首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proper expression of synaptic NMDA receptors (NMDARs) is necessary to regulate synaptic Ca2+ influx and the induction the long-term potentiation (LTP) in the mammalian hippocampus. Previously we reported that expressing the A-type K+ channel subunit Kv4.2 in CA1 neurons of organotypic slice cultures reduced synaptic NR2B-containing NMDAR expression and completely blocked LTP induced by a pairing protocol. As pretreatment with an NMDAR antagonist (APV) overnight blocked the reduction of NR2B-containing receptors in neurons expressing EGFP-labeled Kv4.2 (Kv4.2g), we hypothesized that LTP would be rescued in Kv4.2g neurons by overnight treatment with APV. We report here that the overnight APV pretreatment in Kv4.2g-expressing neurons only partially restored potentiation. This partial potentiation was completely blocked by inhibition of the CAMKII kinase. These results indicate that A-type K+ channels must regulate synaptic integration and plasticity through another mechanism in addition to their regulation of synaptic NR2 subunit composition. We suggest that dendritic excitability, which is regulated by Kv4.2 expression, also contributes to synaptic plasticity.  相似文献   

2.
Dopamine‐dependent synaptic plasticity is a candidate mechanism for reinforcement learning. A silent eligibility trace – initiated by synaptic activity and transformed into synaptic strengthening by later action of dopamine – has been hypothesized to explain the retroactive effect of dopamine in reinforcing past behaviour. We tested this hypothesis by measuring time‐dependent modulation of synaptic plasticity by dopamine in adult mouse striatum, using whole‐cell recordings. Presynaptic activity followed by postsynaptic action potentials (pre–post) caused spike‐timing‐dependent long‐term depression in D1‐expressing neurons, but not in D2 neurons, and not if postsynaptic activity followed presynaptic activity. Subsequent experiments focused on D1 neurons. Applying a dopamine D1 receptor agonist during induction of pre–post plasticity caused long‐term potentiation. This long‐term potentiation was hidden by long‐term depression occurring concurrently and was unmasked when long‐term depression blocked an L‐type calcium channel antagonist. Long‐term potentiation was blocked by a Ca2+‐permeable AMPA receptor antagonist but not by an NMDA antagonist or an L‐type calcium channel antagonist. Pre–post stimulation caused transient elevation of rectification – a marker for expression of Ca2+‐permeable AMPA receptors – for 2–4‐s after stimulation. To test for an eligibility trace, dopamine was uncaged at specific time points before and after pre‐ and postsynaptic conjunction of activity. Dopamine caused potentiation selectively at synapses that were active 2‐s before dopamine release, but not at earlier or later times. Our results provide direct evidence for a silent eligibility trace in the synapses of striatal neurons. This dopamine‐timing‐dependent plasticity may play a central role in reinforcement learning.  相似文献   

3.
Hippocampal synaptic plasticity comprises a key cellular mechanism for information storage. In the hippocampus, both long‐term potentiation (LTP) and long‐term depression (LTD) are triggered by synaptic Ca2+‐elevations that are typically mediated by the opening of voltage‐gated cation channels, such as N‐methyl‐d ‐aspartate receptors (NMDAR), in the postsynaptic density. The integrity of the post‐synaptic density is ensured by the extracellular matrix (ECM). Here, we explored whether synaptic plasticity is affected in adult behaving mice that lack the ECM proteins brevican, neurocan, tenascin‐C, and tenascin‐R (KO). We observed that the profiles of synaptic potentiation and depression in the dentate gyrus (DG) were profoundly altered compared to plasticity profiles in wild‐type littermates (WT). Specifically, synaptic depression was amplified in a frequency‐dependent manner and although late‐LTP (>24 hr) was expressed following strong afferent tetanization, the early component of LTP (<75 min post‐tetanization) was absent. LTP (>4 hr) elicited by weaker tetanization was equivalent in WT and KO animals. Furthermore, this latter form of LTP was NMDAR‐dependent in WT but not KO mice. Scrutiny of DG receptor expression revealed significantly lower levels of both the GluN2A and GluN2B subunits of the N‐methyl‐d ‐aspartate receptor, of the metabotropic glutamate receptor, mGlu5 and of the L‐type calcium channel, Cav1.3 in KO compared to WT animals. Homer 1a and of the P/Q‐type calcium channel, Cav1.2 were unchanged in KO mice. Taken together, findings suggest that in mice that lack multiple ECM proteins, synaptic plasticity is intact, but is fundamentally different.  相似文献   

4.
Arachidonic acid (AA) is a free fatty acid membrane‐permeable second messenger that is liberated from cell membranes via receptor‐ and Ca2+‐dependent events. We have shown previously that extremely low [AA]i (1 pm ) inhibits the postsynaptic voltage‐gated K+ current (IA) in hippocampal neurons. This inhibition is blocked by some antioxidants. The somatodendritic IA is mediated by Kv4.2 gene products, whereas presynaptic IA is mediated by Kv1.4 channel subunits. To address the interaction of AA with these α‐subunits we studied the modulation of A‐currents in human embryonic kidney 293 cells transfected with either Kv1.4 or Kv4.2 rat cDNA, using whole‐cell voltage‐clamp recording. For both currents 1 pm [AA]i inhibited the conductance by > 50%. In addition, AA shifted the voltage dependence of inactivation by ?9 (Kv1.4) and +6 mV (Kv4.2), respectively. Intracellular co‐application of Trolox C (10 μm ), an antioxidant vitamin E derivative, only slowed the effects of AA on amplitude. Notably, Trolox C shifted the voltage dependence of activation of Kv1.4‐mediated IA by ?32 mV. Extracellular Trolox for > 15 min inhibited the AA effects on IA amplitudes as well as the effect of intracellular Trolox on the voltage dependence of activation of Kv1.4‐mediated IA. Extracellular Trolox further shifted the voltage dependence of activation for Kv4.2 by +33 mV. In conclusion, the inhibition of maximal amplitude of Kv4.2 channels by AA can explain the inhibition of somatodendritic IA in hippocampal neurons, whereas the negative shift in the voltage dependence of inactivation apparently depends on other neuronal channel subunits. Both AA and Trolox potently modulate Kv1.4 and Kv4.2 channel α‐subunits, thereby presumably tuning presynaptic transmitter release and postsynaptic somatodendritic excitability in synaptic transmission and plasticity.  相似文献   

5.
In the last decade, several experimental studies have demonstrated that particular patterns of synaptic activity can induce postsynaptic parallel fiber (PF) long-term potentiation (LTP). This form of plasticity can reverse postsynaptic PF long-term depression (LTD), which has been traditionally considered as the principal form of plasticity underlying cerebellar learning. Postsynaptic PF-LTP requires a transient increase in intracellular Ca2+ concentration and, in contrast to PF-LTD, is induced without concomitant climbing fiber (CF) activation. Thus, it has been postulated that the polarity of long-term synaptic plasticity is determined by the amplitude of the Ca2+ transient during the induction protocol, with PF-LTP induced by smaller Ca2+ signals without concomitant CF activation. However, this hypothesis is contradicted by recent studies. A quantitative analysis of Ca2+ signals associated with induction of PF-LTP indicates that the bidirectional induction of long-term plasticity is regulated by more complex mechanisms. Here we review the state-of-the-art of research on postsynaptic PF-LTP and PF-LTD and discuss the principal open questions on this topic.  相似文献   

6.
7.
Kv4.2‐mediated A‐type K+ channels in dendrites act to dampen back‐propagating action potentials, constrain coincidence detection, and modify synaptic properties. Because of naturally high concentrations in the hippocampus, genetic deletion of this protein results in enhanced CA1 dendritic excitability and a broader signal integration time window with potential implications for spatial learning. In this investigation, we tested Kv4.2 knockout mice in the Morris water maze to assess their spatial reference acquisition and recall abilities. These mice demonstrated prolonged latencies and pathlength to reach a hidden platform during learning trials that was correlated to a decreased use of spatial search strategies in favor of repetitive looping. Knockout mice also showed no preference for target areas in recall‐based probe trials but were less impaired by a switch in the platform location at the start of reversal learning. We discuss the possibility that these behavior discrepancies may be attributable to an enhancement in synaptic plasticity and loss of selectivity among synaptic pathways bearing different information into the CA1 region. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Tom Schilling  Claudia Eder 《Glia》2015,63(4):664-672
The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK‐type, but not IK‐ or SK‐type, Ca2+‐activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age‐related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage‐activated, but not Ca2+‐activated, K+ channels. GLIA 2015;63:664–672  相似文献   

9.
Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here, we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.SIGNIFICANCE STATEMENT This article shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with long-term depression (LTD) and long-term potentiation (LTP) being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-type and L-type voltage-gated Ca2+ channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.  相似文献   

10.
Acute effects of ghrelin on excitatory synaptic transmission were evaluated on hippocampal CA1 synapses. Ghrelin triggered an enduring enhancement of synaptic transmission independently of NMDA receptor activation and probably via postsynaptic modifications. This ghrelin‐mediated potentiation resulted from the activation of GHS‐R1a receptors as it was mimicked by the selective agonist JMV1843 and blocked by the selective antagonist JMV2959. This potentiation also required the activation of PKA and ERK pathways to occur as it was inhibited by KT5720 and U0126, respectively. Moreover it most probably involved Ca2+ influxes as both ghrelin and JMV1843 elicited intracellular Ca2+ increases, which were dependent on the presence of extracellular Ca2+ and mediated by L‐type Ca2+ channels opening. In addition, ghrelin potentiated AMPA receptor‐mediated [Ca2+]i increases while decreasing NMDA receptor‐mediated ones. Thus the potentiation of synaptic transmission by GHS‐R1a at hippocampal CA1 excitatory synapses probably results from postsynaptic mechanisms involving PKA and ERK activation, which are producing long‐lasting enhancement of AMPA receptor‐mediated responses.  相似文献   

11.
The precise timing of pre‐postsynaptic activity is vital for the induction of long‐term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP‐iLTD. The STDP‐iLTD requires a postsynaptic Ca2+ increase, a release of endocannabinoids (eCBs), the activation of type‐1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP‐iLTD is independent of the activation of nicotinic receptors, GABABRs and G protein‐coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP‐iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
In this study, we used GM2/GD2 synthase knockout (GM2/GD2?/?) mice to examine the influence of deficiency in ganglioside “a‐pathway” and “b‐pathway” on cognitive performances and hippocampal synaptic plasticity. Eight‐week‐old GM2/GD2?/? male mice showed a longer escape‐latency in Morris water maze test and a shorter latency in step‐down inhibitory avoidance task than wild‐type (WT) mice. Schaffer collateral‐CA1 synapses in the hippocampal slices from GM2/GD2?/? mice showed an increase in the slope of EPSPs with reduced paired‐pulse facilitation, indicating an enhancement of their presynaptic glutamate release. In GM2/GD2?/? mice, NMDA receptor (NMDAr)‐dependent LTP could not be induced by high‐frequency (100–200 Hz) tetanus or θ‐burst conditioning stimulation (CS), whereas NMDAr‐independent LTP was induced by medium‐frequency CS (20–50 Hz). The application of mono‐sialoganglioside GM1 in the slice from GM2/GD2?/? mice, to specifically recover the a‐pathway, prevented the increased presynaptic glutamate release and 20 Hz‐LTP induction, whereas it could not rescue the impaired NMDAr‐dependent LTP. These findings suggest that b‐pathway deficiency impairs cognitive function probably through suppression of NMDAr‐dependent LTP, while a‐pathway deficiency may facilitate NMDAr‐independent LTP through enhancing presynaptic glutamate release. As both of the NMDAr‐independent LTP and increased presynaptic glutamate release were sensitive to the blockade of L‐type voltage‐gated Ca2+ channels (L‐VGCC), a‐pathway deficiency may affect presynaptic L‐VGCC. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Astrocytes exhibit spontaneous calcium oscillations that could induce the release of glutamate as gliotransmitter in rat hippocampal slices. However, it is unknown whether this spontaneous release of astrocytic glutamate may contribute to determining the basal neurotransmitter release probability in central synapses. Using whole‐cell recordings and Ca2+ imaging, we investigated the effects of the spontaneous astrocytic activity on neurotransmission and synaptic plasticity at CA3–CA1 hippocampal synapses. We show here that the metabolic gliotoxin fluorocitrate (FC) reduces the amplitude of evoked excitatory postsynaptic currents and increases the paired‐pulse facilitation, mainly due to the reduction of the neurotransmitter release probability and the synaptic potency. FC also decreased intracellular Ca2+ signalling and Ca2+‐dependent glutamate release from astrocytes. The addition of glutamine rescued the effects of FC over the synaptic potency; however, the probability of neurotransmitter release remained diminished. The blockage of group I metabotropic glutamate receptors mimicked the effects of FC on the frequency of miniature synaptic responses. In the presence of FC, the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N ′,N ′‐tetra‐acetate or group I metabotropic glutamate receptor antagonists, the excitatory postsynaptic current potentiation induced by the spike‐timing‐dependent plasticity protocol was blocked, and it was rescued by delivering a stronger spike‐timing‐dependent plasticity protocol. Taken together, these results suggest that spontaneous glutamate release from astrocytes contributes to setting the basal probability of neurotransmitter release via metabotropic glutamate receptor activation, which could be operating as a gain control mechanism that regulates the threshold of long‐term potentiation. Therefore, endogenous astrocyte activity provides a novel non‐neuronal mechanism that could be critical for transferring information in the central nervous system.  相似文献   

14.
Dumas TC 《Hippocampus》2012,22(2):188-199
Activity-dependent synaptic plasticity refines neural networks during development and subserves information processing in adulthood. Previous research has revealed postnatal alterations in synaptic plasticity at nearly all forebrain synapses, suggesting different forms of synaptic plasticity may contribute to network development and information processing. To assess possible relationships between modifications in synaptic plasticity and maturation of cognitive ability, we examined excitatory synaptic function in area CA1 of the mouse hippocampus ~3 weeks of age, when hippocampal-dependent learning and memory abilities first emerge. Long-term potentiation (LTP) and depression (LTD) of synaptic efficacy were observed in slices from juvenile animals younger than 3 weeks of age. Both pre- and postsynaptic mechanisms supported LTP and LTD in juveniles. After the third postnatal week, the magnitude of LTP was reduced and the threshold for postsynaptic induction was reduced, but the threshold for presynaptic induction was increased. The reduced threshold for postsynaptic LTP appeared to be due, partly, to an increase in baseline excitatory synaptic strength, which likely permitted greater postsynaptic depolarization during induction. Low frequency stimulation did not induce LTD at this more mature stage, but it blocked subsequent induction of LTP, suggesting metaplastic differences across age groups. Late postnatal modifications in activity-dependent synaptic plasticity might reflect attenuation of mechanisms more closely tied to network formation (presynaptic potentiation and pre- and postsynaptic depression) and unmasking of mechanisms underlying information processing and storage (associative postsynaptic potentiation), which likely impact the integrative capacity of the network and regulate the emergence of adult-like cognitive abilities.  相似文献   

15.
Synaptic plasticity is regarded as the major candidate mechanism for synaptic information storage and memory formation in the hippocampus. Mitogen‐activated protein kinases have recently emerged as an important regulatory factor in many forms of synaptic plasticity and memory. As one of the subfamilies of mitogen‐activated protein kinases, extracellular‐regulated kinase is involved in the in vitro induction of long‐term potentiation (LTP), whereas p38 mediates metabotropic glutamate receptor‐dependent long‐term depression (LTD) in vitro. Although c‐Jun N‐terminal kinase (JNK) has also been implicated in synaptic plasticity, the in vivo relevance of JNK activity to different forms of synaptic plasticity remains to be further explored. We investigated the effect of inhibition of JNK on different forms of synaptic plasticity in the dentate gyrus of freely behaving adult rats. Intracereboventricular application of c‐Jun N‐terminal protein kinase‐inhibiting peptide (D‐JNKI) (96 ng), a highly selective JNK inhibitor peptide, did not affect basal synaptic transmission but reduced neuronal excitability with a higher dose (192 ng). Application of D‐JNKI, at a concentration that did not affect basal synaptic transmission, resulted in reduced specific phosphorylation of the JNK substrates postsynaptic density 95kD protein (PSD 95) and c‐Jun, a significant enhancement of LTD and a facilitation of short‐term depression into LTD. Both LTP and short‐term potentiation were unaffected. An inhibition of depotentiation (recovery of LTP) occurred. These data suggest that suppression of JNK‐dependent signalling may serve to enhance synaptic depression, and indirectly promote LTP through impairment of depotentiation.  相似文献   

16.
Voltage-gated potassium (Kv) channels play important roles in regulating the excitability of myocytes and neurons. Kv4.2 is the primary α-subunit of the channel that produces the A-type K+ current in CA1 pyramidal neurons of the hippocampus, which is critically involved in the regulation of dendritic excitability and plasticity. K+ channel-interacting proteins, KChIPs (KChIP1–4), associate with the N-terminal of Kv4.2 and modulate the channel's biophysical properties, turnover rate and surface expression. In the present study, we investigated the role of Kv4.2 C-terminal PKA phosphorylation site S552 in the KChIP4a-mediated effects on Kv4.2 channel trafficking. We found that while interaction between Kv4.2 and KChIP4a does not require PKA phosphorylation of Kv4.2S552, phosphorylation of this site is necessary for both enhanced stabilization and membrane expression of Kv4.2 channel complexes produced by KChIP4a. Enhanced surface expression and protein stability conferred by co-expression of Kv4.2 with other KChIP isoforms did not require PKA phosphorylation of Kv4.2 S552. Finally, we identify A-kinase anchoring proteins (AKAPs) as Kv4.2 binding partners, allowing for discrete local PKA signaling. These data demonstrate that PKA phosphorylation of Kv4.2 plays an important role in the trafficking of Kv4.2 through its specific interaction with KChIP4a.  相似文献   

17.
GPR55, an orphan G‐protein coupled receptor, is activated by lysophosphatidylinositol (LPI) and the endocannabinoid anandamide, as well as by other compounds including THC. LPI is a potent endogenous ligand of GPR55 and neither GPR55 nor LPIs' functions in the brain are well understood. While endocannabinoids are well known to modulate brain synaptic plasticity, the potential role LPI could have on brain plasticity has never been demonstrated. Therefore, we examined not only GPR55 expression, but also the role its endogenous ligand could play in long‐term potentiation, a common form of synaptic plasticity. Using quantitative RT‐PCR, electrophysiology, and behavioral assays, we examined hippocampal GPR55 expression and function. qRT‐PCR results indicate that GPR55 is expressed in hippocampi of both rats and mice. Immunohistochemistry and single cell PCR demonstrates GPR55 protein in pyramidal cells of CA1 and CA3 layers in the hippocampus. Application of the GPR55 endogenous agonist LPI to hippocampal slices of GPR55+/+ mice significantly enhanced CA1 LTP. This effect was absent in GPR55?/? mice, and blocked by the GPR55 antagonist CID 16020046. We also examined paired‐pulse ratios of GPR55?/? and GPR55+/+ mice with or without LPI and noted significant enhancement in paired‐pulse ratios by LPI in GPR55+/+ mice. Behaviorally, GPR55?/? and GPR55+/+ mice did not differ in memory tasks including novel object recognition, radial arm maze, or Morris water maze. However, performance on radial arm maze and elevated plus maze task suggests GPR55?/? mice have a higher frequency of immobile behavior. This is the first demonstration of LPI involvement in hippocampal synaptic plasticity.  相似文献   

18.
Apamin is a neurotoxin extracted from honey bee venom and is a selective blocker of small‐conductance Ca2+‐activated K+ channels (SK). Several behavioral and electrophysiological studies indicate that SK‐blockade by apamin may enhance neuron excitability, synaptic plasticity, and long‐term potentiation in the CA1 hippocampal region, and, for that reason, apamin has been proposed as a therapeutic agent in Alzheimer's disease treatment. However, the dendritic morphological mechanisms implied in such enhancement are unknown. In the present work, Golgi–Cox stain protocol and Sholl analysis were used to study the effect of apamin on the dendritic morphology of pyramidal neurons from hippocampus and the prefrontal cortex as well as on the medium spiny neurons from the nucleus accumbens and granule cells from the dentate gyrus (DG) of the hippocampus. We found that only granule cells from the DG and pyramidal neurons from dorsal and ventral hippocampus were altered in senile rats injected with apamin. Our research suggests that apamin may increase the dendritic morphology in the hippocampus, which could be related to the neuronal excitability and synaptic plasticity enhancement induced by apamin. Synapse 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
Heterosynaptic long‐term depression (hLTD) at untetanized synapses accompanying the induction of long‐term potentiation (LTP) spatially sharpens the activity‐induced synaptic potentiation; however, the underlying mechanism remains unclear. We found that hLTD in the hippocampal CA1 region is caused by stimulation‐induced ATP release from astrocytes that suppresses transmitter release from untetanized synaptic terminals via activation of P2Y receptors. Selective stimulation of astrocytes expressing channelrhodopsin‐2, a light‐gated cation channel permeable to Ca2+, resulted in LTD of synapses on neighboring neurons. This synaptic modification required Ca2+ elevation in astrocytes and activation of P2Y receptors, but not N‐methyl‐D ‐aspartate receptors. Furthermore, blocking P2Y receptors or buffering astrocyte intracellular Ca2+ at a low level prevented hLTD without affecting LTP induced by SC stimulation. Thus, astrocyte activation is both necessary and sufficient for mediating hLTD accompanying LTP induction, strongly supporting the notion that astrocytes actively participate in activity‐dependent synaptic plasticity of neural circuits. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Fragile X syndrome (FXS) is the leading monogenetic cause of cognitive impairment and autism spectrum disorder. Area CA1 of the hippocampus receives current information about the external world from the entorhinal cortex via the temporoammonic (TA) pathway. Given its role in learning and memory, it is surprising that little is known about TA long-term potentiation (TA-LTP) in FXS. We found that TA-LTP was impaired in male fmr1 KO mice. Although there were no significant differences in basal synaptic transmission, synaptically evoked dendritic calcium signals were smaller in KO neurons. Using dendritic recording, we found no difference in complex spikes or pharmacologically isolated Ca2+ spikes; however, the threshold for fast, Na+-dependent dendritic spikes was depolarized in fmr1 KO mice. Cell-attached patch-clamp recordings found no difference in Na+ channels between wild-type and fmr1 KO CA1 dendrites. Dendritic spike threshold and TA-LTP were restored by blocking A-type K+ channels with either 150 µm Ba2+ or the more specific toxin AmmTx3. The impairment of TA-LTP shown here, coupled with previously described enhanced Schaffer collateral LTP, may contribute to spatial memory alterations in FXS. Furthermore, as both of these LTP phenotypes are attributed to changes in A-type K+ channels in FXS, our findings provide a potential therapeutic target to treat cognitive impairments in FXS.SIGNIFICANCE STATEMENT Alterations in synaptic function and plasticity are likely contributors to learning and memory impairments in many neurologic disorders. Fragile X syndrome is marked by dysfunctional learning and memory and changes in synaptic structure and function. This study shows a lack of LTP at temporoammonic synapses in CA1 neurons associated with biophysical differences in A-type K+ channels in fmr1 KO CA1 neurons. Our results, along with previous findings on A-type K+ channel effects on Schaffer collateral LTP, reveal differential effects of a single ion channelopathy on LTP at the two major excitatory pathways of CA1 pyramidal neurons. These findings expand our understanding of memory deficits in FXS and provide a potential therapeutic target for the treatment of memory dysfunction in FXS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号