首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Estrogen receptor‐α (ERα) is crucial for the adaptive response of bone to loading but the role of endogenous estradiol (E2) for this response is unclear. To determine in vivo the ligand dependency and relative roles of different ERα domains for the osteogenic response to mechanical loading, gene‐targeted mouse models with (1) a complete ERα inactivation (ERα?/?), (2) specific inactivation of activation function 1 (AF‐1) in ERα (ERαAF‐10), or (3) specific inactivation of ERαAF‐2 (ERαAF‐20) were subjected to axial loading of tibia, in the presence or absence (ovariectomy [ovx]) of endogenous E2. Loading increased the cortical bone area in the tibia mainly as a result of an increased periosteal bone formation rate (BFR) and this osteogenic response was similar in gonadal intact and ovx mice, demonstrating that E2 (ligand) is not required for this response. Female ERα?/? mice displayed a severely reduced osteogenic response to loading with changes in cortical area (?78% ± 15%, p < 0.01) and periosteal BFR (?81% ± 9%, p < 0.01) being significantly lower than in wild‐type (WT) mice. ERαAF‐10 mice also displayed a reduced response to mechanical loading compared with WT mice (cortical area ?40% ± 11%, p < 0.05 and periosteal BFR ?41% ± 8%, p < 0.01), whereas the periosteal osteogenic response to loading was unaffected in ERαAF‐20 mice. Mechanical loading of transgenic estrogen response element (ERE)‐luciferase reporter mice did not increase luciferase expression in cortical bone, suggesting that the loading response does not involve classical genomic ERE‐mediated pathways. In conclusion, ERα is required for the osteogenic response to mechanical loading in a ligand‐independent manner involving AF‐1 but not AF‐2. © 2013 American Society for Bone and Mineral Research  相似文献   

3.
Estrogen receptor alpha (ERα) has been implicated in bone's response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed‐background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell–specific ERαKO mice. Therefore, we crossed ERα floxed (ERαfl/fl) and osteocalcin‐Cre (OC‐Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC‐ERαKO) and littermate controls (LC). At 10 weeks of age, the left tibia was loaded in vivo for 2 weeks. We analyzed bone mass through micro‐CT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared with LC, female pOC‐ERαKO mice had decreased cortical and cancellous bone mass, whereas male pOC‐ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC‐ERαKO female L5 vertebrae and with increased maximum moment in pOC‐ERαKO male femora. Female pOC‐ERαKO mice responded more to mechanical loading, whereas the response of pOC‐ERαKO male animals was similar to their littermate controls. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.  相似文献   

4.
Rheumatoid arthritis (RA) is a highly bone destructive disease. Although it is well established that RA leads to bone loss and increased fracture risk, current knowledge on the microstructural changes of bone in RA is still limited. The purpose of this study was to assess the microstructure of periarticular and nonperiarticular bone in female and male RA patients and compare it with respective healthy controls. We performed two high‐resolution peripheral quantitative computed tomography (HR‐pQCT; Xtreme‐CT) scans, one of the distal radius and one of the ultradistal radius in 90 patients with RA (60 females, 30 males) and 70 healthy controls (40 females, 30 males) matched for sex, age, and body mass index. Volumetric bone mineral density (vBMD), bone geometry, and bone microstructure including trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), cortical thickness (Ct.Th) and cortical porosity (Ct.Po) were assessed. At the distal and ultradistal radius, trabecular (p = 0.005 and p < 0.001) and cortical BMD (p < 0.001 and p < 0.001) were significantly decreased in male and female patients with RA, respectively. BV/TV was also decreased at both sites, based on lower Tb.N in female RA (p < 0.001 for both sites) and lower Tb.Th (p = 0.034 and p = 0.005) in male RA patients compared with respective healthy controls. Cortical thinning (p = 0.018 and p = 0.002) but not Ct.Po (p = 0.070 and p = 0.275) was pronounced in male and female RA patients at the distal radius. Cortical perimeter was increased in male and female RA patients at both sites. Multiple regression models showed that bone geometry (cortical perimeter) is predominantly influenced by age of the RA patient, cortical thickness by both age and disease duration, and trabecular microstructure predominantly by the disease duration. In summary, these data show profound deterioration of bone microstructure in the appendicular skeleton of RA patients at both periarticular and nonperiarticular sites. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
IGF‐I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF‐I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF‐I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass‐dependent relationship between IGF‐I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA‐IR). Cortical bone at the tibia diaphysis (66% site) and total body fat‐free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual‐energy X‐ray absorptiometry (DXA), respectively. IGF‐I, insulin, and glucose were measured in fasting sera and HOMA‐IR was calculated. Children with high HOMA‐IR had greater unadjusted IGF‐I (p < 0.001). HOMA‐IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF‐I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA‐IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF‐I and Ct.Ar via FFST in the total cohort (βIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (βIndirect Effect = 0.200, p < 0.001) versus normal (βIndirect Effect = 0.408, p < 0.001) HOMA‐IR. These data implicate insulin resistance as a potential suppressor of IGF‐I‐dependent cortical bone development, though prospective studies are needed. © 2017 American Society for Bone and Mineral Research.  相似文献   

6.
Hypophosphatemic rickets (HR) is characterized by a generalized mineralization defect. Although densitometric studies have found the patients to have an elevated bone mineral density (BMD), data on bone geometry and microstructure are scarce. The aim of this cross‐sectional in vivo study was to assess bone geometry, volumetric BMD (vBMD), microarchitecture, and estimated bone strength in adult patients with HR using high‐resolution peripheral quantitative computed tomography (HR‐pQCT). Twenty‐nine patients (aged 19 to 79 years; 21 female, 8 male patients), 26 of whom had genetically proven X‐linked HR, were matched with respect to age and sex with 29 healthy subjects. Eleven patients were currently receiving therapy with calcitriol and phosphate for a median duration of 29.1 years (12.0 to 43.0 years). Because of the disproportionate short stature in HR, the region of interest in HR‐pQCT images at the distal radius and tibia were placed in a constant proportion to the entire length of the bone in both patients and healthy volunteers. In age‐ and weight‐adjusted models, HR patients had significantly higher total bone cross‐sectional areas (radius 36%, tibia 20%; both p < 0.001) with significantly higher trabecular bone areas (radius 49%, tibia 14%; both p < 0.001) compared with controls. In addition, HR patients had lower total vBMD (radius ?20%, tibia ?14%; both p < 0.01), cortical vBMD (radius ?5%, p < 0.001), trabecular number (radius ?13%, tibia ?14%; both p < 0.01), and cortical thickness (radius ?19%; p < 0.01) compared with controls, whereas trabecular spacing (radius 18%, tibia 23%; p < 0.01) and trabecular network inhomogeneity (radius 29%, tibia 40%; both p < 0.01) were higher. Estimated bone strength was similar between the groups. In conclusion, in patients with HR, the negative impact of lower vBMD and trabecular number on bone strength seems to be compensated by an increase in bone diameter, resulting in HR patients having normal estimates of bone strength. © 2014 American Society for Bone and Mineral Research.  相似文献   

7.
The effects of caloric restriction (CR) on the skeleton are well studied in adult rodents and include lower cortical bone mass but higher trabecular bone volume. Much less is known about how CR affects bone mass in young, rapidly growing animals. This is an important problem because low caloric intake during skeletal acquisition in humans, as in anorexia nervosa, is associated with low bone mass, increased fracture risk, and osteoporosis in adulthood. To explore this question, we tested the effect of caloric restriction on bone mass and microarchitecture during rapid skeletal growth in young mice. At 3 weeks of age, we weaned male C57Bl/6J mice onto 30% caloric restriction (10% kcal/fat) or normal diet (10% kcal/fat). Outcomes at 6 (n = 4/group) and 12 weeks of age (n = 8/group) included body mass, femur length, serum leptin and insulin‐like growth factor 1 (IGF‐1) values, whole‐body bone mineral density (WBBMD, g/cm2), cortical and trabecular bone architecture at the midshaft and distal femur, bone formation and cellularity, and marrow fat measurement. Compared with the normal diet, CR mice had 52% and 88% lower serum leptin and 33% and 39% lower serum IGF‐1 at 6 and 12 weeks of age (p < .05 for all). CR mice were smaller, with lower bone mineral density, trabecular, and cortical bone properties. Bone‐formation indices were lower, whereas bone‐resorption indices were higher (p < .01 for all) in CR versus normal diet mice. Despite having lower percent of body fat, bone marrow adiposity was elevated dramatically in CR versus normal diet mice (p < .05). Thus we conclude that caloric restriction in young, growing mice is associated with impaired skeletal acquisition, low leptin and IGF‐1 levels, and high marrow adiposity. These results support the hypothesis that caloric restriction during rapid skeletal growth is deleterious to cortical and trabecular bone mass and architecture, in contrast to potential skeletal benefits of CR in aging animals. © 2010 American Society for Bone and Mineral Research.  相似文献   

8.
High bone mass in animals and humans with sclerostin deficiency is associated with increased bone strength, which is not the case for all disorders with high bone mineral density, some of which are even associated with fragility fractures owing to unfavorable bone composition. In the current study we investigated whether alterations in bone composition may contribute to the bone strength characteristics associated with lack of sclerostin. We examined cortical bone of Sost‐knockout (KO) mice (n = 9, 16 weeks old) and sclerosteosis patients (young [4 to 14 years], n = 4 and adults [24 and 43 years], n = 2) by quantitative backscattered electron imaging and Raman microspectroscopy and compared it to bone from wild‐type mice and healthy subjects, respectively. In Sost‐KO mice endocortical bone exhibited altered bone composition, whereas subperiosteal bone was unchanged. When comparing endocortical bone tissue of identical tissue age as defined by sequential dual fluorochrome labeling the average bone matrix mineralization was reduced ?1.9% (p < 0.0001, younger tissue age) and ?1.5% (p < 0.05, older tissue age), and the relative proteoglycan content was significantly increased. Similarly, bone matrix mineralization density distribution was also shifted toward lower matrix mineralization in surgical samples of compact bone of sclerosteosis patients. This was associated with an increase in mineralization heterogeneity in the young population. In addition, and consistently, the relative proteoglycan content was increased. In conclusion, we observed decreased matrix mineralization and increased relative proteoglycan content in bone subcompartments of Sost‐KO mice—a finding that translated into sclerosteosis patients. We hypothesize that the altered bone composition contributes to the increased bone strength of patients with sclerostin deficiency. © 2014 American Society for Bone and Mineral Research.  相似文献   

9.
Reduced bioavailability of estrogen increases skeletal fracture risk in postmenopausal women, but the mechanisms by which estrogen regulates bone mass are incompletely understood. Because estrogen signaling in bone acts, in part, through estrogen receptor alpha (ERα), mice with global deletion of ERα (ERαKO) have been used to determine the role of estrogen signaling in bone biology. These animals, however, have confounding systemic effects arising from other organs, such as increased estrogen and decreased insulin‐like growth factor 1 (IGF‐1) serum levels, which may independently affect bone. Mice with tissue‐specific ERα deletion in chondrocytes, osteoblasts, osteocytes, or osteoclasts lack the systemic effects seen in the global knockout, but show that presence of the receptor is important for the function of each cell type. Although bone mass is reduced when ERα is deleted from osteoblasts, no study has determined if this approach reduces whole bone strength. To address this issue, we generated female osteoblast‐specific ERαKO mice (pOC‐ERαKO) by crossing mice expressing a floxed ERα gene (ERαfl/fl) with mice transgenic for the osteocalcin‐Cre promoter (OC‐Cre). Having confirmed that serum levels of estrogen and IGF‐1 were unaltered, we focused on relating bone mechanics to skeletal phenotype using whole bone mechanical testing, microcomputed tomography, histology, and dynamic histomorphometry. At 12 and 18 weeks of age, pOC‐ERαKO mice had decreased cancellous bone mass in the proximal tibia, vertebra, and distal femur, and decreased cortical bone mass in the tibial midshaft, distal femoral cortex, and L5 vertebral cortex. Osteoblast activity was reduced in cancellous bone of the proximal tibia, but osteoclast number was unaffected. Both femora and vertebrae had decreased whole bone strength in mechanical tests to failure, indicating that ERα in osteoblasts is required for appropriate bone mass and strength accrual in female mice. This pOC‐ERαKO mouse is an important animal model that could enhance our understanding of estrogen signaling in bone cells in vivo. © 2014 American Society for Bone and Mineral Research.  相似文献   

10.
Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin‐like growth factor (IGF‐1). Studies have suggested that the reduction in IGF‐1 compromises healthspan, whereas others report that loss of IGF‐1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF‐1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF‐1 on vertebral bone aging in male and female Igff/f mice. IGF‐1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin–cyclic recombinase [Cre] mice with Igff/f mice); and in early adulthood and in late adulthood using hepatic‐specific viral vectors (AAV8‐TBG‐Cre). Vertebrae bone structure was analyzed at 27 months of age using micro–computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age‐related reductions in vertebral bone structure. In male mice, reduction of circulating IGF‐1 induced at any age did not diminish vertebral bone loss. Interestingly, early‐life loss of IGF‐1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early‐life IGF‐1–deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor‐activator of NF‐κB‐ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF‐1, there was a 2.2‐fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF‐1. Together, these data suggest the age‐related loss of vertebral bone density in females can be reduced by modifying circulating IGF‐1 levels early in life. © 2015 American Society for Bone and Mineral Research.  相似文献   

11.
Alterations in the gut microbiome have been associated with changes in bone mass and microstructure, but the effects of the microbiome on bone biomechanical properties are not known. Here we examined bone strength under two conditions of altered microbiota: (1) an inbred mouse strain known to develop an altered gut microbiome due to deficits in the immune system (the Toll‐like receptor 5–deficient mouse [TLR5KO]); and (2) disruption of the gut microbiota (ΔMicrobiota) through chronic treatment with selected antibiotics (ampicillin and neomycin). The bone phenotypes of TLR5KO and WT (C57Bl/6) mice were examined after disruption of the microbiota from 4 weeks to 16 weeks of age as well as without treatment (n = 7 to 16/group, 39 animals total). Femur bending strength was less in ΔMicrobiota mice than in untreated animals and the reduction in strength was not fully explained by differences in bone cross‐sectional geometry, implicating impaired bone tissue material properties. Small differences in whole‐bone bending strength were observed between WT and TLR5KO mice after accounting for differences in bone morphology. No differences in trabecular bone volume fraction were associated with genotype or disruption of gut microbiota. Treatment altered the gut microbiota by depleting organisms from the phyla Bacteroidetes and enriching for Proteobacteria, as determined from sequencing of fecal 16S rRNA genes. Differences in splenic immune cell populations were also observed; B and T cell populations were depleted in TLR5KO mice and in ΔMicrobiota mice (p < 0.001), suggesting an association between alterations in bone tissue material properties and immune cell populations. We conclude that alterations in the gut microbiota for extended periods during growth may lead to impaired whole‐bone mechanical properties in ways that are not explained by bone geometry. © 2017 American Society for Bone and Mineral Research.  相似文献   

12.
The diagnosis of fracture risk relies almost solely on quantifying bone mass, yet bone strength is governed by factors at multiple scales including composition and structure that contribute to fracture resistance. Furthermore, aging and conditions such as diabetes mellitus alter fracture incidence independently of bone mass. Therefore, it is critical to incorporate other factors that contribute to bone strength in order to improve diagnostic specificity of fracture risk. We examined the correlation between femoral neck fracture strength in aging female cadavers and areal bone mineral density, along with other clinically accessible measures of bone quality including whole‐bone cortical porosity (Ct.Po), bone material mechanical behavior measured by reference point indentation (RPI), and accumulation of advanced glycation end‐products (AGEs). All measurements were found to be significant predictors of femoral neck fracture strength, with areal bone mineral density (aBMD) being the single strongest correlate (aBMD: r = 0.755, p < 0.001; Ct.Po: r = –0.500, p < 0.001; RPI: r = –0.478, p < 0.001; AGEs: r = –0.336, p = 0.016). RPI‐derived measurements were not correlated with tissue mineral density or local cortical porosity as confirmed by micro–computed tomography (μCT). Multiple reverse stepwise regression revealed that the inclusion of aBMD and any other factor significantly improve the prediction of bone strength over univariate predictions. Combining bone assays at multiple scales such as aBMD with tibial Ct.Po (r = 0.835; p < 0.001), tibial difference in indentation depth between the first and 20th cycle (IDI) (r = 0.883; p < 0.001), or tibial AGEs (r = 0.822; p < 0.001) significantly improves the prediction of femoral neck strength over any factor alone, suggesting that this personalized approach could greatly enhance bone strength and fracture risk assessment with the potential to guide clinical management strategies for at‐risk populations. © 2015 American Society for Bone and Mineral Research.  相似文献   

13.
Sclerostin, a product of the SOST gene produced mainly by osteocytes, is a potent negative regulator of bone formation that appears to be responsive to mechanical loading, with SOST expression increasing following mechanical unloading. We tested the ability of a murine sclerostin antibody (SclAbII) to prevent bone loss in adult mice subjected to hindlimb unloading (HLU) via tail suspension for 21 days. Mice (n = 11–17/group) were assigned to control (CON, normal weight bearing) or HLU and injected with either SclAbII (subcutaneously, 25 mg/kg) or vehicle (VEH) twice weekly. SclAbII completely inhibited the bone deterioration due to disuse, and induced bone formation such that bone properties in HLU‐SclAbII were at or above values of CON‐VEH mice. For example, hindlimb bone mineral density (BMD) decreased –9.2% ± 1.0% in HLU‐VEH, whereas it increased 4.2% ± 0.7%, 13.1% ± 1.0%, and 30.6% ± 3.0% in CON‐VEH, HLU‐SclAbII, and CON‐SclAbII, respectively (p < 0.0001). Trabecular bone volume, assessed by micro–computed tomography (µCT) imaging of the distal femur, was lower in HLU‐VEH versus CON‐VEH (p < 0.05), and was 2‐ to 3‐fold higher in SclAbII groups versus VEH (p < 0.001). Midshaft femoral strength, assessed by three‐point bending, and distal femoral strength, assessed by micro–finite element analysis (µFEA), were significantly higher in SclAbII versus VEH‐groups in both loading conditions. Serum sclerostin was higher in HLU‐VEH (134 ± 5 pg/mL) compared to CON‐VEH (116 ± 6 pg/mL, p < 0.05). Serum osteocalcin was decreased by hindlimb suspension and increased by SclAbII treatment. Interestingly, the anabolic effects of sclerostin inhibition on some bone outcomes appeared to be enhanced by normal mechanical loading. Altogether, these results confirm the ability of SclAbII to abrogate disuse‐induced bone loss and demonstrate that sclerostin antibody treatment increases bone mass by increasing bone formation in both normally loaded and underloaded environments. © 2013 American Society for Bone and Mineral Research.  相似文献   

14.
Type 2 diabetes mellitus results in increased risk of fracture and delayed fracture healing. ZDF fa/fa rats are an established model of type 2 diabetes mellitus with low bone mass and delayed bone healing. We tested whether a sclerostin‐neutralizing antibody (Scl‐AbVI) would reverse the skeletal deficits of diabetic ZDF rats. Femoral defects of 3 mm were created in 11‐week‐old diabetic ZDF fa/fa and nondiabetic ZDF +/+ rats and stabilized by an internal plate. Saline or 25 mg/kg Scl‐AbVI was administered subcutaneously (s.c.) twice weekly for 12 weeks (n = 9–10/group). Bone mass and strength were assessed using pQCT, micro–computed tomography (µCT), and biomechanical testing. Bone histomorphometry was used to assess bone formation, and the filling of the bone defect was analyzed by µCT. Diabetic rats displayed lower spinal and femoral bone mass compared to nondiabetic rats, and Scl‐AbVI treatment significantly enhanced bone mass of the femur and the spine of diabetic rats (p < 0.0001). Scl‐AbVI also reversed the deficit in bone strength in the diabetic rats, with 65% and 89% increases in maximum load at the femoral shaft and neck, respectively (p < 0.0001). The lower bone mass in diabetic rats was associated with a 65% decrease in vertebral bone formation rate, which Scl‐AbVI increased by sixfold, consistent with a pronounced anabolic effect. Nondiabetic rats filled 57% of the femoral defect, whereas diabetic rats filled only 21% (p < 0.05). Scl‐AbVI treatment increased defect regeneration by 47% and 74%, respectively (p < 0.05). Sclerostin antibody treatment reverses the adverse effects of type 2 diabetes mellitus on bone mass and strength, and improves bone defect regeneration in rats. © 2013 American Society for Bone and Mineral Research.  相似文献   

15.
Although patients with type 2 diabetes (T2D) are at significant risk for well‐recognized diabetic complications, including macrovascular disease, retinopathy, nephropathy, and neuropathy, it is also clear that T2D patients are at increased risk for fragility fractures. Furthermore, fragility fractures in patients with T2D occur at higher bone mineral density (BMD) values compared to nondiabetic controls, suggesting abnormalities in bone material strength (BMS) and/or bone microarchitecture (bone “quality”). Thus, we performed in vivo microindentation testing of the tibia to directly measure BMS in 60 postmenopausal women (age range, 50–80 years) including 30 patients diagnosed with T2D for >10 years and 30 age‐matched, nondiabetic controls. Regional BMD was measured by dual‐energy X‐ray absorptiometry (DXA); cortical and trabecular bone microarchitecture was assessed from high‐resolution peripheral quantitative computed tomography (HRpQCT) images of the distal radius and tibia. Compared to controls, T2D patients had significantly lower BMS: unadjusted (?11.7%; p < 0.001); following adjustment for body mass index (BMI) (?10.5%; p < 0.001); and following additional adjustment for age, hypertension, nephropathy, neuropathy, retinopathy, and vascular disease (?9.2%; p = 0.022). By contrast, after adjustment for confounding by BMI, T2D patients had bone microarchitecture and BMD that were not significantly different than controls; however, radial cortical porosity tended to be higher in the T2D patients. In addition, patients with T2D had significantly reduced serum markers of bone turnover (all p < 0.001) compared to controls. Of note, in patients with T2D, the average glycated hemoglobin level over the previous 10 years was negatively correlated with BMS (r = ?0.41; p = 0.026). In conclusion, these findings represent the first demonstration of compromised BMS in patients with T2D. Furthermore, our results confirm previous studies demonstrating low bone turnover in patients with T2D and highlight the potential detrimental effects of prolonged hyperglycemia on bone quality. Thus, the skeleton needs to be recognized as another important target tissue subject to diabetic complications. © 2014 American Society for Bone and Mineral Research.  相似文献   

16.
To assess the roles of Lrrk1 and Lrrk2, we examined skeletal phenotypes in Lrrk1 and Lrrk2 knockout (KO) mice. Lrrk1 KO mice exhibit severe osteopetrosis caused by dysfunction of multinucleated osteoclasts, reduced bone resorption in endocortical and trabecular regions, and increased bone mineralization. Lrrk1 KO mice have lifelong accumulation of bone and respond normally to the anabolic actions of teriparatide treatment, but are resistant to ovariectomy‐induced bone boss. Precursors derived from Lrrk1 KO mice differentiate into multinucleated cells in response to macrophage colony‐stimulating factor (M‐CSF)/receptor activator of NF‐κB ligand (RANKL) treatment, but these cells fail to form peripheral sealing zones and ruffled borders, and fail to resorb bone. The phosphorylation of cellular Rous sarcoma oncogene (c‐Src) at Tyr‐527 is significantly elevated whereas at Tyr‐416 is decreased in Lrrk1‐deficient osteoclasts. The defective osteoclast function is partially rescued by overexpression of the constitutively active form of Y527F c‐Src. Immunoprecipitation assays in osteoclasts detected a physical interaction of Lrrk1 with C‐terminal Src kinase (Csk). Lrrk2 KO mice do not show obvious bone phenotypes. Precursors derived from Lrrk2 KO mice differentiate into functional multinucleated osteoclasts. Our finding of osteopetrosis in Lrrk1 KO mice provides convincing evidence that Lrrk1 plays a critical role in negative regulation of bone mass in part through modulating the c‐Src signaling pathway in mice.  相似文献   

17.
Treatment with the cathepsin K (CatK) inhibitor odanacatib (ODN) protects against bone loss and maintains normal biomechanical properties in the spine and hip of ovariectomized (OVX) preclinical models. Here, we characterized the effects of ODN on the dynamics of cortical modeling and remodeling, and dimension and strength of the central femur in adult OVX‐rhesus monkeys. Animals were treated with vehicle or ODN (6 or 30 mg/kg, once per day [q.d., p.o.]) in prevention mode for 21 months. Calcein and tetracycline double‐labeling were given at 12 and 21 months, and the femoral cross‐sections were subjected to dynamic histomorphometric and cement line analyses. ODN treatment significantly increased periosteal and endocortical bone formation (BFR/BS), accompanied with an increase in endocortical mineralizing surface (102%, p < 0.01) with the 6 mg/kg dose. ODN at both doses reduced remodeling hemiosteon numbers by 51% and 66% (p < 0.05), respectively, and ODN 30 mg/kg numerically reduced activation frequency without affecting wall thickness. On the same endocortical surface, ODN increased all modeling‐based parameters, while reducing intracortical remodeling, consistent with the observed no treatment effects on cortical porosity. ODN 30 mg/kg markedly increased cortical thickness (CtTh, p < 0.001) and reduced marrow area (p < 0.01). Lastly, ODN treatment increased femoral structural strength (p < 0.001). Peak load was positively correlated with the increases in bone mineral content (BMC) (r2 = 0.9057, p < 0.0001) and CtTh (r2 = 0.6866, p < 0.0001). Taken together, by reducing cortical remodeling‐based and stimulating modeling‐based bone formation, ODN significantly improved cortical dimension and strength in OVX monkeys. This novel mechanism of CatK inhibition in stimulating cortical formation suggests that ODN represents a novel therapeutic approach for the treatment of osteoporosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ‐deficient mice will have increased mandibular condylar growth compared to wild‐type (WT) female mice. This study examined female 7‐day‐old, 49‐day‐old, and 120‐day‐old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49‐day‐old and 120‐day‐old female ERβ KO compared with WT controls. Analysis in 49‐day‐old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone–related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49‐day‐old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. © 2013 American Society for Bone and Mineral Research.  相似文献   

19.
There is growing evidence that insulin‐like growth factor 1 (IGF‐1) and parathyroid hormone (PTH) have synergistic actions on bone and that part of the anabolic effects of PTH is mediated by local production of IGF‐1. In this study we analyzed the skeletal response to PTH in mouse models with manipulated endocrine or autocrine/paracrine IGF‐1. We used mice carrying a hepatic IGF‐1 transgene (HIT), which results in a threefold increase in serum IGF‐1 levels and normal tissue IGF‐1 expression, and Igf1 null mice with blunted IGF‐1 expression in tissues but threefold increases in serum IGF‐1 levels (KO‐HIT). Evaluation of skeletal growth showed that elevations in serum IGF‐1 in mice with Igf1 gene ablation in all tissues except the liver (KO‐HIT) resulted in a restoration of skeletal morphology and mechanical properties by adulthood. Intermittent PTH treatment of adult HIT mice resulted in increases in serum osteocalcin levels, femoral total cross‐sectional area, cortical bone area and cortical bone thickness, as well as bone mechanical properties. We found that the skeletal response of HIT mice to PTH was significantly higher than that of control mice, suggesting synergy between IGF‐1 and PTH on bone. In sharp contrast, although PTH‐treated KO‐HIT mice demonstrated an anabolic response in cortical and trabecular bone compartments compared with vehicle‐treated KO‐HIT mice, their response was identical to that of PTH‐treated control mice. We conclude that (1) in the presence of elevated serum IGF‐1 levels, PTH can exert an anabolic response in bone even in the total absence of tissue IGF‐1, and (2) elevations in serum IGF‐1 levels synergize PTH action on bone only if the tissue IGF‐1 axis is intact. Thus enhancement of PTH anabolic actions depends on tissue IGF‐1. © 2010 American Society for Bone and Mineral Research.  相似文献   

20.
Estrogens enhance skeletal growth during early sexual maturation, whereas high estradiol levels during late puberty result in growth plate fusion in humans. Although the growth plates do not fuse directly after sexual maturation in rodents, a reduction in growth plate height is seen by treatment with a high dose of estradiol. It is unknown whether the effects of estrogens on skeletal growth are mediated directly via estrogen receptors (ERs) in growth plate cartilage and/or indirectly via other mechanisms such as the growth hormone/insulin‐like growth factor 1 (GH/IGF‐1) axis. To determine the role of ERα in growth plate cartilage for skeletal growth, we developed a mouse model with cartilage‐specific inactivation of ERα. Although mice with total ERα inactivation displayed affected longitudinal bone growth associated with alterations in the GH/IGF‐1 axis, the skeletal growth was normal during sexual maturation in mice with cartilage‐specific ERα inactivation. High‐dose estradiol treatment of adult mice reduced the growth plate height as a consequence of attenuated proliferation of growth plate chondrocytes in control mice but not in cartilage‐specific ERα?/? mice. Adult cartilage‐specific ERα?/? mice continued to grow after 4 months of age, whereas growth was limited in control mice, resulting in increased femur length in 1‐year‐old cartilage‐specific ERα?/? mice compared with control mice. We conclude that during early sexual maturation, ERα in growth plate cartilage is not important for skeletal growth. In contrast, it is essential for high‐dose estradiol to reduce the growth plate height in adult mice and for reduction of longitudinal bone growth in elderly mice. © 2010 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号