首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The conformational properties of the configurational isomers of tuftsin, a linear tetrapeptide with the sequence Thr-Lys-Pro-Arg, were investigated with six 1 ns molecular dynamics simulations in explicit water and in a 1.0 M NaCl solution. The average conformation of the cis isomer is a type VI β-turn. Our results indicate that water-peptide hydrogen bonding, in addition to intramolecular hydrogen bonds, stabilizes the cis conformer. The trans isomer is neither a β- nor a γ-turn. Results are compared with parallel studies on a cyclic analog of tuftsin, cyclo(Thr-Lys-Pro-Arg-Gly). The addition of salt does not influence the backbone conformation of the peptide. Differences between the structures are confined to the side-chain orientations of the Lys and Arg residues. © Munksgaard 1995.  相似文献   

2.
Circular dichroism (CD) and1 H-{1H}NOE spectra were obtained for Piv-Pro-Ser-NHCH3(1),[Piv-(CH3)3-C-CO], Boc-Pro-Ser-NHCH3 (2) and Boc-Val-Ser-NHCH3 (3), to determine the solution conformation of these p-turn models. In the crystal, 1 and 3 adopt an ideal type I β-turn, while 2 is characterized by a semifolded backbone geometry incorporating a cis Boc-Pro tert-amide bond. The predominance of a β-turn conformation in solution was suggested for models 1-3 on the basis of 1H-{1H}NOE data. In a nonpolar solvent the prevailing trans rotamer form (>80%) of 2 has a β-turn conformation according to heteronuclear NOE measurement. Positive 1H-{1H} NOEs were detected between the Hα(Pro)/NH(Ser), Hα(Ser)/NH(Ser) and NH(NHCH33)/HN(Ser) protons in the trans Boc-Pro rotamer form of 2 at -20° in CDCl3. Similar positive homonuclear NOE enhancements were also observed on the appropriate proton signals in other models, such as Boc-Val-Ser-NHCH3 (3). Boc-Val-D-Ser-NHCH3 (4) and Boc-Pro-D-Ser-NHCH3 (5), in various solvents. The 1H- {1H)NOE experiments carried out in CD3CN clearly showed that besides the type I (or III) β-turn structure, one of the main conformations of models 1-5 is close to the type II β-turn backbone geometry in a nonpolar solvent. Unexpectedly, the conformational mixture of models 1-3 were characterized by class C (helix-like) CD spectra, although class C spectra are generally only correlated with the type I β-turn conformation. These acyclic models are the first carefully investigated examples of -L-L- triamide systems, containing a significant amount of a type II β-turn, as well as the type I p-turn and, however, yielding a class C circular dichroism spectra. The CD spectra recorded for 3 and 4 in acetonitrile were ‘calibrated’ using the 1H-{1H}NOE data. Such a “calibration”, as well as the semi-quantitative CD and NMR comprehensive analyses, demonstrated that class C, class B, as well as class C’ CD spectra may be obtained from the linear combination of the same two-component spectra, with different conformational weights. Therefore, it is suggested that the extraction of the conformational components of such models, simply on the basis of their CD spectra, must be made with caution.  相似文献   

3.
The tripeptide sequence arginine-glycine-aspartic acid (RGD) has been shown to be the key recognition segment in numerous cell adhesion proteins. The solution conformation and dynamics in DMSO-d6 of the cyclic pentapeptides, Ac-Cys-Arg-Gly-Asp-Cys-OH (CRGDC), a potent fibrinogen receptor antagonist, and Ac-Cys-Arg-Gly-D-Asp-Cys-OH (CRGdC), a weak fibrinogen receptor antagonist, have been characterized by nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. 1H-1H distance constraints derived from two-dimensional NOE spectroscopy and torsional angle constraints obtained from 3JNH-h α coupling constants, combined with computer-assisted modeling using conformational searching algorithms and energy minimization have allowed several low energy conformations of the peptides to be determined. Low temperature studies in combination with molecular dynamics simulations suggest that each peptide does not exist in a single, well-defined conformation, but as an equilibrating mixture of conformers in fast exchange on the NMR timescale. The experimental results can be fit by considering pairs of low energy conformers. Despite this inherent flexibility, distinct conformational preferences were found which may be related to the biological activity of the peptides.  相似文献   

4.
The structure-conformation relationships of a series of angiotensinogen6–13 (ANG6–13, His-Pro-Phe-His-Leu-Val-Ile-His) congeners substituted by Nin-For-Trp (Ftr), d -Ftr or Trp at the N-terminus, Tyr at the C-terminus and PheΨ[CH2NH]Phe at the P1-P′1 cleavage site (i.e. Leu10-Val11) were studied using resonance energy transfer coupled with molecular modeling of the peptide conformation using macromolecular energy refinement and dynamics simulation. Average end-to-end intramolecular distances (r) of the peptides in solution were determined by fluorescence spectroscopy. For example, Ac-Ftr-Pro-Phe-His-PheΨ[CH2NH]Phe-Val-Tyr-NH2 (U-70714E) gave an average intramolecular donor (Tyr)-acceptor (Ftr) distance of 16.3 Å in aqueous solution. This experimental value was consistent with a distance of 17.9 Å determined by molecular modeling of U-70714E to a human renin 3-D structure (developed from known homologous aspartyl protease inhibitor X-ray crystallographic data) followed by simulation of the solution phase conformation of the peptide. An extended backbone secondary structure of U-70714E is suggested from these studies and the relationship(s) of structure-conformation to structure-activity was explored by analysis of several congeners of U-70714E, a potent (IC50= 3.0 × 10?9m ) inhibitor of human renin in vitro.  相似文献   

5.
Abstract: The solution conformation of the cyclic peptide J324 (cyclo0,6‐[Lys0,Glu6,d ‐Phe7]BK), an antagonist targeted at the bradykinin (BK) B2 receptor, has been investigated using experimental and theoretical methods. In order to gain insight into the structural requirements essential for BK antagonism, we carried out molecular dynamics (MD) simulations using simulated annealing as the sampling protocol. Following a free MD simulation we performed simulations using nuclear Overhauser enhancement (NOE) distance constraints determined by NMR experiments. The low‐energy structures obtained were compared with each other, grouped into families and analyzed with respect to the presence of secondary structural elements in their backbone. We also introduced new ways of plotting structural data for a more comprehensive analysis of large conformational sets. Finally, the relationship between characteristic backbone conformations and the spatial arrangement of specific pharmacophore centers was investigated.  相似文献   

6.
The crystal structures of two peptides containing 1-aminocyclohexanecarboxylic acid (Acc6) are described. Boc-Aib-Acc6-NHMe · H2O adopts a β-turn conformation in the solid state, stabilized by an intramolecular 4 → 1 hydrogen bond between the Boc CO and methylamide NH groups. The backbone conformational angles (φAib = – 50.3°, ψAib = – 45.8°; φAcc6 = – 68.4°, ψAcc6 = – 15°) lie in between the values expected for ideal Type I or III β-turns. In Boc-Aib-Acc6-OMe, the Aib residue adopts a partially extended conformation (φAib = – 62.2°, ψAib = 143°) while the Acc6residue maintains a helical conformation (φAcc6 = 48°, ψAcc6= 42.6°). 1H n.m.r. studies in CDCl3 and (CD3)2SO suggest that Boc-Aib-Acc6-NHMe maintains the β-turn conformation in solution.  相似文献   

7.
NMR spectroscopy has been employed for the conformational analysis of the cyclic hexapeptide cycle(-d -Pro1-Ala2-Ser3(Bzl)-Trp4-Orn5(Z)-Tyr6-) with and without protecting groups on Ser3 and Orn5. This peptide sequence was derived from the active loop sequence of the α-amylase inhibitor Tendamistat (HOE 467). The aim was to investigate the role of serine in position i of a standard β-turn on the conformation and stabilization of this turn. Based on distance and torsion constraints from 2D NMR spectroscopic measurements in DMSO-d6 solution, structure refinement was accomplished by restrained molecular dynamics (MD) simulations in vacuo and in DMSO. The analysis of both structures in solution reveals a considerable effect of the unprotected serine sidechain on the adjacent β-turn conformation. While in the protected peptide with Ser3(Bzl) a βII-turn is observed between Trp4 and Orn5, the deprotected compound reveals a βI-turn in this region. The βI-turn is stabilized by a backbone-sidechain hydrogen bond from Orn5NαH to Ser3Oγ. Comparisons with other NMR-derived solution structures of cyclic model peptides and in some protein structures from literature reveal a general structural motif in the stabilization of βI-turns by serine in the i position through backbone-sidechain interactions. © Munksgaard 1995.  相似文献   

8.
Solution conformation of cyclo(Gly1-His2-Phe3-Arg4-Trp5-Gly6) and its d -Phe analog corresponding to the message sequence [Gly-α-MSH5-10] of α-MSH has been studied by 1D and 2D proton magnetic resonance spectroscopy in dimethyl sulfoxide (DMSO)-d6 solution and in a DMSO-d6/H2O cryoprotective mixture. The NMR data for both the analogs in solution at 300 K cannot be interpreted based on a single ordered conformation, as evidenced by the broadening of only -NH resonances as well as the temperature coefficients of the amide protons. An analysis of the nuclear Overhauser effect (NOE) cross-peaks in conjunction with temperature coefficient data indicates an equilibrium of multiple conformers with a substantial population of particular conformational states at least in the d -analog. The molecular dynamics simulations without and with NOE constraints also reveal numerous low-energy conformers with two γ-turns, a γ-turn and a β-turn, two β-turns, etc. for both the analogs. The observed NMR spectra can be rationalized by a dynamic equilibrium of conformers characterized by a γ-bend at Gly6, two γ-bends at Phe3 and Gly6 and a conformer with a single β-turn and a γ-bend for the l -Phe analog. On the other hand, a conformation with two fused β-turns around the two tetrads His2-d -Phe3-Arg4-Trp5 and Trp5-Gly6-Gly1-His2 dominates the equilibrium mixture for the d -Phe analog. For the d -Phe analog, the experimentally observed average conformation is corroborated by molecular dynamics simulations as well as by studies in cryoprotective solvent.  相似文献   

9.
The solution structure of cyclo-[Gly-Leu-Asp-Val-BTD] (BTD=β-turn dipeptide) has been determined by two-dimensional 1H-NMR (nuclear magnetic resonance) spectroscopy and systematic conformational searching combined with molecular dynamics studies. The structure contains two hydrogen bonds between the Gly and Val residues, and a type I β-turn with Leu and Asp at the (i+ 1) and (i+ 2) positions of the turn. The cyclic compound shows activity in a scintillation proximity assay (SPA) for the inhibition of the interaction between the integrin α4β1 and vascular cell adhesion molecule-1 (VCAM-1). The structure-activity relationship of the LDV sequence is discussed. © Munksgaard 1996.  相似文献   

10.
NMR and X-ray crystallographic studies have shown that cyclic pentapeptides of the general structure cyclo(D-Xxx-Pro-Gly-Pro-Gly) possess β- and γ-turn intramolecular hydrogen bonds. As part of our continuing series surveying the compatibility of various amide bond replacements on peptide structure, we have synthesized cyclo(D-Phe-Proψ [CH2S]Gly-Pro-Gly). The pseudopeptide was prepared by solid phase methods and cleaved from the resin by a new procedure involving phase transfer catalysis using K2CO3 and tetrabutylammonium hydrogen sulfate. Cyclization was carried out with the use of DPPA, HOBt, and DMAP to afford the product in 69% yield. The conformational behavior of the pseudopeptide was analyzed by 1H and 13C (1D and 2D) NMR techniques. The backbone modification replaced the amide bond that is involved in a γ-turn intramolecular hydrogen bond in the all-amide structure. In CDCl3, the pseudopeptide adopted the same all-trans conformation as its parent, although the remaining β-turn hydrogen bond was weaker according to Δδ/ΔTNH measurements. In DMSO-d6, the all-trans conformer and a second conformer were observed in a ratio of 55:45. These conformers, which slowly inter converted on the NMR time scale, could be separately assigned; peaks due to chemical exchange were readily distinguishable by the ROESY technique as reported earlier by others. 13C and ROESY experiments suggested the minor conformer contained one cis amide bond at the Gly1-Pro2 position. Thus, both the location and type of amide surrogate are important determinants affecting the compatibility of the replacement with a particular conformational feature.  相似文献   

11.
Two-dimensional 1H-NMR methods have been used to obtain complete proton resonance assignments and possible solution conformations of dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) and deltorphin-II (H-Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2), naturally occurring μ and §-selective opioids, respectively, in order to examine the conformational characteristics that are closely related to the selectivities towards μ/§ opioid receptors. With the use of the proton-proton distances derived from ROESY measurements in aqueous solution, 50 possible 3D structures are generated by means of distance geometry calculations. The conformers which satisfy the distance constraints and the torsion angles estimated from JNHCxH vicinal coupling constants within the allowable range are then subjected to molecular dynamics simulations for 10 ps after equilibration. Although dermorphin and deltorphin-II are both in equilibrium among many flexible conformers, some conformational differences are observed between these peptides: many conformers of dermorphin show a structure rounded at the N-terminal Tyr-D-Ala-Phe-Gly-Tyr and C-terminal Gly-Tyr-Pro-Ser-NH2 moieties, which are almost at right angles to each other, while those of deltorphin-II are characterized by a ‘hook’ -shaped backbone structure in which the nearly extended conformation of the Val-Val-Gly-NH2 sequence is located under the folded conformation of the N-terminal Tyr-D-Ala-Phe-Glu sequence. The possible relationship between these conformational characteristics and the μ/§-opioid receptor selectivities is discussed.  相似文献   

12.
The hexapeptide [cyclo(Leu1Ψ(CH2NH2)Leu2-Gln3-Trp4-Phe5-Gly6)] +1 is a potent antagonist of neurokinin A activity in tissues of hamster urinary bladder. The solution conformation of this cyclic hexapeptide has been characterized by the combined use of two dimensional nuclear magnetic resonance spectroscopy and restrained molecular dynamics. The proton spectrum of the peptide was fully assigned by the sequential assignment procedure. Interproton distances were derived from crosspeak volumes in two dimensional Nuclear Overhauser Effect spectra, and dihedral angles were calculated from appropriate coupling constants. Temperature coefficients of the amide protons were determined. Restrained molecular dynamics simulations were carried out using the backbone interproton distances as constraints. During 210 ps of restrained molecular dynamics the peptide interconverted among three closely related families of conformations. These interconversions occurred at picosecond timescales under the simulation conditions.  相似文献   

13.
The conformations of cyclo(-D-Trp-D-Asp-Pro-D-val-Leu-) in dimethyl sulfoxide-d6 (DMSO-d6) and water were determined using two-dimensional nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Comparisons were made between conformations of the cyclic pentapeptide in both solvents. The NMR study revealed that, while the backbone remained relatively unchanged in both solvents, the side-chains adopted distinctly different orientations in DMSO-d6 vs. H2O. A modeling study, minus NOE constraints, produced a set of low-energy conformers possessing agreement in backbone conformation with the NMR-derived structures; however, lowest-energy conformers did not have this agreement. These results show that different solvents can significantly affect the preferred side-chain conformation of small cyclic peptides in solution. This finding will impact the selection of solvent when determining structures for use as templates in rational drug design.  相似文献   

14.
A solid-state and solution conformation analyses of the cyclopentapeptide cyclo(Phe-Phe-Aib-Leu-Pro) has been carried out by X-ray diffraction and nuclear magnetic resonance techniques. The structure of the hexagonal crystals, grown from a methanol solution [a=b= 16.530(4) Å, c= 21.356(9) Å, space group P65, Z = 6], shows the presence of one intramolecular N-H?O=C hydrogen bond with the formation of a γ-turn (C7). The Aib3 residue, at the center of the γ-turn, presents unexpected values of the torsion angles [φ= 70.5° and ψ= -73.8°], which have been observed only once before for this helicogenic residue. A cis peptide bond occurs between Leu4 and Pro5; all other peptide bonds are trans. The overall conformation for the cyclopentapeptide with one cis-peptide bond on one side and an intramolecular γ-turn on the opposite side results in an equatorial topology of the side-chains of the Phe1, Phe2 and Leu4 residues. Indeed, the Cα-Cβand Cβ-Cγ bonds of these residues lie approximately in the mean plane of the cyclic ring system. The structure is compared with data in the literature on cyclic pentapeptides. In addition the Pro-Phe-Phe moiety shows a conformation similar to that observed in other larger cyclic bioactive peptides, which indicates a reduced number of conformations for this sequence. The solution study was carried out in three different solvent systems: chloroform, acetonitrile and methanol in the temperature interval 220–300 K. In all three solvents the room temperature spectra show that the peptide is conformationally nonhomogeneous. In acetonitrile at low temperatures it is possible to reduce the conformational equilibrium to two predominant conformers which differ for the cis-trans isomerism of the Leu4-Pro5 peptide bond.  相似文献   

15.
Six cyclic retro-analogues of the peptide hormone somatostatin have been synthesized using the solid phase technique. The peptides cyclo(-Xaa1-Phe2-Thr3-Lys4-Ybb5-Phe6-) and cyclo(-Phe1-Xaa2-Thr3-Lys4-Ybb5-Phe6-) with Xaa =d - or l -Pro and Ybb =d - or l -Trp were cyclized via the azide method. The conformations of the cyclic hexapeptides in DMSO-d6 solution were determined by a number of homo- and heteronuclear two-dimensional n.m.r.-techniques including 2D rotating frame NOE-spectroscopy. Two-step coherence transfers, ROE and chemical exchange, are observed for the first time in ROESY spectra. The backbone conformation of the all-trans cyclopeptides consists of a β-turn containing the Pro residue in the position i + 1. These retro-analogues of somatostatin exhibit a high activity in the inhibition of cholate and phalloidin uptake by liver cells (cytoprotective effect); however, the hormonal activities of the natural hormone are completely suppressed. The constitutional and conformational requirements for the cytoprotective activity are discussed.  相似文献   

16.
Abstract: In order to make clear the structural role of the C‐terminal amide group of endomorphin‐2 (EM2, H‐Tyr‐Pro‐Phe‐Phe‐NH2), an endogenous µ‐receptor ligand, in the biological function, the solution conformations of endomorphin‐2 and its C‐terminal free acid (EM2OH, H‐Tyr‐Pro‐Phe‐Phe‐OH), studied using two‐dimensional 1H NMR measurements and molecular modeling calculations, were compared. Both peptides were in equilibrium between the cis and trans isomers around the Tyr‐Pro ω bond in a population ratio of ≈ 1 : 2. The lack of significant temperature and concentration dependence of NH protons suggested that the NMR spectra reflected the conformational features of the respective molecules themselves. Fifty possible 3D structures for the each isomer were generated by the dynamical simulated annealing method under the proton?proton distance constraints derived from the ROE cross‐peaks. These energy‐minimized conformers, which were all in the φ torsion angles estimated from JNHCαH coupling constants within ± 30°, were then classified in groups one or two according to the folding backbone structures. All trans and cis EM2 conformers adopt an open conformation in which their extended backbone structures are twisted at the Pro2–Phe3 moiety. In contrast, the trans and cis conformers of EM2OH show conformational variation between the ‘bow’‐shaped extended and folded backbone structures, although the cis conformers of its zwitterionic form are refined into the folded structure of the close disposition of C‐ and N‐terminal groups. These results indicate clearly that the substitution of carboxyl group for C‐terminal amide group makes the peptide flexible. The conformational requirement for µ‐receptor activation has been discussed based on the active form proposed for endomorphin‐1 and by comparing conformational features of EM2 and EM2OH.  相似文献   

17.
Analysis of the effect of temperature on the circular dichroism spectrum of bradykinin has led to a more precise understanding of the solution conformation of the peptide. Circular dichroism and 13C n.m.r. have been used in a complementary fashion to support the picture that bradykinin spends a maximum of about 20% of its time in a partially ordered conformation featuring a γ-turn with Pro7 as the second residue. Since the γ-turn probability is insensitive to temperature, some other conformational effect dominated by the structure of water presumably produces the pronounced change in the circular dichroism spectrum with increasing temperature.  相似文献   

18.
The conformation in aqueous solution of several α-aminoisobutyric acid (AIB)-containing analogs of bradykinin (BK) has been probed by complementary CD and 1H n.m.r. measurements. The conclusion reached is that substitution of AIB for Pro2 and/or Pro3 in BK stabilizes a degree of β-turn conformation in the N-terminal tetrapeptide moiety of the resulting analogs. Changing the solvent from water to DMSO or TFE further enhances the contribution of particular hydrogen bonded structures to the time-averaged conformation of these peptides. Bradykinin and [AIB7]-BK adopt similar hydrogen bonded conformations in TFE, apparently with a contribution from a β-turn involving their common Arg1-Pro2-Pro3-Gly4 moiety. The contrasting biological activities of BK and its AIB-analogs are considered in terms of the conformational analogy between the AIB-residue and cis1 Pro and the propensity for a β-turn at the N-terminus of the peptide.  相似文献   

19.
The dehydro-peptide Boc-L-Ile-ΔPhe-L-Trp-OCH3 was synthesized by the azlactone method in the solution phase. The peptide was crystallized from methanol in an orthorhombic space group P212121 with a = 10.777(2), b= 11.224(2), c= 26.627(10) Å. The structure was determined by direct methods and refined to an R value of 0.069 for 3093 observed reflections [l≥ 2σ(l)].The peptide failed to adopt a folded conformation with backbone torsion angles: φ1, = 90.8(8)°, ψ1= -151.6(6)°, φ2= 89.0(8)°, ψ2= 15.9(9)°, φ3= 165.7(7)°, ψT3= -166.0(7)°. A general rule derived from earlier studies indicates that a three-peptide unit sequence with a ΔPhe at the (i+ 2) position adopts a β-turn II conformation. Because the branched β-carbon residues such as valine and isoleucine have strong conformational preferences, they combine with the ΔPhe residue differently to generate a unique set of conformations in such peptides. The presence of β-branched residues simultaneously at both (i+ 1) and (i+ 3) positions induces unfolded conformations in tetrapeptides, but a β-branched residue substituted only at (i+ 3) positron can not prevent the formation of a folded β-turn II conformation. On the other hand, the present structure shows that a β-branched residue substituted at the (i+ 1) position prevents the formation of a β-turn II conformation. These observations indicate that a β-branched residue at the (i+ 1) position prevents a folded conformation whereas it cannot generate the same degree of effect from the (i+ 3) position. This may be because of the trans disposition of the planar ΔPhe side-chain with respect to the C=O group in the residue. The molecules are packed in an anti-parallel manner to generate N2-H2…O2 (-x,y-1/2, -z+ 3/2) and Nε13-Hε13…O1(-x,y -1/2, -z+ 3/2) hydrogen bonds.  相似文献   

20.
Synthesis and conformational analysis of the S-glycosylated cyclic hexapeptide cyclo(-d -Pro1-Phe2-Cys3(tetra-O-acetyl-β-d -galactopyranosyl)-Trp4-Lys(Z)5-Phe6-) I was carried out to examine the influence of a saccharide residue in position i of a standard β-turn on the formation of reverse turns and on the biological activity. Synthesis was carried out in the liquid phase employing a galactosylated cysteine building block. The cyclization reagents DPPA/NaHCO3 avoided high dilution conditions. Spectroscopic data were extracted from homo- and heteronuclear 2D-NMR techniques (TOCSY, NOESY, HMQC, HMQC-TOCSY, HMBCS-270). For structural refinement restrained molecular dynamics (MD) simulations in vacuo and with explicit DMSO as solvent were performed. Finally, simulations in DMSO without experimental restraints provided insight in stability and dynamics of the structural model. A comparison of the S-glycosylated Cys3 peptide with the analogous Thr3 peptide exhibits a similar overall conformation of the hexapeptide [βII’d -Pro-Phe and another β-turn about Trp4-Lys5(Z)]. However, the latter shows a distinct dynamic flip βI, βII in the glycopeptide, whereas the Thr-analogue only populates βI. This influence is attributed to a βI stabilizing effect of a hydrogen bridge of Thr-O, in position i to the NH of the amino acid in position i+ 2, which is lacking in the glycosylated compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号