocytes in rejecting solid tumors has been difficult to determine because of the lack of models in which tumor antigen, specific CD8 cells, and specific CD4 cells can be monitored and controlled. To investigate the minimal components required for the induction and maintenance of CTL activity sufficient to reject a solid tumor in vivo, we transfected the influenza hemagglutinin (HA) gene into a nonimmunogenic class I+/class II- murine malignant mesothelioma (MM) tumor line to generate an endogenous tumor antigen and used TCR transgenic mice with class I- or class II-restricted specificities for HA as sources of naive, tumor-specific T cells. The data show that the presence of a strong tumor antigen is not in itself sufficient to induce an effective CTL response, nor does the presence of a high frequency of precursor cells guarantee tumor rejection. We also show that tumor-specific CD4 cells, when CTL numbers are suboptimal, greatly enhance the eradication of tumor, confirming the importance of antigen-presenting cell presentation of tumor antigens to class II-restricted cells. These data confirm that T-cell receptor transgenic cells, combined with nominal tumor antigen transfection, represent powerful tools to analyze tumor-specific T-cell responses.  相似文献   

10.
Kim YH  Choi BK  Kim KH  Kang SW  Kwon BS 《Cancer research》2008,68(18):7264-7269
Anti-4-1BB and cisplatin showed synergistic anticancer effects in the CT-26 colon carcinoma model, producing complete regression in >60% of mice with either preventive or therapeutic treatment. The tumor-free mice formed long-lasting CD8(+) T cell-dependent tumor-specific memory. Anti-4-1BB induced rapid repopulation of T and B cells from cisplatin-mediated lymphopenia and differentiation and expansion of IFN-gamma(+)CD11c(+)CD8(+) T cells. Cisplatin facilitated expansion of na?ve, effector, and memory CD8(+) T cells; combination therapy produced almost twice as many lymphoid cells as anti-4-1BB alone. Cisplatin increased 4-1BB on antigen-primed T cells and induced 4-1BB de novo on kidney tubular epithelium. Cross-linking of 4-1BB protected the T cells and kidney epithelium from cisplatin-mediated apoptosis by increasing expression of antiapoptotic molecules. Thus, cisplatin-induced 4-1BB provided a mechanism for amelioration of the lymphopenia and nephrotoxicity inherent in cisplatin treatment. We concluded that chemoimmunotherapy with anti-4-1BB and cisplatin is synergistic in tumor killing and prevention of organ-specific toxicity.  相似文献   

11.
Modulation of the immune response by established tumors may contribute to the limited success of therapeutic vaccination for the treatment of cancer compared with vaccination in a preventive setting. We analyzed the contribution of the CD4+ T-cell population to the induction or suppression of tumor-specific CD8+ T cells in a tumor model in which eradication of tumors crucially depends on CD8+ T cell-mediated immunity. Vaccine-mediated induction of protective antitumor immunity in the preventive setting (i.e., before tumor challenge) was CD4+ T cell dependent because depletion of this T-cell subset prevented CD8+ T-cell induction. In contrast, depletion of CD4+ cells in mice bearing established E1A+ tumors empowered the mice to raise strong CD8+ T-cell immunity capable of tumor eradication without the need for tumor-specific vaccination. Spontaneous eradication of tumors, which had initially grown out, was similarly observed in MHC class II-deficient mice, supporting the notion that the tumor-bearing mice harbor a class II MHC-restricted CD4+ T-cell subset capable of suppressing a tumor-specific CD8+ T-cell immune response. The deleterious effects of the presence of CD4+ T cells in tumor-bearing hosts could be overcome by CD40-triggering or injection of CpG. Together these results show that CD4+ T cells with a suppressive activity are rapidly induced following tumor development and that their suppressive effect can be overcome by agents that activate professional antigen-presenting cells. These observations are important for the development of immune interventions aiming at treatment of cancer.  相似文献   

12.
Tumor-derived peptides presented by MHC class I molecules are targets for tumor rejection by CD8+ CTLs. MHC-restricted CD8+ CTLs are required also for the identification and characterization of tumor antigens that will be useful for immune therapy. For many human solid tumors, however, tumor antigens remain undefined because of the difficulty of generating MHC-restricted, tumor-specific CTLs required for their analysis. CD8+ CTL responses are modulated by CD4+ helper T cells and by antigen-presenting cells. In this study, highly purified CD8+ T cells were mixed with tumor cells in primary cultures in the absence of any other cells to reduce the complexity of CTL generation. Tumor cells were transfected with HLA-A1 or HLA-A2 and used to stimulate partly matched HLA-A1- or HLA-A2-positive CD8+ T cells. Partial MHC class I matching of tumor and CD8+ T cells and omission of other cells in primary culture was highly effective in generating MHC class I-restricted CTL to poorly immunogenic small cell lung carcinomas (SCLCs). Cytotoxicity was further enhanced by cotransfection of tumor cells with B7.1 (CD80). ICAM-1 (CD54) was not as effective as costimulation. SCLC cells presented tumor-specific peptides with HLA-A1 and HLA-A2 and were lysed by A1- or A2-restricted CD8+ CTLs. A1- and A2-restricted CD8+ CTLs detected shared tumor antigens on unrelated SCLC tumor lines in addition to private antigens. The use of direct antigen presentation by MHC class I-transfected tumors to MHC class I-matched CD8+ T cells is an effective way to generate MHC class I-restricted CTLs toward poorly immunogenic tumors in vitro, permitting the molecular identification of their tumor antigens.  相似文献   

13.
It is thought that tumor rejection by CD8(+) T-cell effectors is primarily mediated by direct killing. We show that rejection of different tumors (fibrosarcoma, ras-transformed fibroblasts, colon carcinoma, and plasmacytoma) by CD8(+) T cells is always preceded by inhibition of tumor-induced angiogenesis. Angiostasis and tumor rejection were observed in perforin but not in IFN-gamma-deficient mice. Furthermore, adoptive transfer of tumor-specific CD8(+) T cells from IFN-gamma-competent mice inhibited angiogenesis of lung metastases in comparison to those from IFN-gamma gene-deficient mice. Taken together with our previous findings, we conclude that IFN-gamma-dependent antiangiogenesis is a general mechanism involved in tumor rejection by CD4(+) and CD8(+) T-cell effectors.  相似文献   

14.
The involvement of two phenotypically different regulatory T cells in different stages of tumor growth was investigated. Treatment of BALB/c mice with anti-CD25 monoclonal antibody (mAb) (PC61), but not anti-CD4 mAb (GK1.5) before RL male 1 or Meth A inoculation caused tumor rejection. On the other hand, treatment of BALB/c mice with anti-CD4 mAb (GK1.5) but not anti-CD25 mAb (PC61) on day 6 after inoculation of the same tumors caused rejection. The findings suggest that CD4+CD25+ T cells downregulated the rejection response in the early stage of tumor growth. On the other hand, putative CD4+CD25 T cells downregulated the tumor rejection response in the late stage. Both CD4+CD25+ and putative CD4+CD25-T cells appeared to inhibit the efficient generation of cytotoxic T lymphocytes (CTL). The present study also demonstrated that the treatment of BALB/c mice with anti-CD25 mAb (PC61) at 4 or 6 weeks after 3–methylcholanthrene (3–MC) inoculation retarded tumor occurrence and prolonged survival.  相似文献   

15.
Li Q  Pan PY  Gu P  Xu D  Chen SH 《Cancer research》2004,64(3):1130-1139
One of the mechanisms by which tumor cells evade the immune system is the lack of proper antigen-presenting cells. Improvement in host immunity against tumor cells can be achieved by promoting the differentiation of dendritic cells (DCs) from immature myeloid cells (Gr-1(+)Ly-6C(+)F4/80(+)) that accumulate in the bone marrow and lymphoid organs of mice with large tumor burdens. The enriched immature myeloid cells inhibit T-cell proliferation and tumor-specific T-cell response, which can be reversed by the differentiation of immature myeloid cells or depletion of F4/80(+) cells. Sorted Gr-1(+)/F4/80(+) immature myeloid cells differentiated into CD11c(+) cells that express CD80 and I-A/I-E (MHC class II) in the presence of recombinant murine granulocyte macrophage colony-stimulating factor (GM-CSF). Furthermore, intratumoral gene delivery of GM-CSF not only promoted the differentiation of carboxyfluoroscein succinimidyl ester-labeled immature myeloid cells into CD11c(+) cells with the characteristics of mature DCs (CD80(+), I-A/I-E(+)) but also enhanced innate natural killer and adaptive cytolytic T-cell activities in mice treated with interleukin (IL)-12 and anti-4-1BB combination therapy. More importantly, intratumoral delivery of GM-CSF and IL-12 genes in combination with 4-1BB costimulation greatly improved the long-term survival rate of mice bearing large tumors and eradicated the untreated existing hepatic tumor. The results suggest that inducing the maturation of immature myeloid cells, thus preventing their inhibitory activity and enhancing their antigen-presenting capability, by GM-CSF gene therapy is a critically important step in the development of effective antitumor responses in hosts with advanced tumors.  相似文献   

16.
One new approach to cancer therapy is based on the adoptive transfer of tumor-specific cytotoxic T cells and anti-CD25 antibodies. In the present study, CD8+ and IFN-gamma secreting T lymphocytes (CTLs) were enriched as tumor-specific cytotoxic T cells from spleen lymphocytes of mice bearing the Renca tumor (a murine renal carcinoma line originating from a BALB/c mouse) after stimulation with tumor cells. An anti-CD25 IL-2Ralpha(anti-CD25) mAb from hybridoma PC61 was used for depletion for CD4(+)CD25(+) regulatory T (Treg) cells. Treatment-efficacy for tumor-bearing mice was compared using 4 systems: 1, whole spleen lymphocytes stimulated with tumor cells in vitro from tumor-bearing mice; 2, CTLs; 3, anti-CD25 mAbs; 4, CTLs and anti-CD25 mAbs. At the 50th day after tumor inoculation, in the group which received anti-CD25 mAb for depletion of T cells and inoculation of CTLs, tumors had disappeared and no re-growth was observed. In contrast, all mice of the non-treated and other three groups, treated with whole spleen cells alone, CTLs alone and anti-CD25 mAb alone, had died. These results showed that a combination of Treg cell-depletion using anti-CD25 mAbs and CTL administration is a feasible approach for treatment of cancers which warrants further exploration in the clinical setting.  相似文献   

17.
18.
4-1BB is a T-cell costimulatory receptor which binds its ligand 4-1BBL, resulting in prolonged T cell survival. We studied the antitumor effects of adoptively transferred tumor-specific T cells expanded ex vivo using tumors transduced with herpes simplex virus (HSV) amplicons expressing 4-1BBL as a direct source of antigen and costimulation. We constructed HSV amplicons encoding either the 4-1BBL (HSV.4-1BBL) or B7.1 (HSV.B7.1) costimulatory ligands. Lewis lung carcinoma cells expressing ovalbumin (LLC/OVA) were transduced with HSV.4-1BBL, HSV.B7.1, or control HSV amplicons and used to stimulate GFP+ OVA-specific CD8+ T cells (OT-1/GFP) ex vivo. Naive or ex vivo stimulated OT-1/GFP cells were adoptively transferred into LLC/OVA tumor-bearing mice. Higher percentages of OT-1/GFP cells were seen in the peripheral blood, spleen, and tumor bed of the HSV.4-1BBL-stimulated OT-1/GFP group compared with all other experimental groups. OT-1 cells identified within the tumor bed and draining lymph nodes of the HSV.4-1BBL-stimulated OT-1 group showed enhanced bromodeoxyuridine (BrdUrd) incorporation, suggesting ongoing expansion in vivo. Mice receiving HSV.4-1BBL-stimulated OT-1/GFP had significantly decreased tumor volumes compared with untreated mice (P<0.001) or to mice receiving naive OT-1/GFP (P<0.001). Transfer of HSV.B7.1-stimulated OT-1/GFP did not protect mice from tumor. Mice that received HSV.4-1BBL-stimulated OT-1/GFP exhibited increased cytolytic activity against LLC/OVA and higher percentages of Ly-6C+ OT-1/GFP in the spleen and tumor bed compared with controls. Tumor-specific T cells stimulated ex vivo using tumor transduced with HSV.4-1BBL expand in vivo following adoptive transfer, resulting in tumor eradication and the generation of tumor-specific CD44+Ly-6C+CD62L- effector memory T cells.  相似文献   

19.
In vivo administrations of anti-Lyt-2.2 (CDS) mAb and anti-L3T4 (CD4) mAb selectively eliminated CD8+ cells amd CD4+ cells, respectively. The relative potencies of CD8+ cells and CD4+ cells and their roles in primary tumor rejections were studied by investigating the effects of these mAbs on tumor growth. CD8+ cells were themselves fully capable of mediating rejection in 5 different tumor rejection systems: two radiation leukemia virus (RadLV)-induced leukemias, B6RV2 and BALBRVD, a radiation-induced leukemia BALBRL♂1, and a plasmacytoma BALBMOPC-70A in CB6F1 mice, and a Friend virus-induced leukemia B6FBL-3 in B6 mice. On the other hand, CD4+ cells were capable of resisting tumor growth of B6FBL-3, but not of the other four tumors. Furthermore, for efficient rejection of CB6F1UV+˚l sarcoma by CB6F1 mice, synergy of CDS+ and CD4+ cells was necessary. Blocking of UV+˚ 1 rejection was abrogated by delayed administration of anti-L3T4 (CD4) mAb but not anti-Lyt-2.2 (CDS) mAb, indicating the involvement of CD4+ cells in only the initial phase of rejection.  相似文献   

20.
An interleukin (IL)-4-containing tumor environment is reported to be beneficial for immune clearance of tumor cells in vivo; however, the effect of IL-4 on the effector CD8+ T cells contributing to tumor clearance is not well defined. We have used the immunogenic HLA-CW3-expressing P815 (P.CW3) mastocytoma and investigated whether IL-4 expression by the tumor affects tumor clearance and, if so, whether it alters the tumor-induced Vbeta10+ CD8+ T-cell response. P.CW3 were stably transfected with IL-4 or the empty control vector, and independent cell lines were injected i.p. into syngeneic DBA/2 mice. After apparent clearance of primary tumors over 12 to 15 days, secondary tumors arose that lacked surface expression and H-2-restricted antigen presentation of CW3 in part due to the loss of the HLA-CW3 expression cassette. Surprisingly, mice that received IL-4-producing tumor cells showed delayed primary tumor clearance and were significantly more prone to develop secondary tumors compared with mice receiving control tumor cells. Tumor clearance was dependent on CD8+ T cells. The IL-4-secreting P.CW3 tumor cells led to markedly higher mRNA expression of IL-4 and granzyme A and B but no differences in IFN-gamma and IL-2 production, cell proliferation, or ex vivo CTL activity in primary Vbeta10+ CD8+ T cells when compared with the control tumor cells. We concluded that tumor-derived IL-4 selectively changed the quality of the tumor-induced CD8+ T-cell response and resulted in unexpected negative effects on tumor clearance. These data bring into question the delivery of IL-4 to the tumor environment for improving tumor immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号