首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell adhesion molecules (CAMs) involved in synaptic changes underlying learning and memory processes, are implicated in the effect of stress on behavioural performance. The present study was designed to test the hypothesis that (i) expression of CAMs is apolipoprotein E‐ (apoE) genotype dependent and (ii) repeated exposure to stress modulates the synthesis of CAMs in an apoE‐genotype dependent manner. Using ELISA we tested this hypothesis and measured expression of NCAM and L1 in different brain regions of naïve and stressed apolipoprotein E‐knockout (apoE0/0) and C57Bl6 (wild‐type) mice. Naïve apoE0/0 mice had elevated basal morning corticosterone and ACTH concentrations and decreased expression of NCAM and L1 compared to wild‐type mice. Repeated exposure of mice to rats, as the common stressor, alleviated the reduction in expression of CAMs in apoE0/0 mice; seven days after the last rat exposure, expression of NCAM was increased in frontal brain and hippocampus whereas expression of L1 was increased in hippocampus and cerebellum. Rat stress attenuated the elevation of basal morning corticosterone concentration in apoE0/0 mice towards concentrations detected in wild‐type mice. Moreover, rat stress improved learning and memory of apoE0/0 mice in the water maze. In conclusion, repeated exposure to stress eliminated apoE‐genotype‐related differences in expression of CAMs. Under these same conditions the differences in cognitive performance and corticosterone concentrations were abolished between wild type and apoE0/0 mice.  相似文献   

2.
Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long‐term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety‐like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short‐term EE for 10 days can overcome restraint stress–induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short‐term EE on chronic stress–induced impaired LTP, working memory, and anxiety‐like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1‐LTP, increased anxiety‐like symptoms in elevated plus maze, and impaired working memory in T‐maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Cell adhesion molecule function is involved in hippocampal synaptic plasticity and is associated with memory consolidation. At the infragranular zone of the dentate gyrus, neurons expressing the polysialylated form of the neural cell adhesion molecule (NCAM PSA) transiently increase their frequency at the 12-hr posttraining time in behaviours elicited by stressful stimuli, such as those associated with conditioned avoidance, water maze, and fear conditioning paradigms. To determine whether learning-induced modulation of NCAM polysialylation is limited to stressful paradigms, we employed a reward-based odour discrimination task. Animals show a rapid acquisition and recall of this task in terms of latency to identify the food-associated odour and the number of choice errors. Immunohistochemical procedures were employed to determine the change in NCAM PSA expression following task acquisition. NCAM PSA immunoreactivity in the hippocampal formation was most intense on the granule-like neurons in the infragranular zone of the dentate gyrus, and their frequency transiently increased in the 12-hr posttraining period. The nature of the transient increase in NCAM PSA-immunoreactive neurons was indistinguishable from that observed following avoidance conditioning or spatial learning, in that it occurred at the same time. The transient increase in NCAM PSA expression is suggested to facilitate dendritic elaboration in response to the acquisition of novel behavioural repertoires.  相似文献   

4.
Memory formation has been associated with structural and functional modifications of synapses. Cell adhesion molecules are prominent modulators of synaptic plasticity. Here, we investigated the involvement of the cell adhesion molecules, NCAM, its polysialylated state (PSA-NCAM) and L1 in spatial learning-induced synaptic remodeling and memory storage. A differential regulation of these adhesion molecules was found in the hippocampus of rats submitted to one training session in the spatial, but not cued, version of the Morris water maze. Twenty-four hours after training, synaptic expression of NCAM and PSA-NCAM was increased, whereas L1 appeared markedly decreased. The regulation of these molecules was spatial learning-specific, except for L1 reduction, which could be attributed to swimming under stressful conditions rather than to learning. Subsequent psychopharmacological experiments were performed to address the functional role of NCAM and PSA-NCAM in the formation of spatial memories. Rats received an intracerebroventricular injection of either a synthetic peptide (C3d) aimed to interfere with NCAM function, or endoneuraminidase, an enzyme that cleaves polysialic acid from NCAM. Both treatments affected acquisition of spatial information and lead to impaired spatial memory abilities, supporting a critical role of the observed learning-induced up-regulation of synaptic NCAM expression and polysialylation on spatial learning and memory. Therefore, our findings highlight NCAM as a learning-modulated molecule critically involved in the hippocampal remodeling processes underlying spatial memory formation.  相似文献   

5.
目的观察慢性应激对大鼠学习记忆功能和海马神经细胞粘附分子(NCAM)表达的影响,探讨海马NCAM表达在慢性应激影响学习记忆机制的作用。方法20只SD大鼠随机被分为对照组(10只)和慢性应激组(10只),后者以束缚浸水应激方式连续应激21天,三周后行水迷宫实验,并用免疫组化法测定大鼠的脑海马区NCAM的表达。结果应激组在水迷宫测试中寻找水中隐藏平台的潜伏期为(7.1±8.9)秒,对照组为(12.3±4.2)秒,差异有统计学意义;穿越平台次数:应激组为(8.4±1.1)次,对照组为(12.5±1.9)次,差异有统计学意义。应激组海马CA3区NCAM的表达:25.2%±3.6%,对照组为37.9%±5.1%,差异有统计学意义。结论慢性应激对大鼠的学习记忆功能有抑制作用。其机制可能与应激抑制海马CA3区NCAM表达有关。  相似文献   

6.
This study focuses on the function of NSSR1, a splicing factor, in neuronal injury in the ischemic mouse brain using the transient global cerebral ischemic mouse model and the cultured cells treated with oxygen‐glucose deprivation (OGD). The results showed that the cerebral ischemia triggers the expression of NSSR1 in hippocampal astrocytes, predominantly the dephosphorylated NSSR1 proteins, and the Exon3 inclusive NCAM‐L1 variant and the Exon4 inclusive CREB variant. While in the hippocampus of astrocyte‐specific NSSR1 conditional knockdown (cKD) mice, where cerebral ischemia no longer triggers NSSR1 expression in astrocytes, the expression of Exon3 inclusive NCAM‐L1 variant and Exon4 inclusive CREB variant were no longer triggered as well. In addition, the injury of hippocampal neurons was more severe in astrocyte‐specific NSSR1 cKD mice compared with in wild‐type mice after brain ischemia. Of note, the culture media harvested from the astrocytes with overexpression of NSSR1 or the Exon3 inclusive NCAM‐L1 variant, or Exon4 inclusive CREB variant were all able to reduce the neuronal injury induced by OGD. The results provide the evidence demonstrating that: (1) Splicing factor NSSR1 is a new factor involved in reducing ischemic injury. (2) Ischemia induces NSSR1 expression in astrocytes, not in neurons. (3) NSSR1‐mediated pathway in astrocytes is required for reducing ischemic neuronal injury. (4) NCAM‐L1 and CREB are probably mediators in NSSR1‐mediated pathway. In conclusion, our results suggest for the first time that NSSR1 may provide a novel mechanism for reducing neuronal injury after ischemia, probably through regulation on alternative splicing of NCAM‐L1 and CREB in astrocytes. GLIA 2015;63:826–845  相似文献   

7.
Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease primarily characterized by motor neuron death, causes damages beyond motor‐related areas. In particular, cognitive impairments and hippocampal damage have been reported in ALS patients. We investigated spatial navigation learning and hippocampal interneurons in a mutant SOD1(G93A) mouse (mSOD1) model of ALS. Behavioral tests were performed by using presymptomatic mSOD1 mice. General motor activity was comparable to that of wild‐type mice in the open‐field test, in which, however mSOD1 exhibited increased anxiety‐like behavior. In the Barnes maze test, mSOD1 mice displayed a delay in learning, outperformed wild‐type mice during the first probe trial, and exhibited impaired long‐term memory. Stereological counts of parvalbumin‐positive interneurons, which are crucial for hippocampal physiology and known to be altered in other central nervous system regions of mSOD1 mice, were also performed. At postnatal day (P) 56, the population of parvalbumin‐positive interneurons in mSOD1 mice was already reduced in CA1 and in CA3, and at P90 the reduction extended to the dentate gyrus. Loss of parvalbumin‐positive hippocampal interneurons occurred mostly during the presymptomatic stage. Western blot analysis showed that hippocampal parvalbumin expression levels were already reduced in mSOD1 mice at P56. The hippocampal alterations in mSOD1 mice could at least partly account for the increased anxiety‐like behavior and deficits in spatial navigation learning. Our study provides evidence for cognitive alterations and damage to the γ‐aminobutyric acid (GABA)ergic system in the hippocampus of murine ALS, thereby revealing selective deficits antecedent to the onset of motor symptoms. J. Comp. Neurol. 523:1622–1638, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1‐class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water‐maze spatial learning task remains unknown. D1R‐ and D5R‐specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F‐D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F‐D1R/D5R KO mice were given water‐maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F‐D1R KO) and D5R KO (F‐D5R KO) mice were trained on the water‐maze task. F‐D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F‐D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F‐D5R KO animals did not present observable deficits on the water‐maze task. Because F‐D1R KO mice showed water‐maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG‐D1R KO) mice on the water‐maze task. DG‐D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The neurotoxic heavy metal trimethyltin (TMT) primarily damages neurons of the hippocampus and limbic areas of the temporal lobe, and causes a dose-dependent decrease in the polysialated form of the neural cell adhesion molecule (PSA-NCAM) in the mouse hippocampus. In the current study, we attempted to associate deficits in spatial learning following TMT exposure at various stages in learning with changes in levels of NCAM-180 and PSA-NCAM in both the hippocampus and frontal cortex. Mice were treated with TMT either before or after training on a spatial learning paradigm and examined for changes in NCAM and PSA-NCAM 12h later. In the first set of experiments, male BALB/c mice were injected with TMT (2.25 mg/kg) or saline i.p. and tested 24-168 h later using hidden and visible versions of the water maze, as well as light avoidance and motor activity. Mice in both treated and control groups which demonstrated a significant improvement in water maze performance also showed an elevation in hippocampal PSA-NCAM at all time points examined. TMT exposure impaired spatial learning and blocked learning-induced elevations in PSA-NCAM expression 24-96 h post-treatment, but these deficits disappeared by 168 h post-treatment. Mice exposed to TMT during reconsolidation of spatial learning (after repeated water maze training) demonstrated a mild and transient difference in escape latency compared to saline exposed mice. TMT administration during this period did not result in the attenuation of PSA-NCAM expression observed when animals were exposed before training. These results confirm a specific role for PSA-NCAM in acquisition and consolidation of spatial memory.  相似文献   

10.
Early stressful adverse situations may increase the vulnerability to cognitive deficits and psychiatric disorders, such as depression. Maternal separation (MS) has been used as an animal model to study changes in neurochemistry and behavior associated with exposure to early‐life stress. This study investigated the effects of neonatal stress (MS) on the expression of synaptic plasticity markers in the hippocampus and a purported relationship to cognitive processes. Spatial learning (Morris water maze) significantly increased the expression of total levels of the neural cell adhesion molecule (NCAM), as well as its three major isoforms (NCAM‐120, ‐140, and ‐180) both in the control and MS groups. Interestingly, these increases in NCAM expression after learning were lower in MS animals when compared with control rats. MS induced a significant decrease in total levels of NCAM, and specifically, in the NCAM‐140 isoform expression. In the hippocampus of MS rats there was a significant decrease in brain‐derived neurotrophic factor and synaptophysin mRNA densities. Cell proliferation, measured as BrdU‐positive cells, was also decreased in the dentate gyrus of MS rats. Altogether these results suggest that MS can alter normal brain development, providing a potential mechanism by which early environmental stressors may influence vulnerability to show cognitive impairments later in life. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 mitogen-activated protein kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knock-out (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory, including contextual fear conditioning generated by a weak footshock. The ERK5 icKO mice were also deficient in contextual fear extinction and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis plays an important role in hippocampus-dependent learning flexibility. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 d after training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation, including fear extinction, and for the expression of remote memory.  相似文献   

12.
A small fraction of children with febrile seizures appears to develop cognitive impairments. Recent studies in a rat model of hyperthermia‐induced febrile seizures indicate that prolonged febrile seizures early in life have long‐lasting effects on the hippocampus and induce cognitive deficits. However, data on network plasticity and the nature of cognitive deficits are conflicting. We examined three specific measures of hippocampal plasticity in adult rats with a prior history of experimental febrile seizures: (i) activity‐dependent synaptic plasticity (long‐term potentiation and depression) by electrophysiological recordings of Schaffer collateral/commissural‐evoked field excitatory synaptic potentials in CA1 of acute hippocampal slices; (ii) Morris water maze spatial learning and memory; and (iii) hippocampal mossy fiber plasticity by Timm histochemistry and quantification of terminal sprouting in CA3 and the dentate gyrus. We found enhanced hippocampal CA1 long‐term potentiation and reduced long‐term depression but normal spatial learning and memory in adult rats that were subjected to experimental febrile seizures on postnatal day 10. Furthermore, rats with experimental febrile seizures showed modest but significant sprouting of mossy fiber collaterals into the inner molecular layer of the dentate gyrus in adulthood. We conclude that enhanced CA1 long‐term potentiation and mild mossy fiber sprouting occur after experimental febrile seizures, without affecting spatial learning and memory in the Morris water maze. These long‐term functional and structural alterations in hippocampal plasticity are likely to play a role in the enhanced seizure susceptibility in this model of prolonged human febrile seizures but do not correlate with overt cognitive deficits.  相似文献   

13.
Neuronal splice site selection events control multiple brain functions. Here, we report their involvement in stress-modulated hippocampal plasticity and errors of cognitive performance. Under stress, alternative splicing changes priority from synaptic acetylcholinesterase (AChE-S) to the normally rare, soluble and monomeric AChE-R variant, which facilitates hippocampal long-term potentiation (LTP) and intensifies fear-motivated learning. To explore the adaptive value of changes in AChE splicing, we compared hippocampal plasticity and errors of executive function in TgS and TgR transgenic mice overexpressing AChE-S or AChE-R, respectively. Hippocampal slices from TgS and TgR mice presented delayed and facilitated transition to LTP maintenance, respectively, compared with strain-matched FVB/N controls. TgS slices further showed failed recruitment of both the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate components of LTP, refractory response to cholinergic enhancement and suppressed protein kinase C (PKC) levels. Stable LTP could, however, be rescued by phorbol ester priming, attributing the TgS deficits to disrupted signal transduction. In serial maze tests, TgS mice displayed more errors of conflict and executive function than did FVB/N controls, reflecting maladaptive performance under chronic AChE-S overexpression. In contrast, TgR mice displayed enhanced serial maze performance, suggesting that chronic AChE-R overexpression facilitates adaptive reactions. Our findings are compatible with the notion that changes in the alternative splicing of AChE pre-mRNA and consequent alterations in PKC signalling are causally involved in modulating hippocampal plasticity and cognitive performance.  相似文献   

14.
Although chronic stress has been reported to induce deleterious effects on hippocampal structure and function, the possible existence of individual differences in the vulnerability to develop stress-induced cognitive alterations was hypothesized. This study was designed to evaluate (i) whether individual variability in behavioural reactivity to novelty could be related to a differential vulnerability to show spatial learning deficits after chronic stress in young adult rats, and (ii) to what extent, could individual differences in stress-induced cognitive alterations be related to alterations in specific neurobiological substrates. Four month-old Wistar male rats were classified according to their locomotor reactivity to a novel environment, as either low (LR) or highly (HR) reactive, and then either submitted to psychosocial stress for 21-days (consisting of the daily cohabitation of each young adult rat with a new middle-aged rat) or left undisturbed. The results showed that psychosocial stress induced a marked deficit in spatial learning in the water maze in HR, but not in LR, rats. Then, a second experiment investigated the possible differential expression of corticosteroid receptors (MR and GR) and cell adhesion molecules (NCAM and L1) in the hippocampus of HR and LR rats, both under basal conditions and after exposure to chronic social stress. Although chronic stress induced a reduction on the hippocampal expression of MRs and the NCAM-140 isoform, the levels of these molecules did not differ between stressed rats with and without spatial learning impairments; i.e., between HR- and LR-stressed rats, respectively. Nevertheless, it should be noted that the reduction of the hippocampal expression of NCAM-140 induced by psychosocial stress was particularly marked in HR stressed rats. However, the expression of GRs, NCAM-120 and NCAM-180 isoforms, and L1, was not affected by stress, regardless of the reactivity of the animals. Therefore, although we failed to find a neurobiological substrate that specifically correlated with the differential cognitive vulnerability to chronic stress shown by animals with a different novelty reactivity, this study confirms the hypothesis that rats differ in their susceptibility to display stress-induced impairments in hippocampus-dependent spatial learning tasks. In addition, it provides a model to further search for the neurobiological substrate(s) involved in the differential susceptibility to develop stress-induced cognitive impairments.  相似文献   

15.
The 5XFAD mice are an early‐onset transgenic model of Alzheimer's disease (AD) in which amyloid plaques are first observed between two and four months of age in the cortical layer five and in the subiculum of the hippocampal formation. Although cognitive alterations have been described in these mice, there are no studies that focused on the onset of hippocampus‐dependent memory deficits, which are a hallmark of the prodromal stage of AD. To identify when the first learning and memory impairments appear, 5XFAD mice of two, four, and six months of age were compared with their respective wild‐type littermates using the olfactory tubing maze, which is a very sensitive hippocampal‐dependent task. Deficits in learning and memory started at four months with a substantial increase at six months of age while no olfactory impairments were observed. The volumetric study using magnetic resonance imaging of the whole brain and specific areas (olfactory bulb, striatum, and hippocampus) did not reveal neuro‐anatomical difference. Slight memory deficits appeared at 4 months of age in correlation with an increased astrogliosis and amyloid plaque formation. This early impairment in learning and memory related to the hippocampal dysfunction is particularly suited to assess preclinical therapeutic strategies aiming to delay or suppress the onset of AD. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Mice deficient for the neural cell adhesion molecule (NCAM) show morphological and behavioural abnormalities in the adult form, including a reduced size of the olfactory bulb, reduced exploratory behaviour, and deficits in spatial learning. Here we report increased aggressive behaviour of both homozygous (NCAM -/–) and heterozygous (NCAM +/–) male mutant mice towards an unfamiliar male intruding into their home cage. While plasma testosterone concentrations did not differ between genotypes before or after behavioural testing, corticosterone levels were higher in mutant residents than in wild-type (NCAM +/+) residents 30 min after encountering the intruder. Levels of c-fos mRNA, analysed to monitor neuronal activation, were similar in primary output structures of the olfactory bulb in NCAM-deficient and NCAM +/+ mice, but were increased in brain areas of the limbic system in both NCAM –/– and NCAM +/– mutant mice after the behavioural test. These results indicate that abnormalities in social behaviour correlate with enhanced neuronal activity in limbic brain areas and result in increased social stress in NCAM-deficient mice.  相似文献   

17.
18.
JR Levin  G Serrano  R Dingledine 《Epilepsia》2012,53(8):1411-1420
Purpose: Pilocarpine induces prolonged status epilepticus (SE) in rodents that results in neurodegeneration and cognitive deficits, both commonly observed to be associated with human temporal lobe epilepsy. The multifunctional neuronal modulator, cyclooxygenase‐2 (PTGS2 or COX‐2), is rapidly induced after SE, mainly in principal neurons of the hippocampal formation and cortex. We used mice in which COX‐2 is conditionally ablated in principal forebrain neurons to investigate the involvement of neuron‐derived COX‐2 in delayed mortality and performance in the Barnes maze. Methods: Using the COX‐2 conditional knockout mouse (nCOX‐2 cKO) and their littermate wild‐type controls, we compared motor behavior and performance in the Barnes maze before and 3 weeks after the induction of SE by pilocarpine. Mortality rate was also measured during SE and in the week following SE. Key Findings: nCOX‐2 cKO mice showed less delayed mortality than wild‐type mice in the week after SE. Although motor behavior and most cognitive measures were not different in the nCOX‐2 cKO, upon reexposure to the maze 3 weeks after pilocarpine, the latency to find the previously learned target hole was significantly shorter in the nCOX‐2 cKO than their wild‐type littermate controls. By this measure pilocarpine‐treated nCOX‐2 cKO mice were identical to mice that had not experienced SE. Significance: Results point to a role for neuronal COX‐2 in delayed mortality in mice during the week following SE and suggest that neuronal COX‐2 contributes to selected cognitive deficits observed after SE. Taking into consideration our previous findings that neurodegeneration and neuroinflammation after SE are reduced in the nCOX‐2 cKO, and opening of the blood–brain barrier after pilocarpine is prevented, we conclude that neuronal COX‐2 induction is an early step in many of the deleterious consequences of SE.  相似文献   

19.
The notion that long-term synaptic plasticity is generated by activity-induced molecular modifications is widely accepted. It is well established that neural cell adhesion molecule (NCAM) is one of the prominent modulators of synaptic plasticity. NCAM can be polysialylated (PSA-NCAM), a reaction that provides it with anti-adhesion properties. In this study we have focused on NCAM and on its polysialylated state, and their relation to learning of an olfactory discrimination task, which depends on both the piriform (olfactory) cortex and hippocampus. We trained rats to distinguish between pairs of odors until rule learning was achieved, a process that normally lasts 6-8 days. At four time points, during training and after training completion, synaptic NCAM and PSA-NCAM expression were assessed in the piriform cortex and hippocampus. We report that NCAM modulation is specific to PSA-NCAM, which is upregulated in the hippocampus one day after training completion. We also report a correlation between the performance of individual rats in an early training stage and their NCAM expression, both in the piriform cortex and hippocampus. Since individual early performance in our odor discrimination task is correlated with the performance throughout the training period, we conclude that early NCAM expression is associated with odor learning capability. We therefore suggest that early synaptic NCAM expression may be one of the factors determining the capability of rats to learn.  相似文献   

20.
Streptozotocin-diabetic rats express deficits in water maze learning and hippocampal synaptic plasticity. The present study examined whether these deficits could be prevented and/or reversed with insulin treatment. In addition, the water maze learning deficit in diabetic rats was further characterized. Insulin treatment was commenced at the onset of diabetes in a prevention experiment, and 10 weeks after diabetes induction in a reversal experiment. After 10 weeks of treatment, insulin-treated diabetic rats, untreated diabetic rats and non-diabetic controls were tested in a spatial version of the Morris water maze. Next, hippocampal long-term potentiation (LTP) was measured in vitro. To further characterize the effects of diabetes on water maze learning, a separate group of rats was pre-trained in a non-spatial version of the maze, prior to exposure to the spatial version. Both water maze learning and hippocampal LTP were impaired in diabetic rats. Insulin treatment commenced at the onset of diabetes prevented these impairments. In the reversal experiment, insulin treatment failed to reverse established deficits in maze learning and restored LTP only partially. Non-spatial pre-training abolished the performance deficit of diabetic rats in the spatial version of the maze. It is concluded that insulin treatment may prevent but not reverse deficits in water maze learning and LTP in streptozotocin-diabetic rats. The pre-training experiment suggests that the performance deficit of diabetic rats in the spatial version of the water maze is related to difficulties in learning the procedures of the maze rather than to impairments of spatial learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号