首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive FGF23 has been identified as a pivotal phosphaturic factor leading to renal phosphate‐wasting and the subsequent development of rickets and osteomalacia. In contrast, loss of FGF23 in mice (Fgf23?/?) leads to high serum phosphate, calcium, and 1,25‐vitamin D levels, resulting in early lethality attributable to severe ectopic soft‐tissue calcifications and organ failure. Paradoxically, Fgf23?/? mice exhibit a severe defect in skeletal mineralization despite high levels of systemic mineral ions and abundant ectopic mineralization, an abnormality that remains largely unexplained. Through use of in situ hybridization, immunohistochemistry, and immunogold labeling coupled with electron microscopy of bone samples, we discovered that expression and accumulation of osteopontin (Opn/OPN) was markedly increased in Fgf23?/? mice. These results were confirmed by qPCR analyses of Fgf23?/? bones and ELISA measurements of serum OPN. To investigate whether elevated OPN levels were contributing to the bone mineralization defect in Fgf23?/? mice, we generated Fgf23?/?/Opn?/? double‐knockout mice (DKO). Biochemical analyses showed that the hypercalcemia and hyperphosphatemia observed in Fgf23?/? mice remained unchanged in DKO mice; however, micro‐computed tomography (µCT) and histomorphometric analyses showed a significant improvement in total mineralized bone volume. The severe osteoidosis was markedly reduced and a normal mineral apposition rate was present in DKO mice, indicating that increased OPN levels in Fgf23?/? mice are at least in part responsible for the osteomalacia. Moreover, the increased OPN levels were significantly decreased upon lowering serum phosphate by feeding a low‐phosphate diet or after deletion of NaPi2a, indicating that phosphate levels contribute in part to the high OPN levels in Fgf23?/? mice. In summary, our results suggest that increased OPN is an important pathogenic factor mediating the mineralization defect and the alterations in bone metabolism observed in Fgf23?/? bones. © 2014 American Society for Bone and Mineral Research.  相似文献   

2.
Parathyroid hormone (PTH) is the only approved anabolic agent for osteoporosis treatment. It acts via osteoblasts to stimulate both osteoclast formation and bone formation, with the balance between these two activities determined by the mode of administration. Oncostatin M (OSM), a gp130‐dependent cytokine expressed by osteoblast lineage cells, has similar effects and similar gene targets in the osteoblast lineage. In this study, we investigated whether OSM might participate in anabolic effects of PTH. Microarray analysis and quantitative real‐time polymerase chain reaction (qPCR) of PTH‐treated murine stromal cells and primary calvarial osteoblasts identified significant regulation of gp130 and gp130‐dependent coreceptors and ligands, including a significant increase in OSM receptor (OSMR) expression. To determine whether OSMR signaling is required for PTH anabolic action, 6‐week‐old male Osmr?/? mice and wild‐type (WT) littermates were treated with hPTH(1–34) for 3 weeks. In WT mice, PTH increased trabecular bone volume and trabecular thickness. In contrast, the same treatment had a catabolic effect in Osmr?/? mice, reducing both trabecular bone volume and trabecular number. This was not explained by any alteration in the increased osteoblast formation and mineral apposition rate in response to PTH in Osmr?/? compared with WT mice. Rather, PTH treatment doubled osteoclast surface in Osmr?/? mice, an effect not observed in WT mice. Consistent with this finding, when osteoclast precursors were cultured in the presence of osteoblasts, more osteoclasts were formed in response to PTH when Osmr?/? osteoblasts were used. Neither PTH1R mRNA levels nor cAMP response to PTH were modified in Osmr?/? osteoblasts. However, RANKL induction in PTH‐treated Osmr?/? osteoblasts was sustained at least until 24 hours after PTH exposure, an effect not observed in WT osteoblasts. These data indicate that the transient RANKL induction by intermittent PTH administration, which is associated with its anabolic action, is changed to a prolonged induction in OSMR‐deficient osteoblasts, resulting in bone destruction. © 2012 American Society for Bone and Mineral Research.  相似文献   

3.
4.
Fibroblast growth factor‐23 (FGF23) is a bone‐derived hormone regulating vitamin D hormone production and renal handling of minerals by signaling through an FGF receptor/αKlotho (Klotho) receptor complex. Whether Klotho has FGF23‐independent effects on mineral homeostasis is a controversial issue. Here, we aimed to shed more light on this controversy by comparing male and female triple knockout mice with simultaneous deficiency in Fgf23 and Klotho and a nonfunctioning vitamin D receptor (VDR) (Fgf23/Klotho/VDR) with double (Fgf23/VDR, Klotho/VDR, and Fgf23/Klotho) and single Fgf23, Klotho, and VDR mutants. As expected, 4‐week‐old Fgf23, Klotho, and Fgf23/Klotho knockout mice were hypercalcemic and hyperphosphatemic, whereas VDR, Fgf23/VDR, and Klotho/VDR mice on rescue diet were normocalcemic and normophosphatemic. Serum levels of calcium, phosphate, and sodium did not differ between 4‐week‐old triple Fgf23/Klotho/VDR and double Fgf23/VDR or Klotho/VDR knockout mice. Notably, 3‐month‐old Fgf23/Klotho/VDR triple knockout mice were indistinguishable from double Fgf23/VDR and Klotho/VDR compound mutants in terms of serum calcium, serum phosphate, serum sodium, and serum PTH, as well as urinary calcium and sodium excretion. Protein expression analysis revealed increased membrane abundance of sodium‐phosphate co‐transporter 2a (NaPi‐2a), and decreased expression of sodium‐chloride co‐transporter (NCC) and transient receptor potential cation channel subfamily V member 5 (TRPV5) in Fgf23/Klotho/VDR, Fgf23/VDR, and Klotho/VDR mice, relative to wild‐type and VDR mice, but no differences between triple and double knockouts. Further, ex vivo treatment of live kidney slices isolated from wild‐type and Klotho/VDR mice with soluble Klotho did not induce changes in intracellular phosphate, calcium or sodium accumulation assessed by two‐photon microscopy. In conclusion, our data suggest that the main physiological function of Klotho for mineral homeostasis in vivo is its role as co‐receptor mediating Fgf23 action. © 2017 American Society for Bone and Mineral Research.  相似文献   

5.
6.
Introduction : B‐cell leukemia/lymphoma 2 (Bcl2) is a proto‐oncogene best known for its ability to suppress cell death. However, the role of Bcl2 in the skeletal system is unknown. Bcl2 has been hypothesized to play an important anti‐apoptotic role in osteoblasts during anabolic actions of PTH. Although rational, this has not been validated in vivo; hence, the impact of Bcl2 in bone remains unknown. Materials and Methods : The bone phenotype of Bcl2 homozygous mutant (Bcl2?/?) mice was analyzed with histomorphometry and μCT. Calvarial osteoblasts were isolated and evaluated for their cellular activity. Osteoclastogenesis was induced from bone marrow cells using RANKL and macrophage‐colony stimulating factor (M‐CSF), and their differentiation was analyzed. PTH(1–3;34) (50 μg/kg) or vehicle was administered daily to Bcl2+/+ and Bcl2?/? mice (4 days old) for 9 days to clarify the influence of Bcl2 ablation on PTH anabolic actions. Western blotting and real‐time PCR were performed to detect Bcl2 expression in calvarial osteoblasts in response to PTH ex vivo. Results : There were reduced numbers of osteoclasts in Bcl2?/? mice, with a resultant increase in bone mass. Bcl2?/? bone marrow–derived osteoclasts ex vivo were significantly larger in size and short‐lived compared with wildtype, suggesting a pro‐apoptotic nature of Bcl2?/? osteoclasts. In contrast, osteoblasts were entirely normal in their proliferation, differentiation, and mineralization. Intermittent administration of PTH increased bone mass similarly in Bcl2+/+ and Bcl2?/? mice. Finally, Western blotting and real‐time PCR showed that Bcl2 levels were not induced in response to PTH in calvarial osteoblasts. Conclusions : Bcl2 is critical in osteoclasts but not osteoblasts. Osteoclast suppression is at least in part responsible for increased bone mass of Bcl2?/? mice, and Bcl2 is dispensable in PTH anabolic actions during bone growth.  相似文献   

7.
The transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed (“f”)‐Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global‐Cre transgenic mice (eIIa‐cre). Mice homozygous for the recombined allele (“Δ”) had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23‐KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23Δ/f mice were mated with early osteoblast type Iα1 collagen 2.3‐kb promoter‐cre mice (Col2.3‐cre) and the late osteoblast/early osteocyte Dentin matrix protein‐1‐cre (Dmp1‐cre). Fgf23Δ/f/Col2.3‐cre+ and Fgf23Δ/f/Dmp1‐cre+ exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high‐phosphate diet Cre mice had 2.1‐fold to 2.5‐fold increased serum FGF23 (p < 0.01), but Col2.3‐cre+ mice had no significant increase, and Dmp1‐cre+ mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23Δ/f/Col2.3‐cre was bred onto the Hyp (murine X‐linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23Δ/f/Col2.3‐cre+ mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome. © 2016 American Society for Bone and Mineral Research.  相似文献   

8.
Inactivating mutations of the “phosphate regulating gene with homologies to endopeptidases on the X chromosome” (PHEX/Phex) underlie disease in patients with X‐linked hypophosphatemia (XLH) and the hyp‐mouse, a murine homologue of the human disorder. Although increased serum fibroblast growth factor 23 (FGF‐23) underlies the HYP phenotype, the mechanism(s) by which PHEX mutations inhibit FGF‐23 degradation and/or enhance production remains unknown. Here we show that treatment of wild‐type mice with the proprotein convertase (PC) inhibitor, decanoyl‐Arg‐Val‐Lys‐Arg‐chloromethyl ketone (Dec), increases serum FGF‐23 and produces the HYP phenotype. Because PC2 is uniquely colocalized with PHEX in osteoblasts/bone, we examined if PC2 regulates PHEX‐dependent FGF‐23 cleavage and production. Transfection of murine osteoblasts with PC2 and its chaperone protein 7B2 cleaved FGF‐23, whereas Signe1 (7B2) RNA interference (RNAi) transfection, which limited 7B2 protein production, decreased FGF‐23 degradation and increased Fgf‐23 mRNA and protein. The mechanism by which decreased 7B2?PC2 activity influences Fgf‐23 mRNA was linked to reduced conversion of the precursor to bone morphogenetic protein 1 (proBMP1) to active BMP1, which resulted in limited cleavage of dentin matrix acidic phosphoprotein 1 (DMP1), and consequent increased Fgf‐23 mRNA. The significance of decreased 7B2?PC2 activity in XLH was confirmed by studies of hyp‐mouse bone, which revealed significantly decreased Sgne1 (7B2) mRNA and 7B2 protein, and limited cleavage of proPC2 to active PC2. The expected downstream effects of these changes included decreased FGF‐23 cleavage and increased FGF‐23 synthesis, secondary to decreased BMP1‐mediated degradation of DMP1. Subsequent Hexa‐D‐Arginine treatment of hyp‐mice enhanced bone 7B2?PC2 activity, normalized FGF‐23 degradation and production, and rescued the HYP phenotype. These data suggest that decreased PHEX‐dependent 7B2?PC2 activity is central to the pathogenesis of XLH. © 2013 American Society for Bone and Mineral Research  相似文献   

9.
In hyperlipidemia, oxidized lipids accumulate in vascular tissues and trigger atherosclerosis. Such lipids also deposit in bone tissues, where they may promote osteoporosis. We found previously that oxidized lipids attenuate osteogenesis and that parathyroid hormone (PTH) bone anabolism is blunted in hyperlipidemic mice, suggesting that osteoporotic patients with hyperlipidemia may develop resistance to PTH therapy. To determine if oxidized lipids account for this PTH resistance, we blocked lipid oxidation products in hyperlipidemic mice with an ApoA‐I mimetic peptide, D‐4F, and the bone anabolic response to PTH treatment was assessed. Skeletally immature Ldlr?/? mice were placed on a high‐fat diet and treated with D‐4F peptide and/or with intermittent PTH(1–34) injections. As expected, D‐4F attenuated serum lipid oxidation products and tissue lipid deposition induced by the diet. Importantly, D‐4F treatment attenuated the adverse effects of dietary hyperlipidemia on PTH anabolism by restoring micro–computed tomographic parameters of bone quality—cortical mineral content, area, and thickness. D‐4F significantly reduced serum markers of bone resorption but not bone formation. PTH and D‐4F, together but not separately, also promoted bone anabolism in an alternative model of hyperlipidemia, Apoe?/? mice. In normolipemic mice, D‐4F cotreatment did not further enhance the anabolic effects of PTH, indicating that the mechanism is through its effects on lipids. These findings suggest that oxidized lipids mediate hyperlipidemia‐induced PTH resistance in bone through modulation of bone resorption. © 2011 American Society for Bone and Mineral Research.  相似文献   

10.
11.
Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH‐responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild‐type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild‐type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild‐type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH‐mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild‐type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF‐2) mRNA and reduced serum FGF‐2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF‐2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone‐ and liver‐derived FGF‐2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. © 2012 American Society for Bone and Mineral Research  相似文献   

12.
Myocardial infarction (MI) is a major cause of death worldwide. Epidemiological studies have linked vitamin D deficiency to MI incidence. Because fibroblast growth factor‐23 (FGF23) is a master regulator of vitamin D hormone production and has been shown to be associated with cardiac hypertrophy per se, we explored the hypothesis that FGF23 may be a previously unrecognized pathophysiological factor causally linked to progression of cardiac dysfunction post‐MI. Here, we show that circulating intact Fgf23 was profoundly elevated, whereas serum vitamin D hormone levels were suppressed, after induction of experimental MI in rat and mouse models, independent of changes in serum soluble Klotho or serum parathyroid hormone. Both skeletal and cardiac expression of Fgf23 was increased after MI. Although the molecular link between the cardiac lesion and circulating Fgf23 concentrations remains to be identified, our study has uncovered a novel heart–bone–kidney axis that may have important clinical implications and may inaugurate the new field of cardio‐osteology. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

13.
14.
15.
Fibroblast growth factor 23 (FGF23) modulates mineral metabolism by promoting phosphaturia and decreasing the production of 1,25-dihydroxyvitamin D3. FGF23 decreases parathyroid hormone (PTH) mRNA and secretion, but despite a marked elevation in FGF23 in uremia, PTH production increases. Here, we investigated the effect of FGF23 on parathyroid function in normal and uremic hyperplastic parathyroid glands in rats. In normal parathyroid glands, FGF23 decreased PTH production, increased expression of both the parathyroid calcium-sensing receptor and the vitamin D receptor, and reduced cell proliferation. Furthermore, FGF23 induced phosphorylation of extracellular signal–regulated kinase 1/2, which mediates the action of FGF23. In contrast, in hyperplastic parathyroid glands, FGF23 did not reduce PTH production, did not affect expression of the calcium-sensing receptor or vitamin D receptor, and did not affect cell proliferation. In addition, FGF23 failed to activate the extracellular signal–regulated kinase 1/2–mitogen-activated protein kinase pathway in hyperplastic parathyroid glands. We observed very low expression of the FGF23 receptor 1 and the co-receptor Klotho in uremic hyperplastic parathyroid glands, which may explain the lack of response to FGF23 in this tissue. In conclusion, in hyperparathyroidism secondary to renal failure, the parathyroid cells resist the inhibitory effects of FGF23, perhaps as a result of the low expression of FGF23 receptor 1 and Klotho in this condition.Fibroblast growth factor 23 (FGF23) is produced by bone cells and plays a fundamental role in the regulation of mineral metabolism. FGF23 inhibits tubular resorption of phosphate and decreases 1α hydroxylase activity, which limits 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] production. Both phosphate excess and high 1,25(OH)2D3 stimulate the production of FGF23.1 FGF23 signals through a widely expressed receptor (FGFR) that becomes functional only in cells expressing the Klotho protein.2,3 Klotho, which is expressed in the parathyroid cell, converts FGFR1(IIIc), a canonical receptor for various FGFs, into a specific receptor for FGF23. The tissue-specific unique biological activity of FGF23 is likely to be regulated by the limited local distribution of Klotho. In renal failure, the decrease in glomerular filtration causes phosphate retention, which stimulates the production of FGF23. This elevation in FGF23 levels should help to control phosphate in patients with renal failure.4Klotho and FGFR are abundantly expressed in parathyroid cells. Some studies5,6 showed that FGF23 decreases parathyroid hormone (PTH) secretion and PTH mRNA. In dialysis patients, FGF23 levels can reach extremely high values4,7 but PTH is not reduced; in fact, the highest PTH values correspond to patients with a marked increase in FGF23 levels.8 Thus, it is not clear whether FGF23 is capable of reducing PTH production in uremia. Our hypothesis is that there may be a resistance to the action of FGF23 in patients with uremia.This study was designed to evaluate the effect of FGF23 on parathyroid function in normal and hyperplastic parathyroid glands. The study was performed in vivo and in vitro using intact rat parathyroid glands from normal and uremic animals with parathyroid hyperplasia.  相似文献   

16.
We examined parathyroid and skeletal function in 3‐month‐old mice expressing the null mutation for 25‐hydroxyvitamin D–1α‐hydroxylase [1α(OH)ase?/?] and in mice expressing the null mutation for both the 1α(OH)ase and the calcium‐sensing receptor [Casr?/?1α(OH)ase?/?] genes. On a normal diet, all mice were hypocalcemic, with markedly increased parathyroid hormone (PTH), increased trabecular bone volume, increased osteoblast activity, poorly mineralized bone, enlarged and distorted cartilaginous growth plates, and marked growth retardation, especially in the compound mutants. Osteoclast numbers were reduced in the Casr?/?1α(OH)ase?/? mice. On a high‐lactose, high‐calcium, high‐phosphorus “rescue” diet, serum calcium and PTH were normal in the 1α(OH)ase?/? mice but increased in the Casr?/?1α(OH)ase?/? mice with reduced serum phosphorus. Growth plate architecture and mineralization were improved in both mutants, but linear growth of the double mutants remained abnormal. Mineralization of bone improved in all mice, but osteoblast activity and trabecular bone volume remained elevated in the Casr?/?1α(OH)ase?/? mice. These studies support a role for calcium‐stimulated maturation of the cartilaginous growth plate and mineralization of the growth plate and bone and calcium‐stimulated CaSR‐mediated effects on bone resorption. PTH‐mediated bone resorption may require calcium‐stimulated CaSR‐mediated enhancement of osteoclastic activity. © 2010 American Society for Bone and Mineral Research. © 2010 American Society for Bone and Mineral Research  相似文献   

17.
Background: Patients on long-term hemodialysis frequently suffer from complications, such as secondary hyperparathyroidism, bone fractures, and arteriosclerosis. The process of regulating Ca/P metabolism depends on factors, such as FGF23 and Klotho. This study aimed to answer the question of whether the Klotho polymorphism rs9536314 is associated with FGF23 plasma concentration. Methods: In 118 patients undergoing hemodialysis, blood was collected before and after hemodialysis. The following parameters were measured in plasma: FGF23, serum: Ca, P, PTH, HGB, and iron concentrations. The KL gene polymorphism rs9536314 was identified by PCR-RFLP. Results: The KL polymorphism rs9536314 was not associated with Ca, P, PTH, or FGF23. There was a negative correlation between FGF23 and blood HGB levels and positive correlation between FGF23 and ESA dose. Conclusions: The results obtained may indicate that there is no association between the KL polymorphism and FGF23 concentration in patients undergoing long-term.  相似文献   

18.
Intermittent parathyroid hormone (iPTH) treatment induces bone anabolic effects that result in the recovery of osteoporotic bone loss. Human PTH is usually given to osteoporotic patients because it induces osteoblastogenesis. However, the mechanism by which PTH stimulates the expansion of stromal cell populations and their maturation toward the osteoblastic cell lineage has not be elucidated. Mouse genetic lineage tracing revealed that iPTH treatment induced osteoblastic differentiation of bone marrow (BM) mesenchymal stem and progenitor cells (MSPCs), which carried the leptin receptor (LepR)-Cre. Although these findings suggested that part of the PTH-induced bone anabolic action is exerted because of osteoblastic commitment of MSPCs, little is known about the in vivo mechanistic details of these processes. Here, we showed that LepR+MSPCs differentiated into type I collagen (Col1)+ mature osteoblasts in response to iPTH treatment. Along with osteoblastogenesis, the number of Col1+ mature osteoblasts increased around the bone surface, although most of them were characterized as quiescent cells. However, the number of LepR-Cre-marked lineage cells in a proliferative state also increased in the vicinity of bone tissue after iPTH treatment. The expression levels of SP7/osterix (Osx) and Col1, which are markers for osteoblasts, were also increased in the LepR+MSPCs population in response to iPTH treatment. In contrast, the expression levels of Cebpb, Pparg, and Zfp467, which are adipocyte markers, decreased in this population. Consistent with these results, iPTH treatment inhibited 5-fluorouracil- or ovariectomy (OVX)-induced LepR+MSPC-derived adipogenesis in BM and increased LepR+MSPC-derived osteoblasts, even under the adipocyte-induced conditions. Treatment of OVX rats with iPTH significantly affected the osteoporotic bone tissue and expansion of the BM adipose tissue. These results indicated that iPTH treatment induced transient proliferation of the LepR+MSPCs and skewed their lineage differentiation from adipocytes toward osteoblasts, resulting in an expanded, quiescent, and mature osteoblast population. © 2019 American Society for Bone and Mineral Research.  相似文献   

19.
Important and novel roles for neuropeptide Y (NPY) signaling in the control of bone homeostasis have recently been identified, with deletion of either the Y1 or Y2 receptors resulting in a generalized increase in bone formation. Whereas the Y2 receptor‐mediated anabolic response is mediated by a hypothalamic relay, the Y1‐mediated response is likely mediated by osteoblastic Y1 receptors. The presence of Y1 receptors on osteoblasts and various other peripheral tissues suggests that, in addition to neuronal input, circulating factors may also interact with the Y1‐mediated pathways. The skeletal and adipose tissue (peripheral and marrow) responses to Y1 receptor deficiency were examined after (1) leptin deficiency, (2) gonadectomy, and (3) hypothalamic NPY overexpression. Bone formation was consistently increased in intact Y1?/? mice. However, the hypogonadism of gonadectomy or leptin deficiency blocked this anabolism in male Y1?/? mice, whereas females remained unchanged. The Y1‐mediated bone anabolic pathway thus seems to be dependent on the presence of intact androgen signaling. Y1 deficiency also led to increased body weight and/or adiposity in all experimental models, with the exception of male ob/ob, showing a general adipogenic effect of Y1 deficiency that is not dependent on androgens. Interestingly, marrow adipocytes were regulated differently than general adipose depots in these models. Taken together, this interaction represents a novel mechanism for the integration of endocrine and neural signals initiated in the hypothalamus and provides further insight into the coordination of bone and energy homeostasis.  相似文献   

20.
Although fibroblast growth factor (FGF) 23 was recently identified as a phosphatonin that influences vitamin D metabolism, the underlying signaling mechanisms remain unclear. FGF23 elevates the renal levels of membrane‐associated klotho as well as soluble klotho. Klotho is expressed on distal tubules. Upon enzymatic cleavage, soluble klotho is released into the renal interstitial space and then into the systemic circulation. The expression of 25‐hydroxyvitamin D3 1α‐hydroxylase (1‐OH) on proximal tubular cells is controlled by parathyroid hormone (PTH). Klotho binds to various membrane proteins to alter their function. Here, the interaction between the PTH receptor and klotho was studied using various approaches, including immunoprecipitation, in vitro cell culture, and in vivo animal experiments. Immunoprecipitation studies demonstrate, for the first time, that recombinant human klotho protein interacts with human PTH receptors to inhibit the binding of human PTH. Furthermore, when applied to human proximal tubular cells, recombinant human klotho suppresses PTH‐stimulated generation of inositol trisphosphate in vitro. Moreover, PTH‐induced increase of cyclic AMP secretion and 1α,25‐dihydroxyvitamin D3 (1,25VD) was attenuated by recombinant human klotho in vivo. In addition, recombinant human klotho inhibits the expression of 1‐OH by PTH both in vitro and in vivo. These results suggest that free klotho mediates the FGF23‐induced inhibition of 1,25VD synthesis. © 2015 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号