首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five stereochemically constrained analogs of the chemotactic tripeptide incorporating l-aminocycloalkane-l-carboxylic acid (Acnc) and α, α-dialkylglycines (Deg, diethylglycine; Dpg, N, N-dipropylglycine and Dbg, N, N-dibutylglycine) at position 2 have been synthesized. NMR studies of peptides For-Met-Xxx-Phe-OMe (Xxx = Ac7c. I: Ac8c. II: Deg, III; Dpg, IV and Dbg, V; For, formyl) establish that peptides with cycloalkyl residues, I and II, adopt folded β-turn conformations in CDCl3, and (CD3)2SO. In contrast, analogs with linear alkyl sidechains, III-V, favour fully extended (C5) conformations in solution. Peptides I-V exhibit high activity in inducing β-glucosaminidase release from rabbit neutrophils, with ED50 values ranging from 1.4–8.0 × 10–11. M. In human neutrophils the Dxg peptides III-V have ED50 values ranging from 2.3 × 10?8 to 5.9 × 10?10 M, with the activity order being V>IV>III. While peptides I-IV are less active than the parent. For-Met-Leu-Phe-OH, in stimulating histamine release from human basophils, the Dbg peptide V is appreciably more potent, suggesting its potential utility as a probe for formyl peptide receptors. © Munksgaard 1996.  相似文献   

2.
The molecular and crystal structures of the Cα,α-dialkylated α-amino acid residue 1-aminocyclopropane-1-carboxylic acid hemihydrate (H2-Ac3c-O?·½ H2O) and nine derivatives and dipeptides have been determined by X-ray diffraction. The derivatives are pBrBz-Ac3c-OH, Piv-Ac3c-OH, Z-Ac3c-OH, the α- and β-forms of t-Boc-Ac3c-OH, Z-Ac3c-OMe, and the 5(4H)-oxazolone from pBrBz-Ac3c-OH; the dipeptides are H-(Ac3c)2-OMe and c(Ac3c)2. The values determined for the torsion angles about the N-Cα (φ) and Cα-C′ (φ) bonds for the single Ac3c residue of Piv-Ac3c-OH, the α- and β-forms of t-Boc-Ac3-OH and Z-Ac3c-OMe, and the C-terminal Ac3c residue of H-(Ac3c)2-OMe correspond to folded conformations in the “bridge” region of the Ramachandran map. The structures of pBrBz-Ac3c-OH and Z-Ac3c-OH, however, are unusual in having a semi-extended conformation for the φ,ψ angles. The N-terminal Ac3c residue of H-(Ac3c)2-OMe adopts a novel type of C5 conformation, characterized inter alia by an (amino) N ? H-N (peptide) intramolecular hydrogen bond. While the acyl Nα-blocking groups form trans amides (pBrBz-Ac3c-OH and Piv-Ac3c-OH), the urethane groups may adopt either the trans [Z-Ac3c-OH and t-Boc-Ac3c-OH(α-form)] or the cis amide conformations [t-Boc-Ac3c-OH(β-form) and Z-Ac3c-OMe]. The five- and six-membered rings of the 5(4H)-oxazolone and the 2,5-dioxopiperazine, respectively, are planar. The four independent molecules in the asymmetric unit of the free α-amino acid are zwitterionic.  相似文献   

3.
The crystal structures of four peptides incorporating l-aminocycloheptane-l-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt β-turn conformations stabilized by an intramolecular 4 × 1 hydrogen bond, the former folding into a type-I/III β-turn and the latter into a type-II β-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3, suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the β-turn conformations in solution.  相似文献   

4.
The two Z-l -Ala-d l -(xMe)Trp-NH2 diastereomeric dipeptides were synthesized from (Z-l -Ala)2O and H-dl -(xMe)Trp-NH2. The latter racemate, prepared by phase-transfer catalyzed alkylation of the Nα-benzylidene derivative of alanine amide followed by acidic hydrolysis of the resulting Schiff base, was characterized by X-ray diffraction. The molecular and crystal structure of Z-l -Ala-l -(αMe)Trp-NH2, separated from its diastereomer by silica-gel column chromatography, was determined by X-ray diffraction analysis. Both independent molecules in the asymmetric unit of the dipeptide adopt a type-II β-bend conformation. However, only the more regularly folded conformation of molecule B is stabilized by a 1←4 C=O…H—N intramolecular H bond. The present results indicate that: (i) the Cα-methylated (αMe)Trp residue is a strong β-bend and helix former, and (ii) the relationship between (αMe)Trp chirality and helix screw sense tends to be opposite to that of protein amino acids. The implications for the use of the (αMe)Trp residue in designing conformationally restricted analogs of bioactive peptides are briefly discussed. ©Munksgaard 1995.  相似文献   

5.
Abstract: The N‐terminal 1–34 segment of parathyroid hormone (PTH) is fully active in vitro and in vivo and it can reproduce all biological responses in bone characteristic of the native intact PTH. Recent studies have demonstrated that N‐terminal fragments presenting the principal activating domain such as PTH(1–11) and PTH(1–14) with helicity‐enhancing substitutions yield potent analogues with PTH(1–34)‐like activity. To further investigate the role of α‐helicity on biological potency, we designed and synthesized by solid‐phase methodology the following hPTH(1–11) analogues substituted at positions 1 and/or 3 by the sterically hindered and helix‐promoting Cα‐tetrasubstituted α‐amino acids α‐amino isobutyric acid (Aib), 1‐aminocyclopentane‐1‐carboxylic acid (Ac5c) and 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c): Ac5c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( I ); Aib‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( II ); Ac6c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( III ); Aib‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IV ); Aib‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( V ); S‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VI ), S‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VII ); Ac5c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VIII ); Ac6c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IX ); Ac5c‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( X ); Ac6c‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( XI ). All analogues were biologically evaluated and conformationally characterized in 2,2,2‐trifluoroethanol (TFE) solution by circular dichroism (CD). Analogues I – V , which cover the full range of biological activity observed in the present study, were further conformationally characterized in detail by nuclear magnetic resonance (NMR) and computer simulations studies. The results of ligand‐stimulated cAMP accumulation experiments indicated that analogues I and II are active, analogues III , VI and VII are very weakly active and analogues IV , V , VIII–XI are inactive. The most potent analogue, I exhibits biological activity 3500‐fold higher than that of the native PTH(1–11) and only 15‐fold weaker than that of the native sequence hPTH(1–34). Remarkably, the two most potent analogues, I and II , and the very weakly active analogues, VI and VII , exhibit similar helix contents. These results indicate that the presence of a stable N‐terminal helical sequence is an important but not sufficient condition for biological activity.  相似文献   

6.
The synthesis and conformational analysis in solution (by FTIR absorption and 1H NMR) and in the crystal state (by X-ray diffraction) of three Hib-containing depsipeptides have been performed. In the crystal state Z-Aib-Hib-Aib-OMe is folded into a type-III β-bend, while the conformation adopted by Z-(Aib-Hib)2-Aib-OMe is a β-bend ribbon spiral, characterized by two type-III β-bends with Aib(1)-Hib(2) and Aib(3)-Hib(4) as corner residues, respectively. Both independent molecules in the asymmetric unit of t-Boc-L-Ala-Hib-L-Ala-OMe crystals are folded into a type-II β-bend. For the Aib-Hib depsipeptides the conformation adopted in the crystal state is also that largely prevailing in solution, whereas for t-Boc-L-Ala-Hib-L-Ala-OMe the β-bend conformation is significantly less populated in solution. A comparison is also made with: (i) the published crystal-state conformations of fully protected -(Aib)3?, -(Aib)5?, and -L-Ala-Aib-L-Ala- sequences and the β-bend ribbon spiral generated by (Aib-L-Pro)n oligomers, and (ii) with the herewith described solution preferred conformation of Z-L-Ala-Aib-L-Ala-OMe. The possible use of Hib as an isosteric replacement for Aib in the design of conformation ally constrained depsipeptides is briefly discussed.  相似文献   

7.
A conformational study of two protected peptide segments, (1–10 and 11–28), spanning the entire sequence of thymosin α1, in solvents of different polarity and capability of forming hydrogen bonds, is reported. By using infrared absorption and circular dichroism techniques the occurrence of the random coil conformation, the self-associated β-structure, and the α-helix (the latter adopted only by the longer peptide) was established. The self-associated species of the two peptide segments were disrupted either by adding increasing amounts of hexamethylphosphoramide or by dilution. This structural transition was monitored by the disappearance of the amide-I C=O stretching band of strongly intermolecularly hydrogen-bonded molecules (near 1630 cm-1) in the infrared absorption spectra. The tendency of these peptides to aggregate is paralleled by a decrease in their solubility. The conformational findings are discussed in terms of the solvent-dependent product yields obtained in the reaction of segment (1–10) with the Nα-deprotected (11–28) segment to give the fully protected thymosin α1.  相似文献   

8.
The molecular and crystal structures of one derivative and three model peptides (to the pentapeptide level) of the chiral Cα,α-disubstituted glycine Cα-methyl, Cα-isopropylglycine [(αMe)Val] have been determined by X-ray diffraction. The derivative is mClAc-l -(α Me)Val-OH, and the peptides are Z-l -(αMe)Val-(l -Ala)2-OMe monohydrate, Z-Aib-L-(αMe)Val-(Aib)2-OtBu, and Ac-(Aib)2-l -(αMe)Val-(Aib)2OtBu acetonitrile solvate. The tripeptide adopts a type-I β-turn conformation stabilized by a 1 ← 4N-H . O=C intramolecular H-bond. The tetra- and pentapeptides are folded in regular right-handed 310-helices. All four L-(αMe)Val residues prefer φ, Ψ angles in the right-handed helical region of the conformational map. The results indicate that: (i) the (αMe)Val residue is a strong type-I/III β-turn and helix former, and (ii) the relationship between (αMe)Val chirality and helix screw sense is the same as that of Cα-monosubstituted protein amino-acids. The implications for the use of the (αMe)Val residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.  相似文献   

9.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHcH3 (Xaa = Val, Phe, Leu, Abu. Ah) as well as αβ-unsaturated Ac-Pro-ΔXaa-NHCH3 [Δ Xaa =ΔVal, (Z)-ΔPhe, (Z)-ΔLeu, (Z)-ΔAbu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts Δδ for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and αβ-dehydropeptides (ΔXaa) on the other. Former compounds are conformationally flexible with an inverse γ-bend, a β-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and αβ-dehydropeptides are very similar, with the type-II β-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The β-turn formation propensity seems to be somewhat greater in αβ-unsaturated than in heterochiral peptides, but an estimation of β-folded conformers is risky.  相似文献   

10.
A facile strategy for the stereoselective synthesis of suitably protected O-glycosylated amino acid building blocks, namely, Nα-Fmoc-Ser-[Ac4-β-d -Gal-(1-3)-Ac2α or β-d -GalN3]-OPfp and Nα-Fmoc-Thr-[Ac4-β-d -Gal-(1-3)-Ac2-α or β-d -GalN3]-OPfp is described. What is new and novel in this report is that Koenigs-Knorr type glycosylation of an aglycon serine/threonine derivative (i.e. Nα-Fmoc-Ser-OPfp or Nα-Fmoc-Thr-OPfp) with protected β-d -Gal(1-3)-d -GalN3 synthon mediated by silver salts resulted in only α-and/or β-isomers in excellent yields under two different reaction conditions. The subtle differences in stereoselectivity were demonstrated clearly when glycosylation was carried out using only AgClO4 at -40°C which afforded α-isomer in a quantitative yield (α:β= 5:1). On the other hand, the β-isomer was formed exclusively when the reaction was performed in the presence of Ag2CO3AgClO4 at room temperature. A complete assignment of 1H resonances to individual sugar ring protons and the characteristic anomeric α-1H and β-1H in Ac4Galβ(1-3)Ac2GalN3α and/or β linked to Ser/Thr building blocks was accomplished unequivocally by two-dimensional double-quantum filtered correlated spectroscopy and nuclear Overhauser enhancement and exchange spectroscopy NMR experiments. An unambiguous structural characterization and documentation of chemical shifts, including the coupling constants for all the protons of the aforementioned a- and p-isomers of the O-glycosylated amino acid building blocks carrying protected β-d -Gal(1-3)-d -GalN3, could serve as a template in elucidating the three-dimensional structure of glycoproteins. The synthetic utility of the building blocks and versatility of the strategy was exemplified in the construction of human salivary mucin (MUC7)-derived, O-linked glycopeptides with varied degrees of glycosylation by solid-phase Fmoc chemistry. Fmoc/tert-butyl-based protecting groups were used for the peptidic  相似文献   

11.
The molecular and crystal structures of the Cα-tetrasubstituted, δ-branched α-amino acid Cα-methyl-homophenylalanine, H-d -(αMe)Hph-OH, and three peptides (to the pentamer level), including the homotripeptide, have been determined by X-ray diffraction. The peptides are Z-l -(αMe)Hph-(l -Ala)2-OMe, pBrBz-[d -(αMe)Hph]3-OtBu and Ac-(Aib)2-l -(αMe)Hph-(Aib)2-OtBu. All the (αMe)Hph residues prefer φ,ψ torsion angles in the helical region of the conformational map. The two terminally blocked tripeptides adopt a β-bend conformation stabilized by a 1→4 C = O?H-N intramolecular H-bond. The terminally blocked pentapeptide is folded in a regular 310-helix. In general, the relationship between (αMe)Hph α-carbon chirality and helix handedness is the same as that exhibited by protein amino acids. A comparison is also made with the conclusions extracted from published work on peptides from other types of Cα-alkylated aromatic α-amino acids. © Munksgaard 1996.  相似文献   

12.
Crystals of L-leucylglycylglycylglycine, LGGG (C12H22N4O5), grown from an ethanol-water solution, are orthorhombic, space groups P212121, with unit cell dimensions (at 22 ± 3°) a = 9.337(1), b = 10.995(1), c = 15.235(1)Å, v = 1563.4 Å3, Z = 4 with a density of Dobs= 1.29 g-cm-3 and Dcalc= 1.279 g°cm-3. The crystal structure was solved by the application of direct methods and refined to an R value of 0.029 for 1018 reflections with I ± 2s?. The molecule exists as a zwitterion in the crystal. The trans peptide backbone takes up a folded conformation at the middle glycylglycyl link accompanied by a significant nonplanarity up to Δω of 8° at the middle peptide and is relatively more extended at the two ends. The molecules are linked together intermolecularly in an infinite sequence of head to tail 1–4′ hydrogen bonds, as is typical of charged peptides. It is interesting to note that while glycylglycylglycine takes up an extended β-sheet conformation, addition of Leu to the N-terminal results in a bent conformation.  相似文献   

13.
Abstract: A series of short, amphipathic peptides incorporating 80% Cα,Cα‐disubstituted glycines has been prepared to investigate amphipathicity as a helix‐stabilizing effect. The peptides were designed to adopt 310‐ or α‐helices based on amphipathic design of the primary sequence. Characterization by circular dichroism spectroscopy in various media (1 : 1 acetonitrile/water; 9 : 1 acetonitrile/water; 9 : 1 acetonitrile/TFE; 25 mm SDS micelles in water) indicates that the peptides selectively adopt their designed conformation in micellar environments. We speculate that steric effects from ith and ith + 3 residues interactions may destabilize the 310‐helix in peptides containing amino acids with large side‐chains, as with 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c). This problem may be overcome by alternating large and small amino acids in the ith and ith + 3 residues, which are staggered in the 310‐helix.  相似文献   

14.
NMR spectroscopy has been employed for the conformational analysis of the cyclic hexapeptide cycle(-d -Pro1-Ala2-Ser3(Bzl)-Trp4-Orn5(Z)-Tyr6-) with and without protecting groups on Ser3 and Orn5. This peptide sequence was derived from the active loop sequence of the α-amylase inhibitor Tendamistat (HOE 467). The aim was to investigate the role of serine in position i of a standard β-turn on the conformation and stabilization of this turn. Based on distance and torsion constraints from 2D NMR spectroscopic measurements in DMSO-d6 solution, structure refinement was accomplished by restrained molecular dynamics (MD) simulations in vacuo and in DMSO. The analysis of both structures in solution reveals a considerable effect of the unprotected serine sidechain on the adjacent β-turn conformation. While in the protected peptide with Ser3(Bzl) a βII-turn is observed between Trp4 and Orn5, the deprotected compound reveals a βI-turn in this region. The βI-turn is stabilized by a backbone-sidechain hydrogen bond from Orn5NαH to Ser3Oγ. Comparisons with other NMR-derived solution structures of cyclic model peptides and in some protein structures from literature reveal a general structural motif in the stabilization of βI-turns by serine in the i position through backbone-sidechain interactions. © Munksgaard 1995.  相似文献   

15.
The folded structure induced by the N-aminoproline residue (the hydrazino analogue of proline, denoted hPro) in the Boc-Gly1-hPro2-Gly3-NHiPr hydrazino tripeptide has been characterized in the solid state by X-ray diffraction, and compared to the usual βII-turn structure in the Boc-Gly1-Pro2-Gly36-NHiPr cognate tripeptide. It is stabilized by a bifurcated hydrogen bond in which (Gly3)NH interacts with both (Gly1)CO and (hPro2)Nx. This conformation is retained in CH2Cl2 and CHC13 solutions, and allows an overall folded conformation of the hydrazino tripeptide in which (iPr)NH is hydrogen-bonded to (Boc)CO. The hPro α-hydrazino acid residue appears to promote a local folded structure, and might behave as a β-turn mimic. © Munksgaard 1994.  相似文献   

16.
Two sterically constrained peptides {iBoc-Aib-Aib-Aib-DkNap-Leu-Qx-Ala-Aib-Aib-F1, (Dk4Qx6[7/9]) and iBoc-Aib-Aib-Aib-DkNap-Leu-Aib-Ala-Aib-Aib-Fl, (Dk47/9)} containing α-aminoisobutyric acid (Aib) and Aib-class amino acids in conjunction with selected mono-α-alkyl amino acids were synthesized by an optimized TBTU/HOBt procedure. The use of Aib-class amino acids (e.g. DkNap and Qx), defined and discussed here, gives rise to the same overwhelmingly 310-helical backbone conformation as that provided by simpler Aib-rich peptides and homopeptides. The synthetic α,α-dialkylamino acids (DkNap, Qx) are aromatic homologues of the known alicyclic variants of Aib, the Ac5c and Ac6c amino acids. Two new organic solubilizing groups for peptides, iBoc and 2-methoxyethylamine, are introduced. The 1H nuclear magnetic resonance analyses of the Dk4s/p[7/9] and Dk4Qx6[7/9] peptides demonstrate the unambiguous 310s/b-helical hydrogen bonding pattern of these peptides, confirming the design objective of these sequence patterns containing greater than 50% Aib and Aib-class composition. © Munksgaard 1994.  相似文献   

17.
Stereochemical constraints have been introduced into the enkephalin backbone by substituting α-aminoisobutyryl (Aib) residues at positions 2 and 3, instead of Gly. 1H n.m.r. studies of Tyr-Aib-Gly-Phe-Met-NH2, Tyr-Aib-Aib-Phe-Met-NH2 and Tyr-Gly-Aib-Phe-Met-NH2 demonstrate the occurrence of folded, intramolecularly hydrogen bonded structures in organic solvents. Similar conformations are also favoured in the corresponding t-butyloxycarbonyl protected tetrapeptides, which lack the Tyr residue. A β-turn centred at positions 2 and 3 is proposed for the Aib2-Gly3analog. In the Gly2-Aib3analog, the β-turn has Aib3-Phe4as the corner residues. The Aib2-Aib3analog adopts a consecutive β-turn or 310 helical conformation. High in vivo biological activity is observed for the Aib2and Aib2-Aib3analogs, while the Aib3peptide is significantly less active.  相似文献   

18.
Abstract: Two complete series of N‐protected oligopeptide esters to the pentamer level from 1‐amino‐cyclodecane‐1‐carboxylic acid (Ac10c), an α‐amino acid conformationally constrained through a medium‐ring Cαi ? Cαi cyclization, and either the l ‐Ala or Aib residue, along with the N‐protected Ac10c monomer and homo‐dimer alkylamides, were synthesized using solution methods and fully characterized. The preferred conformation of these model peptides was assessed in deuterochloroform solution using FT‐IR absorption and 1H NMR techniques. Furthermore, the molecular structures of two derivatives (Z‐Ac10c‐OH and Fmoc‐Ac10c‐OH) and two peptides (the dipeptide ester Z‐Ac10c‐l ‐Phe‐OMe and the tripeptide ester Z‐Aib‐Ac10c‐Aib‐OtBu) were determined in the crystal state using X‐ray diffraction. The experimental results support the view that β‐bends and 310‐helices are preferentially adopted by peptides rich in Ac10c, the third largest cycloaliphatic Cα,α‐disubstituted glycine known. This investigation allowed us to complete a detailed conformational analysis of the whole 1‐amino‐cycloalkane‐1‐carboxylic acid (Acnc, with n = 3–12) series, which represents the prerequisite for our recent proposal of the ‘Acnc scan’ concept.  相似文献   

19.
Crystals of glycylglycylglycine (C6H11N3O4), grown from an aqueous methanol solution, are triclinic, space group P1, with the unit cell dimensions (at 22 ± 3°) a= 11.656(3), b= 14.817(3), c= 4.823(2) Å, α= 88.45(3), β= 95.96(3), γ= 105.42(3)°, Z = 4 (with two molecules in the asymmetric unit) with a density of Dobs= 1.58g·cm-3 and Dcalc= 1.572g·cm-3. The crystal structure was solved by a combination of multisolution and trial and error methods and refined with full-matrix least-squares method to a final R value of 0.036 for the observed 3021 reflections (I ≥ 2s?). The conformation of the two molecules I and II in the asymmetric unit is very similar (except around the N-terminal end); they have the fully extended trans-planar conformation, and have ω values ranging from 2 to 4°. The peptide chain repeating distances (C1α - C3α) are 7.27 Å and 7.18 Å in the two molecules as compared with the value of 6.68 Å for extended β-sheets with β-carbons. There are four different interactions between these two molecules characterized by different hydrogen bonding. Molecule I is hydrogen bonded to a neighboring molecule I using four hydrogen bonds. Molecule II is hydrogen bonded to another II, using bifurcated interactions involving the peptide nitrogen. Molecule I is hydrogen bonded to two different molecules II forming distinctly different hydrogen bonding patterns from the two mentioned above. The molecules are packed in rows, in a head-to-tail fashion (C-terminal opposite N-terminal) and are held together in sheets by hydrogen bonds between carbonyl and amide groups, corresponding to the very familiar anti-parallel pleated sheet arrangement for polypeptides. The hydrogen bonds involving the amino nitrogens as donors are significantly longer and presumably weaker compared to those involving the NH+3 group. The C=O distances show variations that correlated with hydrogen bonding. The N-H … O angle varies from 152 to 174° and the bent N-H … O hydrogen bonds show bifurcated interactions.  相似文献   

20.
The dodecapeptide Boc-(Ala-Leu-Aib)4-OMe crystallized with two independent helical molecules in a triclinic cell. The two molecules are very similar in conformation, with a 310-helix turn at the N-terminus followed by an α-helix, except for an elongated N(7)…O(3) distance in both molecules. All the helices in the crystal pack in a parallel motif. Eleven water sites have been found in the head-to-tail region between the apolar helices that participate in peptide-water hydrogen bonds and a network of water-water hydrogen bonds. The crystal parameters are as follows: 2(C58H104N12O15) +ca. 10H2O, space group P1 with a= 12.946(2), b= 17.321(3), c= 20.465(4)Å, α=103.12(2), β= 105.63(2), γ= 107.50(2)?, Z= 2, R= 10.9% for 5152 data observed > 3σ(F), resolution 1.0 Å. In contrast to the shorter sequences [Karle et al. (1988) Proc. Natl. Acad. Sci. USA 85 , 299–3031 and Boc-(Ala-Leu-Aib)2-OMe [Karle et al. (1989) Biopolymers 28 , 773–781], no insertion of a water molecule into the helix is observed. However, the elongated N—O distance between Ala7 NH and Aib3 CO in both molecules (molecule A, 3.40 Å; molecule B, 3.42 Å) is indicative of an incipient break in the helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号