首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthetic route to isotopically labelled forms of the tropane alkaloid hyoscyamine, including (RS)‐[3′, 3′,‐2H2]‐ ( 2a ) and (RS)‐[1′‐13C, 3′, 3′,‐2H2]‐ ( 2b ) hyoscyamines, involving the reaction between phenylacetyl tropine and formaldehyde is described. The isotopically labelled products enable the metabolism of hyoscyamine to be studied in plants such as Datura stramonium. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Carboxylic acid derivatives of the amyloid‐binding dye Congo red do not enter the brain well and are thus unable to serve as in vivo amyloid‐imaging agents. A neutral amyloid probe, (E,E)‐1‐(3′,4′‐dihydroxystyryl)‐4‐(3′‐methoxy‐4′‐hydroxystyryl)benzene ( 3 ), devoid of any carboxylate groups has been designed and synthesized via a 12‐step reaction sequence with a total yield of 30%. The unsymmetric compound 3 has also been labelled with C‐11 via [11C]methyl iodide ([11C]CH3I) methylation of a symmetric 4,4′‐dimesyl protected precursor followed by deprotection. Preliminary evaluation indicated that compound 3 selectively stained plaques and neurofibrillary tangles in post‐mortem AD brain, and exhibited good binding affinity (Ki=38±8 nM) for Aβ(1–40) fibrils in vitro. In vivo pharmacokinetic studies indicated that [11C] 3 exhibited higher brain uptake than its carboxylic acid analogs and good clearance from normal control mouse brain. [11C] 3 also exhibited specific in vivo binding to pancreatic amyloid deposits in the NOR‐beta transgenic mouse model. These results justify further investigation of 3 and similar derivatives as surrogate markers for in vivo quantitation of amyloid deposits. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The preparation of 2′,4′,6′‐[3H3]‐(R,R)‐4‐methoxyfenoterol, a tritium‐labeled derivative of (R,R)‐4‐methoxyfenoterol was demonstrated on a 15 mCi scale providing material with a specific activity of 57 Ci/mmol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Xanthohumol [(E )‐6′‐methoxy‐3′‐(3‐methylbuten‐2‐yl)‐2′,4′,4″‐trihydroxychalcone], he principal prenylated flavonoid from hops, has a complex bioactivity profile, and 13C‐labeled isotopomers of this compound are of potential use as molecular probes and as analytical standards to study metabolism and mode of action. 1,3‐[13C]2‐Xanthohumol was prepared by an adaptation of the total synthesis of Khupse and Erhardt in 7 steps and 5.7% overall yield from phloroglucinol by a route incorporating a cascade Claisen‐Cope rearrangement to install the 3′‐prenyl moiety from a 5′‐prenyl aryl ether and an aldol condensation between 1‐[13C]‐2′,4′‐bis(benzyloxymethyloxy)‐6′‐methoxy‐3′‐(3‐methylbuten‐2‐yl)acetophenone and 1′‐[13C]‐4‐(methoxymethyloxy)benzaldehyde. The 13C‐atom in the methyl ketone was derived from 1‐[13C]‐acetyl chloride while that in the aryl aldehyde was derived from [13C]‐iodomethane. Tri‐ and penta‐13C‐labeled xanthohumols were similarly prepared by applying minor modifications to the route.  相似文献   

5.
5,11‐Dihydro‐11‐ethyl‐5‐methyl‐8‐{2‐{(1‐oxido‐4‐quinolinyl)oxy}ethyl}‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one, (1), labeled with carbon‐14 in the quinoline–benzene ring, in one of the pyridine rings of the dipyridodiazepinone tricyclic moiety, and in the side chain, was prepared in three different syntheses with specific activities ranging from 44 to 47 mCi/mmol (1.63–1.75 GBq/mmol). In the first synthesis, 5,11‐dihydro‐11‐ethyl‐8‐(2‐hydroxyethyl)‐5‐methyl‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one (2) was coupled to 4‐hydroxyquinoline, [benzene‐14C(U)]‐, using Mitsunobu's reaction conditions, followed by the oxidation of the quinoline nitrogen with 3chloroperoxybenzoic acid to give ([14C]‐(1a)) in 43% radiochemical yield. Second, 3‐amino‐2‐chloropyridine, [2,6‐14C]‐, was used to prepare 8‐bromo‐5,11‐dihydro‐11‐ethyl‐5‐methyl‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one (8), and then Stille coupled to allyl(tributyl)tin followed by ozonolysis of the terminal double bond and in situ reduction of the resulting aldehyde to alcohol (10). Mitsunobu etherification and oxidation as seen before gave ([14C]‐(1b)) in eight steps and in 11% radiochemical yield. Finally, carbon‐14 potassium cyanide was used to prepare isopropyl cyanoacetate (12), which was used to transform bromide (8) to labeled aryl acetic acid (13) under palladium catalysis. Trihydroborane reduction of the acid gave alcohol (14) labeled in the side chain, which was used as described above to prepare ([14C]‐(1c)) in 4.3% radiochemical yield. The radiochemical purities of these compounds were determined by radio‐HPLC and radio‐TLC to be more than 98%. To prepare [13C6]‐(1), [13C6]‐4‐hydroxyquinoline was prepared from [13C6]‐aniline and then coupled to (2) and oxidized as seen before. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A group of racemic 4‐aryl(heteroary)‐1,4‐dihydro‐2,6‐dimethyl‐3‐nitropyridine‐5‐carboxy‐lates possessing a potential nitric oxide donor C‐5 O2‐alkyl‐1‐(pyrrolidin‐1‐yl)diazen‐1‐ium‐1,2‐diolate ester [alkyl=(CH2)n, n=1–4] substituent were synthesized using a modified Hantzsch reaction. Compounds having a C‐4 2‐trifluoromethylphenyl ( 16 ), 2‐pyridyl ( 17 ), or benzofurazan‐4‐yl ( 20 ) substituent generally exhibited more potent smooth‐muscle calcium channel antagonist activity (IC50 values in the 0.55 to 38.6 μM range) than related analogs having a C‐4 3‐pyridyl ( 18 ), or 4‐pyridyl ( 19 ) substituent with IC50 values > 29.91 μM, relative to the reference drug nifedipine (IC50=0.0143 μM). The point of attachment of C‐4 isomeric pyridyl substituents was a determinant of antagonist activity where the relative potency profile was 2‐pyridyl > 3‐pyridyl and 4‐pyridyl. Subgroups of compounds 16a–d , 17a–d , and 20a–d having alkyl spacer groups of variable chain length [–CO2(CH2)nO–, n=1–4] exhibited small differences in calcium channel antagonist potency. Replacement of the ester “methyl” moiety of Bay K 8644 by an O2‐alkyl‐1‐(pyrrolidin‐1‐yl)diazen‐1‐ium‐1,2‐diolate group provided the Bay K 8644 group of analogs 16a‐d that retained the desired cardiac positive inotropic effect. The most potent compound in this group, O2‐ethyl‐1‐(pyrrolidin‐1‐yl)diazen‐1‐ium‐1,2‐diolate 1,4‐dihydro‐2,6‐dimethyl‐3‐nitro‐4‐(2‐trifluoromethylphenyl)pyridine‐5‐carboxylate ( 16b , EC50=0.096 μM) is about eightfold more potent positive inotrope (cardiac calcium channel agonist) than the reference compound Bay K 8644 (EC50=0.77 μM). A similar replacement of the ester “isopropyl” group in the C‐4 benzofurazan‐4‐yl group of compounds by an O2‐alkyl‐1‐(pyrrolidin‐1‐yl)diazen‐1‐ium‐1,2‐diolate ester substituent provided compounds 20 (n=1 and 4) that were approximately equipotent cardiac positive inotropes with the parent reference compound PN 202‐791 ( 3 , EC50=9.40 μM). The O2‐alkyl‐1‐(pyrrolidin‐1‐yl)diazen‐1‐ium‐1,2‐diolate ester moiety present in 1,4‐dihydropyridine calcium channel modulating compounds 16–20 is not a suitable ?NO donor moiety because the percent nitric oxide released upon in vitro incubation with either l ‐cysteine, rat serum, or pig liver esterase was less than 1%. Drug Dev. Res. 60:204–216, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

7.
Two novel radioiodinated areno‐annelated estra‐1,3,5(10),16‐tetraenes, [125I]2‐iodo‐1′‐methoxybenzo[4′,3′:16,17]estra‐1,3,5(10),16‐tetraene‐3‐ol ( 2 ‐[ 125 I ]‐ MEBE ) and [125I]4‐iodo‐1′‐methoxybenzo[4′,3′:16,17]estra‐1,3,5(10),16‐tetraene‐3‐ol, ( 4 ‐[ 125 I ]‐ MEBE ) were synthesized for evaluation as potential ligands for the estrogen receptor. Radioiodination of 1′‐methoxybenzo[4′,3′:16,17]estra‐1,3,5(10),16‐tetraene‐3‐ol at the A ring was accomplished by electrophilic aromatic substitution using [125I] sodium iodide and chloramine‐T as oxidant. After purification by reverse phase HPLC, the two radioisomers ( 2 ‐[ 125 I ]‐ MEBE and 4 ‐[ 125 I ]‐ MEBE ) were obtained in a radiochemical yield of 42 and 48%, respectively, in a radiochemical purity of greater than 95% and a high specific activity. The effect of the site of radioiodination (C2 vs C4) on the biological behaviour of the molecules was evaluated through biodistribution studies in immature female Sprague‐Dawley rats. Both 2 ‐[ 125 I ]‐ MEBE and 4 ‐[ 125 I ]‐ MEBE are stable in vivo and are mainly excreted through the hepatobiliary pathway. Both localize in the uterus and ovaries via a receptor‐mediated process, where the 2 ‐[ 125 I ]‐ MEBE isomer has the higher specific ER binding and uterus selectivity. The favourable in vitro/in vivo stability and biodistribution profiles suggest that these radioligands are good candidates for further exploration of their potential clinical application. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we describe the radiosynthesis of the compound (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene, a potential, universal tumour positron emission tomography imaging agent. The production of (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene was carried out via 11C‐methylation of (E)‐2‐(hydroxy)‐3′,4,5′‐trimethoxystilbene by using [11C]methyl trifluoromethanesulfonate ([11C]methyl triflate). (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene was obtained with a radiochemical purity greater than 95% in a 20 ± 2% decay‐corrected radiochemical yield, based upon [11C]carbon dioxide. Synthesis, purification and formulation were completed on an average of 30 min following the end of bombardment (EOB). The specific radioactivity obtained was 1.9 ± 0.6 GBq/µmol at EOB. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
As part of a program aimed at the design of conformationally constrained analogs of glutamic acid, (+)‐2‐aminobicyclo[3.1.0]hexane‐2,6‐carboxylic acid ( 1 ), identified as a highly potent, selective, group II metabotropic glutamate receptor agonist has been synthesized and studied clinically. Heterocyclic analogs of 1 were subsequently synthesized in which the C‐2 methylene has been replaced by an oxygen atom ( 2 ) or a sulfur atom ( 3 ). C‐14 labeled isotopomers of 1 , 2 and 3 have been synthesized to facilitate pre‐clinical ADME studies. A tritium labeled isotopomer of 1 was also synthesized for use in in vitro experiments. A stable labeled isotopomer of rac‐1 was prepared for use as an internal standard for bioanalytical assays. The key step in each of these syntheses was the reaction of chiral ketone 4 , 5 or 6 with K14CN/(NH4)2CO3 using the Bucherer–Berg protocol. In the preparation of the stable labeled isotopomer, rac‐4 ‐[13 C 2] was prepared in two steps from ethyl bromoacetate‐[UL‐13C2]; subsequent reaction of rac‐4 ‐[13 C 2] with K13CN/15NH4Cl/Na2CO3, followed by hydrolysis of the hydantoin yielded rac‐1 ‐[13 C 3,15 N ]. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
4‐[3‐[4‐(2‐Methoxyphenyl)piperazin‐1‐yl]propoxy]‐4‐aza‐tricyclo[5.2.1.02,6]dec‐8‐ene‐3,5‐dione (4), a potent and selective 5‐HT1A agonist, was labeled by 11C‐methylation of the corresponding desmethyl analogue 3 with 11C‐methyl triflate. The precursor molecule 3 was synthesized from commercially available endoN‐hydroxy‐5‐norbornene‐2,3‐dicarboximide in two steps with an overall yield of 40%. Radiosynthesis of 11C‐4 was achieved in 35 min in 20±5% yield (n=6) at the end of synthesis with a specific activity of 2600±250 Ci/mmol. In vivo positron emission tomography (PET) studies in baboon revealed rapid uptake of the tracer into the brain. However, lack of specific binding indicates that 11C‐4 is not useful as a 5‐HT1A agonist PET ligand for clinical studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The synthesis of a specifically ring labelled isotopomer of L ‐tyrosine, (L ‐Tyr), using a combination of chemical and enzymatic methods is reported. The tritium labelled [2′,6′]‐L ‐Tyr has been synthesized via catalytic exchange of phenol with tritiated water in the presence of K2PtCl4, reverse acid catalysed removal of tritium from the o‐ and p‐positions of phenol, and subsequent condensation of the resulting [3′,5‐3H2]‐phenol with S‐methyl‐L ‐cysteine using the enzyme β‐tyrosinase from Citrobacter freundii. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Introduction: The hepatocellular carcinoma–intestine–pancreas and pancreatitis‐associated proteins, also known as lactose‐binding protein, is upregulated in peritumoral pancreatic tissue. Previously, we reported ethyl‐ β ‐D ‐galactopyranosyl‐(1,4′)‐2′‐deoxy‐2′‐[18F]fluoro‐ β ‐D ‐glucopyranoside (Et‐[18F]‐FDL), a radiofluorinated lactose analog for positron emission tomography (PET) of small pancreatic carcinomas in mice. However, synthesis of the precursor for Et‐[18F]‐FDL involves 11 steps, which is quite lengthy, and produces overall low yields. Here, we report on synthesis and radiolabeling of another analog of lactose, the 1′‐[18F]fluoroethyl‐ β ‐D ‐lactose for PET imaging of pancreatic carcinomas. Methods: Two precursor compounds, 1′‐bromoethyl‐2′,3′,6′,2,3,4,6‐hepta‐O‐acetyl‐ β ‐D ‐lactose 4, and 1′‐p‐toluenesulfonylethyl‐2′,3′,6′,2,3,4,6‐hepta‐O‐acetyl‐ β ‐D ‐lactose 5, were synthesized in two and three steps, respectively; then, cold fluorination and radiofluorination of these precursors were performed. The reaction mixture was passed through a silica gel Sep‐pack cartridge, eluted with EtOAc, and the 1′‐[18F]fluoroethyl‐2′,3′,6′,2,3,4,6‐hepta‐O‐acetyl‐ β ‐D ‐lactose ([18F]‐6) purified by HPLC. After hydrolysis of the protecting groups, the 1′‐[18F]fluoroethyl‐ β ‐D ‐lactose [18F]‐7 was neutralized, diluted with saline, filtered through a sterile Millipore filter, and analyzed by radio‐TLC. Results: The average decay‐corrected radiochemical yield was 9% (n = 7) with>99% radiochemical purity and specific activity of 55.5 GBq/ µ mol. Conclusion : A new analog of lactose, 1′‐[18F]fluoroethyl‐ β ‐D ‐lactose, has been synthesized in good yields, with high purity and high specific activity suitable for PET imaging of early pancreatic carcinomas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
5‐Aminoimidazole‐4‐carboxamide‐1‐β‐D‐[13C5] ribofuranosyl 5′‐monophosphate ([13C5 ribose] AICAR‐PO3H2) ( 6 ) has been synthesized from [13C5]adenosine. Incorporation of the mass‐label into [13C5 ribose] AICAR‐PO3H2 provides a useful standard to aid in metabolite identification and quantification in monitoring metabolic pathways. A synthetic route to the 13C‐labeled compound has not been previously reported. Our method employs a hybrid enzymatic, and chemical synthesis approach that applies an enzymatic conversion from adenosine to inosine followed by a ring‐cleavage of the protected inosine. A direct phosphorylation of the resulting 2′,3′‐isopropylidine acadesine ( 5 ) was developed to yield the title compound in 99% purity following ion exchange chromatography.  相似文献   

14.
The synthesis of the d4‐forms of rac‐ and R‐lofexidine was accomplished. Two methods are described; one method is a two‐step synthesis of racd4‐lofexidine from 2‐chloropropionitrile, the second method is a three‐step preparation of Rd4‐lofexidine in absolute enantiomeric purity from S‐methyl lactate. The commercial availability of R‐methyl lactate makes this latter enantioselective synthesis applicable also to the synthesis of Sd4‐ lofexidine. These procedures also conserve the utilization of the relatively expensive [1,1′,2,2′‐2H4]ethylene diamine precursor. The availability of S‐ and Rd4‐lofexidines will enable pharmacokinetic studies to be carried out to determine if differential in vivo metabolism of the two enantiomers of lofexidine occurs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Enterolactone and enterodiol are the main mammalian metabolites of dietary butyrolactone type lignans. The study of biological properties and potential health effects of these compounds requires isotopically labelled compounds as standards for quantitative measurements. An expedient deutero‐labelling method for enterolactone is to use the D3PO4·BF3/D2O complex at room temperature which will exchange all eight aromatic hydrogens, even from inactivated meta positions, to form [2,4,5,6,2′,4′,5′,6′‐2H8]‐enterolactone in 74% yield and 99% isotopic purity. [2,4,5,6,9,9,2′,4′,5′,6′‐2H10]‐Enterodiol was prepared from [2,4,5,6,2′,4′,5′,6′‐2H8]‐enterolactone by reduction with LiAlD4 which introduces two more deuterium atoms into the molecule. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
SSR180575 (7‐chloro‐N,N,5‐trimethyl‐4‐oxo‐3‐phenyl‐3,5‐dihydro‐4H‐pyridazino[4,5‐b]indole‐1‐acetamide) is the lead compound of an original pyridazinoindole series of potent and highly selective TSPO (peripheral benzodiazepine receptor) ligands. Isotopic labeling of SSR180575 with the short‐lived positron‐emitter carbon‐11 (T1/2: 20.38 min) at its 5‐methylpyridazino[4,5‐b]indole moiety as well as at its N,N‐dimethylacetamide function by methylation of the corresponding nor‐analogues was investigated. Best results in terms of radiochemical yields and purities were obtained for the preparation of [indole‐N‐methyl‐11C]SSR180575, where routine production batches of 4.5–5.0 GBq of radiochemically pure (>99%) i.v. injectable solutions (specific radioactivities: 50–90 GBq/ µ mol) could be prepared within a total synthesis time of 25 min (HPLC purification included) starting from a 55 GBq [11C]CO2 cyclotron production batch (non‐decay‐corrected overall radiochemical yields: 8–9%). The process comprises (1) trapping at ?10°C of [11C]methyl triflate in DMF (300 µ l) containing 0.2–0.3 mg of the indole precursor for labeling and 4 mg of K2CO3 (excess); (2) heating at 120°C for 3 min; (3) dilution of the residue with 0.5 ml of the HPLC mobile phase and (4) purification using semi‐preparative reversed‐phase HPLC (Zorbax® SB‐C‐18). In vivo pharmacological properties of [indole‐N‐methyl‐11C]SSR180575 as a candidate for imaging neuroinflammation with positron emission tomography are currently evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
N‐[1‐(4‐chlorophenyl)‐1H‐pyrrol‐2‐yl‐13C4‐methyleneamino]guanidinium acetate has been synthesized by a four‐step procedure. This involved reduction of the Weinreb amide N,N′‐dimethyl‐N,N′‐dimethyloxybutane‐1,4‐diamide‐1,2,3,4‐13C4 by Dibal‐H to give the corresponding unstable dialdehyde which is reacted in situ with 4‐chloroaniline to form 1‐(4‐chlorophenyl)‐1H‐pyrrole‐13C4. This pyrrole analogue underwent a Vilsmeyer acylation with POCl3/DMF followed by final reaction with aminoguanidine bicarbonate to produce the desired labelled compound with 99% atom 13C. By using DMF [α14C] a radio‐labelled analogue was synthesized with a specific activity of 60 mCi/mmol. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A series of 1‐thia‐4‐azaspiro[4.5]decan‐3‐ones bearing an amide group at C‐4 and various substitutions at C‐2 and C‐8 were synthesized and evaluated against human coronavirus and influenza virus. Compounds 7m , 7n , 8k , 8l , 8m , 8n , and 8p were found to inhibit human coronavirus 229E replication. The most active compound was N‐(2‐methyl‐8‐tert‐butyl‐3‐oxo‐1‐thia‐4‐azaspiro[4.5]decan‐4‐yl)‐3‐phenylpropanamide ( 8n ), with an EC50 value of 5.5 µM, comparable to the known coronavirus inhibitor, (Z)‐N‐[3‐[4‐(4‐bromophenyl)‐4‐hydroxypiperidin‐1‐yl]‐3‐oxo‐1‐phenylprop‐1‐en‐2‐yl]benzamide ( K22 ). Compound 8n and structural analogs were devoid of anti‐influenza virus activity, although their scaffold is shared with a previously discovered class of H3 hemagglutinin‐specific influenza virus fusion inhibitors. These findings point to the 1‐thia‐4‐azaspiro[4.5]decan‐3‐one scaffold as a versatile chemical structure with high relevance for antiviral drug development.  相似文献   

19.
Mono‐Mannich bases, 1‐aryl‐3‐phenethylamino‐1‐propanone hydrochlorides, 1a, 2a , 3a , 4a , 5a , 6a , 7a , 8a , 9a , and semi‐cyclic mono‐Mannich bases, 3‐aroyl‐4‐aryl‐1‐phenethyl‐4‐piperidinols, 1b , 2b , 3b , 4b , 5b , 6b , 7b , 8b , 9b , were synthesized by a non‐classical Mannich reaction. The aryl part was: C6H5 for 1a , 1b ; 4‐CH3C6H4 for 2a , 2b ; 4‐CH3OC6H4 for 3a , 3b ; 4‐ClC6H4 for 4a , 4b ; 4‐FC6H4 for 5a , 5b ; 4‐BrC6H4 for 6a , 6b ; 2,4‐(Cl)2C6H3 for 7a , 7b ; 4‐NO2C6H4 for 8a , 8b ; and C4H3S(2‐yl) i. e., 2‐thienyl for 9a , 9b . Piperidinol compounds 2b , 3b , 4b , 5b , 7b , 8b , and 9b are reported here for the first time. The synthesized compounds were tested against seven types of plant pathogenic fungi and three types of human pathogenic fungi using the agar dilution assay. Itraconazole was tested against Candida parapsilosis as the reference compound, while Nystatin was tested as the reference compound against the other fungi. Compounds 1a , 1b , 2a , 4a , 4b , 5a , 5b , 6a , 7a , 8a , 9a , and 9b can be selected as model compounds to develop new antifungal agents against the human pathogen Microsporum canis. Compounds 8a and 8b , which had a similar antifungal activity compared with the reference compound Nystatin against the plant pathogen Aspergillus flavus, can serve as model compounds to develop new antifungal agents to solve agricultural problems.  相似文献   

20.
The entitled monohydrolysis products, also known as α‐ethylhexyl and β‐ethylhexyl sulfosuccinate (EHSS), of the surfactant diisooctyl sulfosuccinate (DOSS) were synthesized in stable isotope‐labelled form from [13C]4‐maleic anhydride. Sodium [13C]4‐1‐carboxy‐2‐(2‐ethylhexyloxycarbonyl)ethanesulfonate (α‐EHSS) was prepared by the method of Larpent by reaction of 2‐ethylhexan‐1‐ol with [13C]4‐maleic anhydride followed by regioselective conjugate addition of sodium bisulfite to the resulting monoester (38% overall yield). The regiochemical outcome of bisulfite addition was confirmed by a combination of 13C/13C (incredible natural abundance double quantum transfer) and 1H/13C (heteronuclear multiple‐bond correlation (HMBC)) NMR spectral correlation experiments. Sodium [13C]4‐2‐carboxy‐1‐(2‐ethylhexyloxycarbonyl)ethanesulfonate (β‐EHSS) was prepared in four steps by reaction of 4‐methoxybenzyl alcohol with [13C]4‐maleic anhydride, regioselective sodium bisulfite addition, N,N′‐dicyclohexylcarbodiimide‐mediated esterification with 2‐ethylhexan‐1‐ol, and p‐methoxybenzyl ester deprotection with trifluoroacetic acid (13% overall yield). The regiochemical outcome of the second synthesis was confirmed by a combination of 1JCC scalar coupling constant analysis and 1H/13C (HMBC) NMR spectral correlation. The materials prepared are required as internal standards for the liquid chromatography–mass spectrometry (LC‐MS)/MS trace analysis of the degradation products of DOSS, the anionic surfactant found in Corexit, the oil dispersant used during emergency response efforts connected to the Deepwater Horizon oil spill of April 2010. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号