首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory.  相似文献   

2.
In blind, occipital cortex showed robust activation to nonvisual stimuli in many prior functional neuroimaging studies. The cognitive processes represented by these activations are not fully determined, although a verbal recognition memory role has been demonstrated. In congenitally blind and sighted (10 per group), we contrasted responses to a vibrotactile one‐back frequency retention task with 5‐s delays and a vibrotactile amplitude‐change task; both tasks involved the same vibration parameters. The one‐back paradigm required continuous updating for working memory (WM). Findings in both groups confirmed roles in WM for right hemisphere dorsolateral prefrontal (DLPFC) and dorsal/ventral attention components of posterior parietal cortex. Negative findings in bilateral ventrolateral prefrontal cortex suggested task performance without subvocalization. In bilateral occipital cortex, blind showed comparable positive responses to both tasks, whereas WM evoked large negative responses in sighted. Greater utilization of attention resources in blind were suggested as causing larger responses in dorsal and ventral attention systems, right DLPFC, and persistent responses across delays between trials in somatosensory and premotor cortex. In sighted, responses in somatosensory and premotor areas showed iterated peaks matched to stimulation trial intervals. The findings in occipital cortex of blind suggest that tactile activations do not represent cognitive operations for nonverbal WM task. However, these data suggest a role in sensory processing for tactile information in blind that parallels a similar contribution for visual stimuli in occipital cortex of sighted. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
We investigated the degree to which the distributed and overlapping patterns of activity for working memory (WM) maintenance of objects and spatial locations are functionally dissociable. Previous studies of the neural system responsible for maintenance of different types of information in WM have reported seemingly contradictory results concerning the degree to which spatial and nonspatial information maintenance leads to distinct patterns of activation in prefrontal cortex. These inconsistent results may be partly attributable to the fact that different types of objects were used for the "object WM task" across studies. In the current study, we directly compared the patterns of response during WM tasks for face identity, house identity, and spatial location using functional magnetic resonance imaging (fMRI). Furthermore, independence of the neural resources available for spatial and object WM was tested behaviorally using a dual-task paradigm. Together, these results suggest that the mechanisms for the maintenance of house identity information are distributed and overlapping with those that maintain spatial location information, while the mechanisms for maintenance of face identity information are relatively more independent. There is, however, a consistent functional topography that results in superior prefrontal cortex producing the greatest response during spatial WM tasks, and middle and inferior prefrontal cortices producing their greatest responses during object WM tasks, independent of the object type. These results argue for a dorsal-ventral functional organization for spatial and nonspatial information. However, objects may contain both spatial and nonspatial information and, thus, have a distributed but not equipotent representation across both dorsal and ventral prefrontal cortex.  相似文献   

4.
OBJECTIVE: The goal of this study was to determine whether the regions of the prefrontal and parietal cortices showing abnormal activation among individuals with schizophrenia during working memory tasks are associated with either 1) phonological coding processes that may be specific to verbal tasks (i.e., ventral prefrontal and parietal cortices) or 2) domain-general executive processes engaged by verbal and nonverbal tasks (i.e., dorsal prefrontal and parietal cortices). METHOD: The participants were 57 medicated individuals with schizophrenia and 120 healthy subjects. Functional magnetic resonance imaging was used to scan all participants during performance of verbal and nonverbal 2-back working memory tasks. RESULTS: In the healthy subjects there was similar bilateral dorsal prefrontal and inferior parietal cortex activation for both the verbal and nonverbal working memory tasks, but greater left ventral prefrontal and parietal cortex activation during verbal compared to nonverbal working memory. Individuals with schizophrenia showed bilateral deficits in dorsal frontal and parietal activation during both verbal and nonverbal working memory tasks. They also demonstrated the typical pattern of greater activity for verbal, as compared to nonverbal, working memory in ventral prefrontal and parietal regions, although they showed less verbal superiority in a left ventral prefrontal region. CONCLUSIONS: These results support the hypothesis that working memory deficits in individuals with schizophrenia reflect deficits in activation of brain regions associated with the central executive components of working memory rather than domain-specific storage buffers.  相似文献   

5.
Neuroimaging studies in humans have shown that different working memory (WM) tasks recruit a common bilateral fronto-parietal cortical network. Animal studies as well as neuroimaging studies in humans have suggested that this network, in particular the prefrontal cortex, is preferentially recruited when material from different domains (e.g. spatial information or verbal/object information) has to be memorized. Early imaging studies have suggested qualitative dissociations in the prefrontal cortex for spatial and object/verbal WM, either in a left-right or a ventral-dorsal dimension. However, results from different studies are inconsistent. Moreover, recent fMRI studies have failed to find evidence for domain dependent dissociations of WM-related activity in prefrontal cortex. Here we present evidence from two independent fMRI studies using physically identical stimuli in a verbal and spatial WM task showing that domain dominance for WM does indeed exist, although only in the form of quantitative differences in activation and not in the form of a dissociation with different prefrontal regions showing mutually exclusive activation in different domains. Our results support a mixed dimension model of domain dominance for WM within the prefrontal cortex, with left ventral prefrontal cortex (PFC) supporting preferentially verbal WM and right dorsal PFC supporting preferentially spatial WM. The concept of domain dominance is discussed in the light of recent theories of prefrontal cortex function.  相似文献   

6.
Neuroimaging studies in humans have consistently found robust activation of frontal, parietal, and temporal regions during working memory tasks. Whether these activations represent functional networks segregated by perceptual domain is still at issue. Two functional magnetic resonance imaging experiments were conducted, both of which used multiple-cycle, alternating task designs. Experiment 1 compared spatial and object working memory tasks to identify cortical regions differentially activated by these perceptual domains. Experiment 2 compared working memory and perceptual control tasks within each of the spatial and object domains to determine whether the regions identified in experiment 1 were driven primarily by the perceptual or mnemonic demands of the tasks, and to identify common brain regions activated by working memory in both perceptual domains. Domain-specific activation occurred in the inferior parietal cortex for spatial tasks, and in the inferior occipitotemporal cortex for object tasks, particularly in the left hemisphere. However, neither area was strongly influenced by task demands, being nearly equally activated by the working memory and perceptual control tasks. In contrast, activation of the dorsolateral prefrontal cortex and the intraparietal sulcus (IPS) was strongly task-related. Spatial working memory primarily activated the right middle frontal gyrus (MFG) and the IPS. Object working memory activated the MFG bilaterally, the left inferior frontal gyrus, and the IPS, particularly in the left hemisphere. Finally, activation of midline posterior regions, including the cingulate gyrus, occurred at the offset of the working memory tasks, particularly the shape task. These results support a prominent role of the prefrontal and parietal cortices in working memory, and indicate that spatial and object working memory tasks recruit differential hemispheric networks. The results also affirm the distinction between spatial and object perceptual processing in dorsal and ventral visual pathways. Hum. Brain Mapping 6:14–32, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Although resting‐state brain activity has been demonstrated to correspond with task‐evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task‐evoked deactivation and whether the rest–task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting‐state and task‐driven [N‐back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low‐frequency fluctuation (ALFF) as an index of intrinsic resting‐state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task‐evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task‐evoked deactivation. Further, the relationship between the intrinsic resting‐state activity and task‐evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting‐state activity and the task‐evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting‐state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task‐evoked brain responses and behavioral performance. Hum Brain Mapp 34:3204–3215, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
It is shown that visuo-spatial working memory is better characterized as processes operating on sensory information (visual appearance) and on spatial location (environmental coordinates) in a distributed network than as unitary slave system. Results from passive (short-term) and active memory tasks (imagery) disclose the properties (capacity, content) and the components of this network. The prefrontal cortex is a control structure (dorsal prefers active, ventral passive tasks) and it contributes to spatial memory by a prospective spatial code (eye movements). Visual appearance (including dynamic aspects) is represented as features and object files (bound features) within content-specific areas in the ventral occipital cortex. Spatial coordinates are represented in the parietal cortex (modality-unspecific), when used in spatio-temporal tasks (Corsi) they are closely related to attention. Imagery of objects activates occipito-temporal structures, spatial transformations and mental rotation the parietal cortex (specifically the intraparietal sulcus). Perception, working memory, and imagery use the same neural network. Differences between the tasks are explained by different demands and states of the neural network, and differences in the configuration of the anterior–posterior neural circuits.  相似文献   

9.
Functional magnetic resonance imaging was used to compare the neural correlates of three different types of spatial coding, which are implicated in crucial cognitive functions of our everyday life, such as visuomotor coordination and orientation in topographical space. By manipulating the requested spatial reference during a task of relative distance estimation, we directly compared viewer-centered, object-centered, and landmark-centered spatial coding of the same realistic 3-D information. Common activation was found in bilateral parietal, occipital, and right frontal premotor regions. The retrosplenial and ventromedial occipital-temporal cortex (and parts of the parietal and occipital cortex) were significantly more activated during the landmark-centered condition. The ventrolateral occipital-temporal cortex was particularly involved in object-centered coding. Results strongly demonstrate that viewer-centered (egocentric) coding is restricted to the dorsal stream and connected frontal regions, whereas a coding centered on external references requires both dorsal and ventral regions, depending on the reference being a movable object or a landmark.  相似文献   

10.
We investigated working memory in patients with focal brain damage involving subregions of the prefrontal cortex (PFC). Lesions in the dorsal portion of lateral PFC or the ventromedial portion of orbital PFC did not impair performance in tasks that required maintenance and monitoring of object or spatial information. Larger lesions involving both ventral and dorsal parts of the lateral PFC impaired maintenance and monitoring of spatial and object information, with more severe deficits observed in the spatial tasks. The results support a distributed localization of function in lateral PFC during working memory.  相似文献   

11.
In this study, we investigated the neural substrates involved in visual working memory (WM) and the resulting effects of subthalamic nucleus (STN) stimulation in Parkinson's disease (PD). Cerebral activation revealed by positron emission tomography was compared among Parkinson patients with (PD‐ON) or without (PD‐OFF) STN stimulation, and a group of control subjects (CT) in two visual WM tasks with spatial (SP) and nonspatial (NSP) components. PD‐OFF patients displayed significant reaction time (RT) deficits for both memory tasks. Although there were no significant differences in RT between patients with PD‐ON and ‐OFF stimulation, patients with PD‐ON stimulation performed comparably to controls. The memory tasks were executed with normal error rates in PD‐ON and ‐OFF stimulation. In contrast to these behavioral results, whether the corresponding prefrontal activation was differentially affected by deep brain stimulation status in patients depended on whether the WM modality was SP versus NSP. Thus, SP WM was associated with (1) abnormal reduction in dorsolateral prefrontal activity in PD‐OFF and ‐ON stimulation and (2) abnormal overactivation in parieto‐temporal cortex in PD‐OFF and in limbic circuits in PD‐ON stimulation. In NSP WM, normal activation of the ventral prefrontal cortex was restored in PD‐ON stimulation. In both visual modalities the posterior cerebral regions including fusiform cortex and cerebellum, displayed abnormally reduced activity in PD. These results indicate that PD induces a prefrontal hypoactivation that STN stimulation can partially restore in a modality selective manner by additional recruitment of limbic structures in SP WM or by recovery of the ventral prefrontal activation in NSP WM. Hum Brain Mapp 35:552–566, 2014. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
We used the activation likelihood estimation (ALE) method to quantitatively synthesize data from 19 published brain mapping studies of phonological processing in reading, six with Chinese and 13 with alphabetic languages. It demonstrated high concordance of cortical activity across multiple studies in each written language system as well as significant differences of activation likelihood between languages. Four neural systems for the phonological processing of Chinese characters included: (1) a left dorsal lateral frontal system at Brodmann area (BA) 9; (2) the dorsal aspect of left inferior parietal system; (3) a bilateral ventral-occipitotemporal system including portions of fusiform gyrus and middle occipital gyrus; and (4) a left ventral prefrontal system covering the superior aspect of inferior frontal gyrus. For phonological processing of written alphabetic words, cortical areas identified here are consistent with the three neural systems proposed previously in the literature: (1) a ventral prefrontal system involving superior portions of left inferior frontal gyrus; (2) a left dorsal temporoparietal system including mid-superior temporal gyri and the ventral aspect of inferior parietal cortex (supramarginal region); and (3) a left ventral occipitotemporal system. Contributions of each of these systems to phonological processing in reading were discussed, and a covariant learning hypothesis is offered to account for the findings that left middle frontal gyrus is responsible for addressed phonology in Chinese whereas left temporoparietal regions mediate assembled phonology in alphabetic languages. Language form, cognitive process, and learning strategy drive the development of functional neuroanatomy.  相似文献   

13.
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Despite significant advances in understanding how brain networks support working memory (WM) and cognitive control, relatively little is known about how these networks respond when cognitive capabilities are overtaxed. We used a fine‐grained manipulation of memory load within a single trial to exceed WM capacity during functional magnetic resonance imaging to investigate how these networks respond to support task performance when WM capacity is exceeded. Analyzing correct trials only, we observed a nonmonotonic (inverted‐U) response to WM load throughout the classic WM network (including bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and presupplementary motor areas) that peaked later in individuals with greater WM capacity. We also observed a relative increase in activity in medial anterior prefrontal cortex, posterior cingulate/precuneus, and lateral temporal and parietal regions at the highest WM loads, and a set of predominantly subcortical and prefrontal regions whose activation was greatest at the lowest WM loads. At the individual subject level, the inverted‐U pattern was associated with poorer performance while expression of the early and late activating patterns was predictive of better performance. In addition, greater activation in bilateral fusiform gyrus and right occipital lobe at the highest WM loads predicted better performance. These results demonstrate dynamic and behaviorally relevant changes in the level of activation of multiple brain networks in response to increasing WM load that are not well accounted for by present models of how the brain subserves the cognitive ability to hold and manipulate information on‐line. Hum Brain Mapp 36:1245–1264, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Finke K  Bublak P  Zihl J 《Neuropsychologia》2006,44(4):649-661
According to neurophysiological, neuroimaging, and behavioural evidence, visual working memory (WM) can be separated into a "what" and a "where" component, reflecting the duality of visual processing. Whereas a wealth of empirical data suggests a right-sided fronto-parietal network critical for the maintenance of spatial information, the cortical structures underlying maintenance of object information have remained controversial. Although visual object processing depends on ventral, inferior temporal areas, recent neuroimaging results suggest that maintenance of visual object information involves a left-sided or bilateral fronto-parietal network. The aim of the present study is to further clarify the role of the left and right parietal lobes for pattern and spatial visual WM. Seven patients with left-sided, seven with right-sided parietal brain injury, and two age-matched healthy control groups performed a delayed-matching-to-sample task using either pattern (shape) or spatial (location) information or both. In addition, eight patients with left-sided injury sparing parietal areas were tested to further examine the specific role of the left parietal cortex in pattern WM. Left parietal injury resulted in pattern WM impairment, only, while right parietal injury was associated with pattern and spatial WM deficits. Non-parietal injury was not associated with comparable deficits. These results suggest that visual spatial WM depends critically on right parietal areas; in contrast, pattern WM depends on both, left and right parietal areas.  相似文献   

16.
Metamemory refers to knowledge and monitoring of one's own memory. Metamemory monitoring can be done prospectively with respect to subsequent memory retrieval or retrospectively with respect to previous memory retrieval. In this study, we used fMRI to compare neural activity during prospective feeling-of-knowing and retrospective confidence tasks in order to examine common and distinct mechanisms supporting multiple forms of metamemory monitoring. Both metamemory tasks, compared to non-metamemory tasks, were associated with greater activity in medial prefrontal, medial parietal, and lateral parietal regions, which have previously been implicated in internally directed cognition. Furthermore, compared to non-metamemory tasks, metamemory tasks were associated with less activity in occipital regions, and in lateral inferior frontal and dorsal medial prefrontal regions, which have previously shown involvement in visual processing and stimulus-oriented attention, respectively. Thus, neural activity related to metamemory is characterized by both a shift toward internally directed cognition and away from externally directed cognition. Several regions demonstrated differences in neural activity between feeling-of-knowing and confidence tasks, including fusiform, medial temporal lobe, and medial parietal regions; furthermore, these regions also showed interaction effects between task and the subjective metamemory rating, suggesting that they are sensitive to the information monitored in each particular task. These findings demonstrate both common and distinct neural mechanisms supporting metamemory processes and also serve to elucidate the functional roles of previously characterized brain networks.  相似文献   

17.
Using positron emission tomography (PET), we investigated the organisation of spatial versus object-based visual working memory in 11 normal human subjects. The paradigm involved a conditional colour-response association task embedded within two visual working memory tasks. The subject had to remember a position (spatial) or shape (object-based) and then use this to recover the colour of the matching element for the conditional association. Activation of the nucleus accumbens and the anterior cingulate cortex was observed during the conditional associative task, indicating a possible role of these limbic structures in associative memory. When the 2 memory tasks were contrasted, we observed activation of 2 distinct cortical networks: (1) The spatial task activated a dorsal stream network distributed in the right hemisphere in the parieto-occipital cortex and the dorsal prefrontal cortex, and (2) The non spatial task activated a ventral stream network distributed in the left hemisphere in the temporo- occipital cortex, the ventral prefrontal cortex and the striatum. These results support the existence of a domain-specific dissociation with dorsal and ventral cortical systems involved respectively in spatial and non spatial working memory functions.  相似文献   

18.
The idea of an organized mode of brain function that is present as default state and suspended during goal‐directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task‐induced deactivations across a wide range of cognitive tasks. In this event‐related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task‐induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention‐selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM‐selective deactivations were found predominantly in the right hemisphere including the medial‐parietal, the lateral temporo‐parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task‐specific functional connectivity. These findings demonstrate that task‐induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand (“the core DMN”) and a part whose deactivation depends on the specific task. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
A functional decline of brain regions underlying memory processing represents a hallmark of cognitive aging. Although a rich literature documents age‐related differences in several memory domains, the effect of aging on networks that underlie multiple memory processes has been relatively unexplored. Here we used functional magnetic resonance imaging during working memory and incidental episodic encoding memory to investigate patterns of age‐related differences in activity and functional covariance patterns common across multiple memory domains. Relative to younger subjects, older subjects showed increased activation in left dorso‐lateral prefrontal cortex along with decreased deactivation in the posterior cingulate. Older subjects showed greater functional covariance during both memory tasks in a set of regions that included a positive prefronto‐parietal‐occipital network as well as a negative network that spanned the default mode regions. These findings suggest that the memory process‐invariant recruitment of brain regions within prefronto‐parietal‐occipital network increases with aging. Our results are in line with the dedifferentiation hypothesis of neurocognitive aging, thereby suggesting a decreased specialization of the brain networks supporting different memory networks.  相似文献   

20.
Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome‐based approach, and to assess structure‐function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole‐brain deterministic tractography. Graph theoretical metrics and the network‐based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto‐occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto‐parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto‐striatal and parieto‐frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594–4612, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号