首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cilostazol, a selective phosphodiesterase‐3 inhibitor, is known to control cyclic adenosine monophosphate (c‐AMP) and to stimulate angiogenesis through upregulation of pro‐angiogenic factors. There is no information, however, whether cilostazol affects fracture healing. We, therefore, studied the effect of cilostazol on callus formation and biomechanics during fracture repair. Bone healing was analyzed in a murine femur fracture stabilized with an intramedullary screw. Radiological, biomechanical, histomorphometric, histochemical, and protein biochemical analyses were performed at 2 and 5 weeks after fracture. Twenty‐five mice received 30 mg/kg body weight cilostazol p.o. daily. Controls (n = 24) received equivalent amounts of vehicle. In cilostazol‐treated animals radiological analysis at 2 weeks showed an improved healing with an accelerated osseous bridging compared to controls. This was associated with a significantly higher amount of bony tissue and a smaller amount of cartilage tissue within the callus. Western blot analysis showed a higher expression of cysteine‐rich protein 61 (CYR61), bone morphogenetic protein (BMP)‐4, and receptor activator of NF‐kappaB ligand (RANKL). At 5 weeks, improved fracture healing after cilostazol treatment was indicated by biomechanical analyses, demonstrating a significant higher bending stiffness compared to controls. Thus, cilostazol improves fracture healing by accelerating both bone formation and callus remodeling. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1880–1887, 2015.  相似文献   

2.
Proton pump inhibitors (PPIs), which are widely used in the treatment of dyspeptic problems, have been shown to reduce osteoclast activity. There is no information, however, on whether PPIs affect fracture healing. We therefore studied the effect of the PPI pantoprazole on callus formation and biomechanics during fracture repair. Bone healing was analyzed in a murine fracture model using radiological, biomechanical, histomorphometric, and protein biochemical analyses at 2 and 5 weeks after fracture. Twenty-one mice received 100 mg/kg body weight pantoprazole i.p. daily. Controls (n = 21) received equivalent amounts of vehicle. In pantoprazole-treated animals biomechanical analysis revealed a significantly reduced bending stiffness at 5 weeks after fracture compared to controls. This was associated with a significantly lower amount of bony tissue within the callus and higher amounts of cartilaginous and fibrous tissue. Western blot analysis showed reduced expression of the bone formation markers bone morphogenetic protein (BMP)-2, BMP-4, and cysteine-rich protein (CYR61). In addition, significantly lower expression of proliferating cell nuclear antigen indicated reduced cell proliferation after pantoprazole treatment. Of interest, the reduced expression of bone formation markers was associated with a significantly diminished expression of RANKL, indicating osteoclast inhibition. Pantoprazole delays fracture healing by affecting both bone formation and bone remodeling.  相似文献   

3.
The formation of new blood vessels is a prerequisite for bone healing. CYR61 (CCN1), an extracellular matrix-associated signaling protein, is a potent stimulator of angiogenesis and mesenchymal stem cell expansion and differentiation. A recent study showed that CYR61 is expressed during fracture healing and suggested that CYR61 plays a significant role in cartilage and bone formation. The hypothesis of the present study was that decreased fixation stability, which leads to a delay in healing, would lead to reduced CYR61 protein expression in fracture callus. The aim of the study was to quantitatively analyze CYR61 protein expression, vascularization, and tissue differentiation in the osteotomy gap and relate to the mechanical fixation stability during the course of healing. A mid-shaft osteotomy of the tibia was performed in two groups of sheep and stabilized with either a rigid or semirigid external fixator, each allowing different amounts of interfragmentary movement. The sheep were sacrificed at 2, 3, 6, and 9 weeks postoperatively. The tibiae were tested biomechanically and histological sections from the callus were analyzed immunohistochemically with regard to CYR61 protein expression and vascularization. Expression of CYR61 protein was upregulated at the early phase of fracture healing (2 weeks), decreasing over the healing time. Decreased fixation stability was associated with a reduced upregulation of the CYR61 protein expression and a reduced vascularization at 2 weeks leading to a slower healing. The maximum cartilage callus fraction in both groups was reached at 3 weeks. However, the semirigid fixator group showed a significantly lower CYR61 immunoreactivity in cartilage than the rigid fixator group at this time point. The fraction of cartilage in the semirigid fixator group was not replaced by bone as quickly as in the rigid fixator group leading to an inferior histological and mechanical callus quality at 6 weeks and therefore to a slower healing. The results supply further evidence that CYR61 may serve as an important regulator of bone healing.  相似文献   

4.
Murine osteotomy and fracture models have become the standard to study molecular mechanisms of bone healing. Because there is little information whether the healing of osteotomies differs from that of fractures, we herein studied in mice the healing of femur osteotomies compared to femur fractures. Twenty CD‐1 mice underwent a standardized open femur osteotomy. Another 20 mice received a standardized open femur fracture. Stabilization was performed by an intramedullary screw. Bone healing was studied by micro‐CT, biomechanical, histomorphometric and protein expression analyses. Osteotomies revealed a significantly lower biomechanical stiffness compared to fractures. Micro‐CT showed a reduced bone/tissue volume within the callus of the osteotomies. Histomorphometric analyses demonstrated also a significantly lower amount of osseous tissue in the callus of osteotomies (26% and 88% after 2 and 5 weeks) compared to fractures (50% and 100%). This was associated with a delayed remodeling. Western blot analyses demonstrated comparable BMP‐2 and BMP‐4 expression, but higher levels of collagen‐2, CYR61 and VEGF after osteotomy. Therefore, we conclude that open femur osteotomies in mice show a markedly delayed healing when stabilized less rigidly with an intramedullary screw. This should be considered when choosing a model for studying the mechanisms of bone healing in mice. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:971–978, 2015.  相似文献   

5.
Background: The influence of mechanical stability on fracture healing has previously been studied in adult mice, but is poorly understood in aged animals. Therefore, we herein studied the effect of stabilization on the healing process of femur fractures in aged mice. Methods: Twenty-four 18-month-old CD-1 mice were stabilized after midshaft fracture of the femur with an intramedullary screw. In another 24 18-month-old mice, the femur fractures were left unstabilized. Bone healing was studied by radiological, biomechanical, histomorphometric, and protein expression analyses. Results: After 2 and 5 weeks of healing, the callus of nonstabilized fractures compared to stabilized fractures was significantly larger, containing a significantly smaller amount of osseous tissue and a higher amount of cartilaginous tissue. This was associated with a significantly lower biomechanical stiffness during the early phase of healing. However, during the late phase of fracture healing both nonstabilized and stabilized fractures showed a biomechanical stiffness of ~40%. Of interest, Western blot analyses of callus tissue demonstrated that the expression of proteins related to angiogenesis, bone formation and remodeling, i.e. VEGF, CYR61, BMP-2, BMP-4, Col-2, Col-10, RANKL, OPG, did not differ between nonstabilized and stabilized fractures. Conclusion: Nonstabilized fractures in aged mice show delayed healing and remodeling. This is not caused by an altered protein expression in the callus but rather by the excessive interfragmentary movements.  相似文献   

6.
INTRODUCTION: This study is an investigation of the biological effects of extracorporeal shockwave treatment (ESWT) on bone healing in a rabbit model. MATERIALS AND METHODS: Sixteen 12-month-old New Zealand white rabbits with body weight ranging from 2.5 to 3.5 kg were used in the study. An intra-medullary pin was inserted retrograde into the femur canal. A closed fracture of the femur was created with a three-point bend method. The animals were randomly divided into the study group and the control group with eight rabbits in each group. The study group received shockwave treatment, whereas the control group did not. The animals were killed at 12 weeks, and a 5-cm long femur bone including the callus was harvested. The specimens were subjected to biomechanical study, histomorphological examination, and immunohistochemical analysis. RESULTS: The shockwave group showed significantly better bone strength in biomechanical study, more cortical bone formation in histomorphological examination and higher number of neo-vessels and angiogenic and osteogenic growth markers including VEGF, eNOS, PCNA, and BMP-2 on immunohistochemical stains than the control group. CONCLUSION: ESWT significantly improved bone healing after fracture of the femur in rabbit. ESWT promoted the formation of cortical bone what might have been associated with increased biomechanical results. ESWT-promoted bone healing was associated with increased neovascularization and up-regulation of angiogenic and osteogenic growth factors.  相似文献   

7.
Information on the impact of endogenous anti‐angiogenic factors on bone repair is limited. The hypothesis of the present study was endostatin, an endogenous inhibitor of angiogenesis, disturbs fracture healing. We evaluated this hypothesis in a closed femoral fracture model studying two groups of mice, one that was treated by a daily injection of 10 µg recombinant endostatin subcutaneously (n = 38) and a second one that received the vehicle for control (n = 37). Histomorphometric analysis showed a significantly increased callus formation in endostatin‐treated animals at 2 and 5 weeks post‐fracture. This was associated with a significantly higher callus tissue fraction of cartilage and fibrous tissue at 2 weeks and a significantly higher fraction of bone at 5 weeks post‐fracture. Biomechanical testing revealed a significantly higher torsional stiffness in the endostatin group at 2 weeks. For both groups, we could demonstrate the expression of the endostatin receptor unit integrin alpha5 in endothelial cells, osteoblasts, osteoclasts, and chondrocytes at 2 weeks. Immunohistochemical fluorescence staining of CD31 showed a lower number of blood vessels in endostatin‐treated animals compared to controls. The results of the present study indicate endostatin promotes soft callus formation but inhibits callus remodeling during fracture healing most probably by an inhibition of angiogenesis. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1579–1584, 2013.  相似文献   

8.
It is generally supposed that the pattern of fracture healing in trabecular metaphyseal bone differs from that of diaphyseal fractures. However, few experimental studies to date have been performed, even though clinically many fractures occur in metaphyseal bone. Particularly, the influence of biomechanical factors has not yet been investigated under standardized conditions. Our aim was to correlate the interfragmentary strain (IFS) with the bone‐healing outcome in a controlled metaphyseal fracture model in sheep. Twelve sheep received a partial osteotomy in the distal femoral condyle close to the trochlea. The determination of the IFS by in vivo X‐ray analyses and a finite element model revealed that the deflection of the osteotomy gap by the patello‐femoral force during walking provoked increasing strains of up to 40%. Bone healing was evaluated after 8 weeks by the assessment of the bone mineral density and by histomorphometry in regions of interest that displayed differing magnitudes of IFS. In areas with strains below 5% significantly less bone formation occurred compared to areas with higher strains (6–20%). For strains larger than 20% fibrocartilage layers were observed. Low IFS (<5%) led to intramembranous bone formation, whereas higher strains additionally provoked endochondral ossification or fibrocartilage formation. It is therefore proposed that metaphyseal bone healing follows similar biomechanical principles as diaphyseal healing. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:425–432, 2011  相似文献   

9.
The repair of a fractured bone is a complex biological event that essentially recapitulates embryonic development and requires the activity of a number of different cell types undergoing proliferation, migration, adhesion, and differentiation, while at the same time expressing a host of different genes. To identify such genes, we employed differential display and compared messenger RNA (mRNA) populations isolated from postfracture (PF) day 5 calluses to those of intact rat femurs. One such gene in which expression was up-regulated at PF day 5 is identified as CYR61, a member of the CCN family of secreted regulatory proteins. CYR61 is a growth factor that stimulates chondrogenesis and angiogenesis. We show that its mRNA expression during fracture repair is regulated temporally, with elevated levels seen as early as PF day 3 and day 5, rising dramatically at PF day 7 and day 10, and finally declining at PF day 14 and day 21. At the highest peak of expression (PF day 7 and day 10, which correlates with chondrogenesis), CYR61 mRNA levels are approximately 10-fold higher than those detected in intact femurs. Similarly, high protein levels are detected throughout the reparative phase of the callus, particularly in fibrous tissue and periosteum, and in proliferating chondrocytes, osteoblasts, and immature osteocytes. The secreted form of CYR61 also was detected within the newly made osteoid. No labeling was detected in hypertrophic chondrocytes or in mature cortical osteocytes. These results suggest that CYR61 plays a significant role in cartilage and bone formation and may serve as an important regulator of fracture healing.  相似文献   

10.
Angiogenesis and bone repair are closely linked processes. VEGF, CYR61, and CTGF have been identified as signaling factors that control angiogenesis and could be important in fracture healing. The purpose of this study was to investigate the expression of these signaling factors in osteonecrosis of the femoral head. Twenty-one bone cylinders were retrieved from hips of patients with osteonecrosis of the femoral head at different ARCO stages. Immunohistochemistry for CD34, CYR61, CTGF, and VEGF expression was done on each bone cylinder representing the different regions of osteonecrosis (necrosis, fibrosis, transition zone, and edematous area). VEGF, CYR61, and CTGF were expressed in samples with osteonecrosis. Particularly VEGF and CYR61 were highly expressed in the edematous area. CYR61 was also highly expressed in the transition zone. CTGF was expressed mainly in the area of marrow fibrosis and edema. CYR61, CTGF, and VEGF are expressed to different degrees in the different repair zones of osteonecrosis. Particularly, the high expression of VEGF and CYR61 in the edematous area may represent a consequence of hypoxia and indicate a role of these proteins in the repair processes ongoing in osteonecrosis.  相似文献   

11.
Beyond its classical role in regulation of erythropoiesis, erythropoietin (EPO) has been shown to exert protective and regenerative actions in a variety of non‐hematopoietic tissues. However, little is known about potential actions in bone regeneration. To analyze fracture healing in mice, a femoral 0.25 mm osteotomy gap was stabilized with a pin‐clip technique. Animals were treated with 500 U EPO/kg bw per day or with vehicle only. After 2 and 5 weeks, fracture healing was analyzed biomechanically, radiologically and histologically. Expression of PCNA and NFκB was examined by Western blot analysis. Vascularization was analyzed by immunohistochemical staining of PECAM‐1. Circulating endothelial progenitor cells were measured by flow‐cytometry. Herein, we demonstrate that EPO‐treatment significantly accelerates bone healing in mice. This is indicated by a significantly greater biomechanical stiffness and a higher radiological density of the periosteal callus at 2 and 5 weeks after fracture and stabilization. Histological analysis demonstrated significantly more bone and less cartilage and fibrous tissue in the periosteal callus. Endosteal vascularization was significantly increased in EPO‐treated animals when compared to controls. The number of circulating endothelial progenitor cells was significantly greater in EPO‐treated animals. The herein shown acceleration of healing by EPO may represent a promising novel treatment strategy for fractures with delayed healing and non‐union formation. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:165–172, 2011  相似文献   

12.
目的探讨甲状旁腺激素联合阿仑膦酸钠对大鼠骨质疏松性骨折骨痂血管形成及骨折愈合的影响。方法 75只雌性SD大鼠随机分为5组:假手术组、去势组、甲状旁腺素组、阿仑膦酸钠组、联合用药组,每组15只,首先行双侧卵巢切除术,术后4周行右侧股骨干骨折髓内固定术,以构建大鼠骨质疏松性骨折动物模型。观察并评估骨折愈合,检测骨痂生物力学和骨密度(bone mineral density,BMD),检测血清血管内皮生长因子(vascular endothelial growth factor,VEGF)和骨形成发生蛋白-2(bone morphogenetic protein-2,BMP-2)浓度,观察骨痂形态结构,检测骨痂VEGF表达。结果去势组较假手术组骨折愈合评分、骨痂生物力学强度、骨痂BMD、血清BMP-2和VEGF浓度、骨痂VEGF蛋白表达、骨痂微血管数均显著降低(P0.05),甲状旁腺素组、阿仑膦酸钠组、联合用药组较去势组上述指标均升高,其中以联合用药组升高最显著(P0.05)。结论甲状旁腺激素联合阿仑膦酸钠通过介导VEGF,上调BMP-2表达,促进骨质疏松性骨折大鼠骨痂血管形成,增加骨密度,改善生物力学强度及骨组织形态学,加快骨折愈合。  相似文献   

13.
Tendons and ligaments attach to bone through a transitional connective tissue with complex biomechanical properties. This unique tissue is not regenerated during healing, and surgical reattachment therefore often fails. The present study was designed to evaluate tendon healing in a bone tunnel and to evaluate the utilized rat model. Wistar rats (n = 61) were operated with the Achilles tendon through a bone tunnel in the distal tibia. Healing was evaluated at 2, 3, 4, and 12 weeks by biomechanical testing, bone mineral density and histology. After 2 weeks median (interquartile range) pull‐out force was 2.2 N (1.9). The pull‐out force increased chronologically, by 12 weeks fivefold to 11.2 N (11.4). Energy absorption, stiffness, and bone mineral density increased similarly. The histological analyses showed inflammation at early stages with increasing callus by time. Our data showed a slow healing response the first 4 weeks followed by an accelerated healing period, favoring that most of the gain in mechanical strength occurred later than 4 weeks postoperatively. These findings support the concern of a vulnerable tendon bone tunnel interface in the early stages of healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:216–223, 2015.  相似文献   

14.
15.
This study aimed to assess the cavernous antioxidant effect of green tea (GT), epigallocatechin‐3‐gallate (EGCG) with/without sildenafil citrate intake in aged diabetic rats. One hundred and four aged male white albino rat were divided into controls that received ordinary chow, streptozotocin (STZ)‐induced aged diabetic rats, STZ‐induced diabetic rats on infused green tea, induced diabetic rats on epigallocatechin‐3‐gallate and STZ‐induced diabetic rats on sildenafil citrate added to EGCG. After 8 weeks, dissected cavernous tissues were assessed for gene expression of eNOS, cavernous malondialdehyde (MDA), glutathione peroxidase (GPx), cyclic guanosine monophosphate (cGMP), and serum testosterone (T). STZ‐induced diabetic rats on GT demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats. Diabetic rats on EGCG demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats or diabetic rats on GT. Diabetic rats on EGCG added to sildenafil showed significant increase in cavernous eNOS, cGMP and significant decrease in cavernous MDA compared with other groups. Serum T demonstrated nonsignificant difference between the investigated groups. It is concluded that GT and EGCG have significant cavernous antioxidant effects that are increased if sildenafil is added.  相似文献   

16.
Immunosuppressant drugs like cyclosporine A and FK506 are widely used for solid organ transplantation. They are accelerating bone remodeling but cause net bone loss. The aim of this study was to investigate the effect of FK506 on fracture healing in the rat. Eighty Lewis rats were divided into four groups, which received FK506 (1 mg/kg BW) or no treatment for 2 or 4 weeks, beginning after production of a closed, nondisplaced unilateral tibial fracture. Radiographic, histological, and biomechanical studies were used to evaluate fracture healing and histomorphometric analysis of the tibial metaphysis of the intact contralateral side was performed. Radiographs revealed no difference of the healing of the control fractures compared with the fractures in the FK506-treated group at 2 and 4 weeks. The mechanical parameters of the tested contralateral intact tibiae and of the fracture callus demonstrated no difference between control and immunosuppressed animals. Tibial bone histomorphometry revealed increased measures of bone formation and bone resorption, accompanied by a significant reduction of percent trabecular area. At 4 weeks, the fractures showed osseous healing with woven bone at the fracture site and only minimal amounts of cartilage. Histological grading was not different between the control and the FK506 group at both time points. We conclude that systemic application of FK506 has no biomechanical and histological effects of experimental fracture healing in the rat. However, resorption far in excess of formation leads to a net bone loss in the trabecular bone of the tibia that has no effect on the stability of the intact bone.  相似文献   

17.
It has previously been reported that indomethacin inhibits fracture healing and heterotopic bone formation. Stimulated by these reports, we undertook the present investigation to study the influence of indomethacin on biomechanical and biochemical properties of the plantaris longus tendon in the rabbit. Sixty-eight New Zealand White rabbits were used for the experiment. Half of them were treated with indomethacin, 10 mg/kg orally a day, and the other half with placebo. After 4, 8, and 16 weeks of treatment biomechanical and biochemical variables were determined and compared between the two groups. After 16 weeks there was a significant increase in tensile strength in the group treated with indomethacin. There was no certain concomitant change in the total collagen content, the amounts of soluble and insoluble collagen, or the water content. Further investigations concerning the influence of indomethacin on tendon healing are indicated.  相似文献   

18.
Therapeutic enhancement of fracture healing would help to prevent the occurrence of orthopedic complications such as nonunion and revision surgery. Sclerostin is a negative regulator of bone formation, and treatment with a sclerostin monoclonal antibody (Scl‐Ab) results in increased bone formation and bone mass in animal models. Our objective was to investigate the effects of systemic administration of Scl‐Ab in two models of fracture healing. In both a closed femoral fracture model in rats and a fibular osteotomy model in cynomolgus monkeys, Scl‐Ab significantly increased bone mass and bone strength at the site of fracture. After 10 weeks of healing in nonhuman primates, the fractures in the Scl‐Ab group had less callus cartilage and smaller fracture gaps containing more bone and less fibrovascular tissue. These improvements at the fracture site corresponded with improvements in bone formation, bone mass, and bone strength at nonfractured cortical and trabecular sites in both studies. Thus the potent anabolic activity of Scl‐Ab throughout the skeleton also was associated with an anabolic effect at the site of fracture. These results support the potential for systemic Scl‐Ab administration to enhance fracture healing in patients. © 2011 American Society for Bone and Mineral Research.  相似文献   

19.
As a downstream product of cyclooxygenase 2 (COX‐2), prostaglandin E2 (PGE2) plays a crucial role in the regulation of bone formation. It has four different receptor subtypes (EP1 through EP4), each of which exerts different effects in bone. EP2 and EP4 induce bone formation through the protein kinase A (PKA) pathway, whereas EP3 inhibits bone formation in vitro. However, the effect of EP1 receptor signaling during bone formation remains unclear. Closed, stabilized femoral fractures were created in mice with EP1 receptor loss of function at 10 weeks of age. Healing was evaluated by radiographic imaging, histology, gene expression studies, micro–computed tomographic (µCT), and biomechanical measures. EP1?/? mouse fractures have increased formation of cartilage, increased fracture callus, and more rapid completion of endochondral ossification. The fractures heal faster and with earlier fracture callus mineralization with an altered expression of genes involved in bone repair and remodeling. Fractures in EP1?/? mice also had an earlier appearance of tartrate‐resistant acid phosphatase (TRAcP)–positive osteoclasts, accelerated bone remodeling, and an earlier return to normal bone morphometry. EP1?/? mesenchymal progenitor cells isolated from bone marrow have higher osteoblast differentiation capacity and accelerated bone nodule formation and mineralization in vitro. Loss of the EP1 receptor did not affect EP2 or EP4 signaling, suggesting that EP1 and its downstream signaling targets directly regulate fracture healing. We show that unlike the PGE2 receptors EP2 and EP4, the EP1 receptor is a negative regulator that acts at multiple stages of the fracture healing process. Inhibition of EP1 signaling is a potential means to enhance fracture healing. © 2011 American Society for Bone and Mineral Research.  相似文献   

20.
Parathyroid hormone (PTH) and PTH(1‐34) have been shown to promote bone healing in several animal studies. It is known that the mechanical environment is important in fracture healing. Furthermore, PTH and mechanical loading has been suggested to have synergistic effects on intact bone. The aim of the present study was to investigate whether the effect of PTH(1‐34) on fracture healing in rats was influenced by reduced mechanical loading. For this purpose, we used female, 25‐week‐old ovariectomized rats. Animals were subjected to closed midshaft fracture of the right tibia 10 weeks after ovariectomy. Five days before fracture, half of the animals received Botulinum Toxin A injections in the muscles of the fractured leg to induce muscle paralysis (unloaded group), whereas the other half received saline injections (control group). For the following 8 weeks, half of the animals in each group received injections of hPTH(1‐34) (20 µg/kg/day) and the other half received vehicle treatment. Fracture healing was assessed by radiology, dual‐energy X‐ray absorptiometry (DXA), histology, and bone strength analysis. We found that unloading reduced callus area significantly, whereas no effects of PTH(1‐34) on callus area were seen in neither normally nor unloaded animals. PTH(1‐34) increased callus bone mineral density (BMD) and bone mineral content (BMC) significantly, whereas unloading decreased callus BMD and BMC significantly. PTH(1‐34) treatment increased bone volume of the callus in both unloaded and control animals. PTH(1‐34) treatment increased ultimate force of the fracture by 63% in both control and unloaded animals and no interaction of the two interventions could be detected. PTH(1‐34) was able to stimulate bone formation in normally loaded as well as unloaded intact bone. In conclusion, the study confirms the stimulatory effect of PTH(1‐34) on fracture healing, and our data suggest that PTH(1‐34) is able to promote fracture healing, as well as intact bone formation during conditions of reduced mechanical loading. © 2013 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号