首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD spectra of model alanine and prolyl-alanine tetrapeptides were measured at different pH values. An analysis of the spectra shows that proline in position 2 or 4 of a tetrapeptide favours folding of the peptide chain, and unfolding when it is in position 3. Changes in CD spectra evidence growing amounts of the β-turn conformation upon increasing pH, independent of proline position in the peptide chain.  相似文献   

2.
Conformations of three series of model peptides: homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHCH3 (Xaa=Phe, Val, Leu. Abu. Ala) as ivell as α,β-dehydro Ac-Pro-ΔXaa-NHCHs [ΔXaa = (Z)-ΔPhe, ΔVal. (Z)-ΔLeu, (Z)-ΔAbu] were investigated by CD spectroscopy in 2 % dichloromethanecyclohexane, trifluoroethanol. water. and occasionally in other solvents. The spectra of homochiral peptides show a significant solvent dependence. Folded structures are present in 2% dichloromethane-cyclohexane and unordered ones occur in water. The folded conformers are of the inverse γ-turn type for all the peptides but Ac-Pro-L-Phe-NHCH3 for which the type-I β-turn is preferred. The changes in the spectra of the heterochiral peptides are limited. The compounds adopt the typc-II β–turn in 2% dichloromethanecyclohexane, represented by class B spectra, and retain this conformation in water as well as in fluorinated alcohols but not always to a full extent. The CD spectra of the unsaturated peptides in 2%, dichloromethanecyclohexane, although they cannot be assigned to any common spectral class, must be attributed to the βII-turn conformation as determined for these coinpounds by NMR and IR spectroscopy. The CD spectra of dehydropeptides exhibit a considerable solvent dependence and suggest unordered structures in water.  相似文献   

3.
The peptide Boc-Ser-Phe-OCH3 was synthesised by a solution-phase method using the usual workup procedure. The peptide was crystallized from a 70:30 (v/v) methanol-water mixture. The crystals are monoclinic, space group P21 with a= 5.128(2), b=17.873(2), c=11.386(2) Å, and β=98.03(3)°. The structure was determined by direct methods and refined by a structure factor least-squares procedure. The final R-value for 1499 observed reflections was 0.041. The structure contains one peptide and one solvent water molecule. The peptide adopts a β-strand-like conformation with φ1=- 100.3(5), ψl= 99.9(5), φ2= - 122.2(5), ψT2= -172.5(6)°. The Ser side-chain assumes an extended conformation with χ11= - 177.0(4)°. The OγH group of serine acts as a proton donor in an intramolecular weak hydrogen bond with (Ser) O′1; [Oγ1;-Hγ1?O′1= 3.253(6) Å]. The Phe side-chain adopts a staggered conformation with χ12= -70.9(6), χ22,1= 88.4(7)°, χ2,22= -89.2(6)°. The water molecule generates a loop through two hydrogen bonds with Oγ1 [OW?Oγ1= 2.893(5) Å] and O′2 [OW-O′2= 2.962(7) Å] atoms. The unit-translated peptide molecules along the α-axis are held by hydrogen bonds: N1-H1?O2 (x-1, y, z) = 2.954(4) Å and N2-H2?O′1 (x+1, y, z) = 2.897(6) Å in a manner similar to those observed in parallel β-pleated sheet structures. There is an additional interaction involving Oγ1 and the water molecule [OW?Oγ1 (x= 1, y, z) = 2.789(4) Å]. The strong NOE peak of Ci(H)?Ni+1 (H) and a simultaneous weak NOE peak of Ni(H)?Ni+l (H) in the ROESY spectra of two-dimensional NMR in dimethyl sulfoxide indicate a β-strand-like conformation for the peptide in solution. © Munksgaard 1996.  相似文献   

4.
2-Thioxo-1,2,3,4-tetrahydropyrimidine derivatives 1 were reacted with phenacyl bromide in glacial acetic acid to obtain thiazolo[3,2-a]pyrimidine derivatives. UV-, IR-, and 1H-NMR spectra and elementary analysis data confirm structures 3. 1H-{1H}-NOE techniques showed that the isolated products are H-5 isomers.  相似文献   

5.
Stereochemical constraints have been introduced into the enkephalin backbone by substituting α-aminoisobutyryl (Aib) residues at positions 2 and 3, instead of Gly. 1H n.m.r. studies of Tyr-Aib-Gly-Phe-Met-NH2, Tyr-Aib-Aib-Phe-Met-NH2 and Tyr-Gly-Aib-Phe-Met-NH2 demonstrate the occurrence of folded, intramolecularly hydrogen bonded structures in organic solvents. Similar conformations are also favoured in the corresponding t-butyloxycarbonyl protected tetrapeptides, which lack the Tyr residue. A β-turn centred at positions 2 and 3 is proposed for the Aib2-Gly3analog. In the Gly2-Aib3analog, the β-turn has Aib3-Phe4as the corner residues. The Aib2-Aib3analog adopts a consecutive β-turn or 310 helical conformation. High in vivo biological activity is observed for the Aib2and Aib2-Aib3analogs, while the Aib3peptide is significantly less active.  相似文献   

6.
Six model dipeptide methyl amides containing dehydroaminobutyric acid (Δ Abu) of the type Boc-X-δZAbu-NHCH3 and Box-X-δEAbu-NHCH3, X = Ala, Val, Phe (Boc =tert-butoxycarbonyl), have been synthesized and their solution conformations explored using 300 MHz 1H NMR and IR spectroscopy. Studies based on delineation of intramolecularly hydrogen bonded NH groups in CDCl3 and (CD3)2SO revealed that none of the NH groups is appreciably solvent shielded. Difference NOE (Nuclear Overhauser Effect) studies have also failed to detect the presence of any discernible turn structure in these peptides. These studies indicate that the conformational preferences of peptides containing, α, β-dehydroaminobutyric acid are different from those of ΔZPhe and ΔZLeu. It appears that steric interactions due to the β-substituent in the dehydroamino acid moiety play an important role. Unlike ΔZPhe and ΔZLeu, which have relatively large β-substituents, phenyl and isopropyl, respectively, and stabilize a β-turn, the β-methyl group of ΔZAbu or ΔEAbu is readily accommodated in extended conformation. Clearly, the size of β-substituent in dehydroamino acid crucially influences the conformational preferences. Thus, it may be possible to use different dehydroamino acids to introduce variable but definite constraints in synthetic peptides.  相似文献   

7.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHcH3 (Xaa = Val, Phe, Leu, Abu. Ah) as well as αβ-unsaturated Ac-Pro-ΔXaa-NHCH3 [Δ Xaa =ΔVal, (Z)-ΔPhe, (Z)-ΔLeu, (Z)-ΔAbu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts Δδ for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and αβ-dehydropeptides (ΔXaa) on the other. Former compounds are conformationally flexible with an inverse γ-bend, a β-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and αβ-dehydropeptides are very similar, with the type-II β-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The β-turn formation propensity seems to be somewhat greater in αβ-unsaturated than in heterochiral peptides, but an estimation of β-folded conformers is risky.  相似文献   

8.
N.m.r. studies on the conformations of cyclo(-l -Trp-l -His) in acidic and basic D2O and DMSO solutions are presented here. The detailed conformational analysis of the cyclodipeptide molecule is based on 1H chemical shifts, spin-spin coupling constants and NOE measurements. The conformational analysis consists of the following steps: 1) Calculations of the allowed {χn} states of the peptide molecule, (an allowed {χn} state is characterized by defining the two torsional angles χ1 and χ2 for each amino acid residue, which does not violate the excluded volume criteria). 2) Calculations of the induced chemical shifts of the His H5 and Hβ resonances arising from the indole and imidazole ring current effects, in the various allowed {χn} states and the comparison of the calculated and measured chemical shifts of the above resonances. 3) The conformation of the DKP ring and the distribution of the relative populations among the three rotational isomers of each of the side chains were estimated from the measured coupling constants. Finally, the NOE measurements enabled us to determine the various pairs of protons which are spatially in close proximity to each other.  相似文献   

9.
NMR spectroscopy has been employed for the conformational analysis of the cyclic hexapeptide cycle(-d -Pro1-Ala2-Ser3(Bzl)-Trp4-Orn5(Z)-Tyr6-) with and without protecting groups on Ser3 and Orn5. This peptide sequence was derived from the active loop sequence of the α-amylase inhibitor Tendamistat (HOE 467). The aim was to investigate the role of serine in position i of a standard β-turn on the conformation and stabilization of this turn. Based on distance and torsion constraints from 2D NMR spectroscopic measurements in DMSO-d6 solution, structure refinement was accomplished by restrained molecular dynamics (MD) simulations in vacuo and in DMSO. The analysis of both structures in solution reveals a considerable effect of the unprotected serine sidechain on the adjacent β-turn conformation. While in the protected peptide with Ser3(Bzl) a βII-turn is observed between Trp4 and Orn5, the deprotected compound reveals a βI-turn in this region. The βI-turn is stabilized by a backbone-sidechain hydrogen bond from Orn5NαH to Ser3Oγ. Comparisons with other NMR-derived solution structures of cyclic model peptides and in some protein structures from literature reveal a general structural motif in the stabilization of βI-turns by serine in the i position through backbone-sidechain interactions. © Munksgaard 1995.  相似文献   

10.
Mono- and dithionated N-acyl amino acid and dipeptide N′-methylamides were synthesized using Lawesson's reagent and 5-thioacetyl thioglycolic acid. The conformation of the thionated models was characterized by IR, 13C, and 1H NMR spectroscopy, including NOE experiments. The formation of —C=S…H—N—C=X (X = O or S) intramolecular H-bonds of the type 2 → 2. 1 → 3 and 1 → 4 was evidenced by the characteristic shifts of the IR stretching frequencies of the NH group. Act-Pro-NHCH3 (4) and Act-Prot-NHCH3 (5) were found to be present as mixtures of rotational isomers about the CS—N bond. 13C chemical shifts of the γ- and β-carbons of the proline ring elucidated the conformation (Z or E) of the tertiary thioamide group. Our results suggest that the conformation of thiopeptides is determined by two factors: 1) the H-bond donating and accepting ability of the thioamide group and 2) the repulsion between the thiocarbonyl sulfur atom and the side chain groups of the neighbouring amino acid residues.  相似文献   

11.
The dehydro-peptide Boc-L-Ile-ΔPhe-L-Trp-OCH3 was synthesized by the azlactone method in the solution phase. The peptide was crystallized from methanol in an orthorhombic space group P212121 with a = 10.777(2), b= 11.224(2), c= 26.627(10) Å. The structure was determined by direct methods and refined to an R value of 0.069 for 3093 observed reflections [l≥ 2σ(l)].The peptide failed to adopt a folded conformation with backbone torsion angles: φ1, = 90.8(8)°, ψ1= -151.6(6)°, φ2= 89.0(8)°, ψ2= 15.9(9)°, φ3= 165.7(7)°, ψT3= -166.0(7)°. A general rule derived from earlier studies indicates that a three-peptide unit sequence with a ΔPhe at the (i+ 2) position adopts a β-turn II conformation. Because the branched β-carbon residues such as valine and isoleucine have strong conformational preferences, they combine with the ΔPhe residue differently to generate a unique set of conformations in such peptides. The presence of β-branched residues simultaneously at both (i+ 1) and (i+ 3) positions induces unfolded conformations in tetrapeptides, but a β-branched residue substituted only at (i+ 3) positron can not prevent the formation of a folded β-turn II conformation. On the other hand, the present structure shows that a β-branched residue substituted at the (i+ 1) position prevents the formation of a β-turn II conformation. These observations indicate that a β-branched residue at the (i+ 1) position prevents a folded conformation whereas it cannot generate the same degree of effect from the (i+ 3) position. This may be because of the trans disposition of the planar ΔPhe side-chain with respect to the C=O group in the residue. The molecules are packed in an anti-parallel manner to generate N2-H2…O2 (-x,y-1/2, -z+ 3/2) and Nε13-Hε13…O1(-x,y -1/2, -z+ 3/2) hydrogen bonds.  相似文献   

12.
The solution structure of a gramicidin S (GS) analog containing a β-turn mimic[BTD4-5, Lys2,2′]GS has been compared to that of native GS. The linear [BTD4-5, Lys2,2′]GS was synthesized by solid phase methodology and the cyclized peptide was analyzed by NMR. In the peptide portion of [BTD4-5, Lys2,2′]GS, the intramolecular hydrogen bonding pattern, inter-residue NOEs, including a transannular Hα-Hα NOE, and JNα coupling constants all describe a solution structure which is equivalent to that of native GS. These data confirm that the BTD group is a competent Type II' β-turn mimic since it does not disrupt the native conformation of GS. It also supports the use of GS as a conformational model in which to test β-turn mimics.  相似文献   

13.
The model cyclic pentapeptide disulfide Boc-Cys-Ala-Aib-Gly-Cys-NHMe 1, has been synthesized. 1H n.m.r. studies in (CD3)2SO and CDCl3-(CD3)2SO mixtures establish the solvent exposed nature of the Cys(l) and Aib NH groups, while a moderate degree of shielding is observed for the other four NH groups. Nuclear Overhauser effects between Cα1H and Ni+1H protons provide evidence for extended or semi-extended conformations (ø ± 130° ± 30°) at the Cys(l), Ala(2), Gly(4) and Cys(5) residues. The n.m.r. results are supportive of an intramolecular antiparallel β-sheet conformation at these residues, nucleated by a γ-turn centered at Aib(3). This conformation is not stabilized by strong transannular hydrogen bonds. CD studies establish solvent dependent structural changes of the disulfide linkage in methanol-dioxane mixtures. An unusual CD pattern is observed for the peptide chromophore.  相似文献   

14.
The solution conformation of a biologically active C-terminal hexapeptide analog of the pheromone biosynthesis activating neuropeptide Tyr-d -Phe-Ser-Pro-Arg-Leu-NH2 has been studied by NMR spectroscopy. A β-turn conformation was identified from the NOE connectivities observed for the peptide in a mixed solvent of water and DMSO, indicating that this is the biologically active conformation of the peptide. This study also suggests that the use of such an aqueous-like solvent mixture allows the observation of a preferred conformation for small linear peptides in the presence of conformational averaging.  相似文献   

15.
Solution conformation of cyclo(Gly1-His2-Phe3-Arg4-Trp5-Gly6) and its d -Phe analog corresponding to the message sequence [Gly-α-MSH5-10] of α-MSH has been studied by 1D and 2D proton magnetic resonance spectroscopy in dimethyl sulfoxide (DMSO)-d6 solution and in a DMSO-d6/H2O cryoprotective mixture. The NMR data for both the analogs in solution at 300 K cannot be interpreted based on a single ordered conformation, as evidenced by the broadening of only -NH resonances as well as the temperature coefficients of the amide protons. An analysis of the nuclear Overhauser effect (NOE) cross-peaks in conjunction with temperature coefficient data indicates an equilibrium of multiple conformers with a substantial population of particular conformational states at least in the d -analog. The molecular dynamics simulations without and with NOE constraints also reveal numerous low-energy conformers with two γ-turns, a γ-turn and a β-turn, two β-turns, etc. for both the analogs. The observed NMR spectra can be rationalized by a dynamic equilibrium of conformers characterized by a γ-bend at Gly6, two γ-bends at Phe3 and Gly6 and a conformer with a single β-turn and a γ-bend for the l -Phe analog. On the other hand, a conformation with two fused β-turns around the two tetrads His2-d -Phe3-Arg4-Trp5 and Trp5-Gly6-Gly1-His2 dominates the equilibrium mixture for the d -Phe analog. For the d -Phe analog, the experimentally observed average conformation is corroborated by molecular dynamics simulations as well as by studies in cryoprotective solvent.  相似文献   

16.
Using a data set of 250 non-homologous high-resolution globular proteins, a systematic analysis of the conformations that precede and succeed (positions i and i+3) the various classical β-turn types has been carried out. The collective conformation of a specific β-turn type, including the flanking positions, termed motif, has been studied. In all the four turn types, the majority of examples are preceded and succeeded by extended conformation. Some of the other observations are: (1) In a type I β-turn, Gly at position i+ 3 has a higher favorability to occur with positive ø and does not prefer the major motif βαRR-β. (2) The left-handed alpha;-helical conformation (alpha;L) is not preferred at both the flanking positions for type I'and II β-turns, (3) The β–β motif is favourable for all the turn types and the motif β–αL very highly favourable for type I. © Munksgaard 1996.  相似文献   

17.
Abstract: The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-Val9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide ( 1 ), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide–receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1–Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible β-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first β-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second β-turn. Furthermore, the presence of a β-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH–NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I β-turn structure is also supported by CD spectral analysis. The cIBR peptide ( 1 ) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

18.
The crystal structures of four peptides incorporating l-aminocycloheptane-l-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt β-turn conformations stabilized by an intramolecular 4 × 1 hydrogen bond, the former folding into a type-I/III β-turn and the latter into a type-II β-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3, suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the β-turn conformations in solution.  相似文献   

19.
The crystal structure and solution conformation of Ac-Pro-ΔAla-NHCH3 and the solution conformation of Ac-Pro-(E)-ΔAbu-NHCH3 were investigated by X-ray diffraction method and NMR, FTIR and CD spectroscopies. Ac-Pro-ΔAla-NHCH, adopts an extended-coil conformation in the crystalline state, with all-trans peptide bonds and the ΔAla residue being in a C5 form, φ1=– 71.4(4), ψ1=– 16.8(4), φ2=– 178.4(3) and ψ2= 172.4(3)°. In inert solvents the peptide also assumes the C5 conformation, but a γ-turn on the Pro residue cannot be ruled out. In these solvents Ac-Pro-(E)- ΔAbu-NHCH3 accommodates a βII-turn, but a minor conformer with a nearly planar disposition of the CO—NH and C=C bonds (φ2~0°) is also present. Previous spectroscopic studies of the (Z)-substituted dehydropeptides Ac-Pro-(Z)- ΔAbu-NHCH, and Ac-Pro-ΔVal-NHCH3 reveal that both peptides prefer a βII-turn in solution. Comparison of conformations in the family of four Ac-Pro-ΔXaa-NHCH3 peptides let us formulate the following order of their tendency to adopt a β-turn in solution: (Z)- ΔAbu > (E)- δAbu > ΔVal; ΔAla does not. None of the folded structures formed by the four compounds is stable in strongly solvating media. © Munksgaard 1996.  相似文献   

20.
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (Δz-Phe) at position 2 or 3, Boc-Leu-Ala-Δz-Phe-Leu-OMe (1) and Boc-Leu-Δz-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (CαjH ? Ni+1H and NiH ? Ni+1H) between backbone protons. The simultaneous observation of “mutually exclusive” n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-Δz-Phe- Type II β-turn structure and a second species with Δz-Phe adopting a partially extended conformation with Ψ values of ± 100° to ± 150°. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive β-turn structure for the -Leu-Δz-Phe-Ala- segment and an almost completely extended conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号