首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
INTRODUCTION: We studied the effects of mibefradil (MIB), a nondihydropyridine T-type Ca2+ channel antagonist, on T- and L-type Ca2+ (I(CaT), I(CaL)) currents in Purkinje myocytes dispersed from the subendocardium of the left ventricle of normal (NZPC) and 48-hour infarcted (IZPC) hearts. METHODS AND RESULTS: Currents were recorded with Cs+- and EGTA-rich pipettes and in Na+-K+-free external solutions to eliminate overlapping currents. In all cells, I(Ca) was reduced by MIB (0.1 to 10 microM). No change in the time course of decay of peak I(Ca) was noted. Average peak T/L ratio decreased in NZPCs but not IZPCs with 1 microM MIB. Steady-state availability of I(CaL) was altered with 1 microM MIB in both cell types (mean +/- SEM) (V0.5 = -22 +/- 4 mV for NZPC and -25 +/- 5 mV for IZPC before drug; -63 +/- 9 mV for NZPC and -67 +/- 6 mV for IZPC after drug; P < 0.05). For I(CaT), V0.5 (-50 +/- 3 mV for NZPC and -52 +/- 1 mV for IZPC before drug) shifted to -60 +/- 2 mV (NZPC) and -62 +/- 3 mV (IZPC) (P < 0.05) after drug. We also determined the effects of MIB on spontaneously beating Purkinje normal fibers and on depolarized abnormally automatic fibers from the infarcted heart using standard microelectrode techniques. When NZPC and IZPC fibers were superfused with [K+]o = 2.7 mM, MIB 3 microM and 10 microM had no effect on rate or the maximum diastolic potential, but action potential plateau shifted to more negative values, the slope of repolarization phase 3 decreased, and action potential duration increased. CONCLUSION: MIB blocks L- and T-type Ca2+ currents in Purkinje myocytes but lacks an effect on either normal or abnormal automaticity in Purkinje fibers.  相似文献   

7.
Sequential Bilateral BBB During Dofetilide. Introduction: I in mechanism of wide QRS complex tachycardias during dofetilide infusion was studied in a patient with atrial fibrillation.
Methods and Results: Endocardial recording from the intraventricular conduction system showed that dofetilide caused "classic" aberrant conduction (Ashman phenomenon, typical QKS morphology) at high prematurity ratios (preceding interval = 1.78 X coupling interval 290), thus mimicking ventricular ectopy. In addition, there was frequent sequential bilateral bundle branch block, caused by a significant difference in preceding bundle-to-bundle intervals (mean difference ± 1 SD: 74 ± 26 msec).
Conclusion: The present findings may prove helpful in the clinical assessment of wide QKS complex rhythms after dofetilide and possibly other "pure" Class III antiarrhythmics.  相似文献   

8.
Ionic basis of ischemia-induced bradycardia in the rabbit sinoatrial node   总被引:4,自引:0,他引:4  
To investigate the basis of ischemia-induced bradycardia (<60 beats/min), we isolated pacemaker cells from the rabbit sinoatrial node and exposed them to ischemic-like conditions, including omission of glucose, pH 6.6, and either 5.4 or 10 mM KCl to evaluate the role of increased serum [K]. A perforated-patch technique was employed to test the hypothesis that the arrhythmia is caused by attenuation of inward currents that contribute to the diastolic depolarization. After exposure to "ischemic" Tyrode containing 5.4 mM KCl, the pacemaker cells exhibited 13% slower beat rates and action potentials with 6-mV greater overshoots and 44% longer durations. In contrast, after exposure to "ischemic" Tyrode containing 10 mM KCl, the pacemaker cells exhibited a 7-mV depolarization of the maximum diastolic potential but no significant change in the overshoot. Beat rates were slowed by 43%, and the action potentials were prolonged by 46%. "Ischemic" Tyrode containing 5.4 mM KCl increased L-type Ca current, decreased T-type Ca current and reduced Ni-sensitive inward current tails (presumably Na-Ca exchange current), even after treatment with 40 muM ryanodine to block Ca release from the sarcoplasmic reticulum. "Ischemic" Tyrode containing 10 mM KCl increased hyperpolarization-activated inward current at diastolic potentials and reduced the slowly activating component, but not the rapidly activating component, of delayed rectifier K current. Our results suggest that reductions of inward Na-Ca exchange current and T-type Ca current contribute to "ischemia"-induced "bradycardia" in sinoatrial node pacemaker cells.  相似文献   

9.
Lysophosphatidylcholine (LPC) is a bioactive phospholipid that accumulates rapidly in the ischemic myocardium. In recent years, it has been shown that some of the actions of LPC are mediated through the activation of the membrane G proteins. However, the precise mechanism(s) responsible for the LPC-related intracellular signaling in the regulation of cardiac ion channels are still poorly understood. The present study was undertaken to examine whether LPC regulates the slow component of the delayed rectifier K+ current (IKs) and, if so, what intracellular signals are important for this process. Isolated guinea pig cardiac myocytes were voltage-clamped using the whole-cell configuration of the patch-clamp method. The bath application of 1-palmitoyl-lysophosphatidylcholine (LPC-16) concentration-dependently (EC50 = 0.7 μM) and reversibly increased IKs in atrial cells, but failed to potentiate IKs in ventricular myocytes. In contrast, 1-oleoyl-lysophosphatidylcholine (LPC-18:1) only produced a slight IKs increase, and 1-caproyl-lysophosphatidylcholine (LPC-6) or the LPC-16 precursor (phosphatidylcholine) had no effect on IKs. Pretreatment of atrial cells with an antibody against the N-terminus of the G2A receptor significantly reduced the LPC-16-induced potentiation of IKs. The inhibition of heterotrimeric G protein, phospholipase C (PLC) and protein kinase C (PKC) significantly reduced LPC-16-induced enhancement of IKs. Moreover, the blockade of Rho and Rho-kinase by specific inhibitors also inhibited the activity of LPC-16. Immunohistochemical studies demonstrated that G2A was densely distributed in the plasma membrane of atrial myocytes. Therefore, the present study suggests that the activation of a G protein (probably Gαq) by LPC-16 potentiates IKs currents through the PLC-PKC and Rho-kinase pathways.  相似文献   

10.
11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号