首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To assess the effect of hypoparathyroidism on osteogenesis and bone turnover in vivo, bone marrow ablation (BMXs) were performed in tibias of 8‐week‐old wild‐type and parathyroid hormone–null (PTH?/?) mice and newly formed bone tissue was analyzed from 5 days to 3 weeks after BMX. At 1 week after BMX, trabecular bone volume, osteoblast numbers, alkaline phosphatase‐positive areas, type I collagen‐positive areas, PTH receptor–positive areas, calcium sensing receptor–positive areas, and expression of bone formation–related genes were all decreased significantly in the diaphyseal regions of bones of PTH?/? mice compared to wild‐type mice. In contrast, by 2 weeks after BMX, all parameters related to osteoblastic bone accrual were increased significantly in PTH?/? mice. At 5 days after BMX, active tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts had appeared in wild‐type mice but were undetectable in PTH?/? mice, Both the ratio of mRNA levels of receptor activator of NF‐κB ligand (RANKL)/osteoprotegerin (OPG) and TRAP‐positive osteoclast surface were still reduced in PTH?/? mice at 1 week but were increased by 2 weeks after BMX. The expression levels of parathyroid hormone–related protein (PTHrP) at both mRNA and protein levels were upregulated significantly at 1 week and more dramatically at 2 weeks after BMX in PTH?/? mice. To determine whether the increased newly formed bones in PTH?/? mice at 2 weeks after BMX resulted from the compensatory action of PTHrP, PTH?/?PTHrP+/? mice were generated and newly formed bone tissue was compared in these mice with PTH?/? and wild‐type mice at 2 weeks after BMX. All parameters related to osteoblastic bone formation and osteoclastic bone resorption were reduced significantly in PTH?/?PTHrP+/? mice compared to PTH?/? mice. These results demonstrate that PTH deficiency itself impairs osteogenesis, osteoclastogenesis, and osteoclastic bone resorption, whereas subsequent upregulation of PTHrP in osteogenic cells compensates by increasing bone accrual. © 2013 American Society for Bone and Mineral Research  相似文献   

2.
Bone remodeling involves tightly regulated bone‐resorbing osteoclasts and bone‐forming osteoblasts. Determining osteoclast function is central to understanding bone diseases such as osteoporosis and osteopetrosis. Here, we report a novel function of the F‐actin binding and regulatory protein SWAP‐70 in osteoclast biology. F‐actin ring formation, cell morphology, and bone resorption are impaired in Swap‐70?/? osteoclasts, whereas the expression of osteoclast differentiation markers induced in vitro by macrophage colony‐stimulating factor (M‐CSF) and receptor activator of NF‐κB ligand (RANKL) remains unaffected. Swap‐70?/? mice develop osteopetrosis with increased bone mass, abnormally dense bone, and impaired osteoclast function. Ectopic expression of SWAP‐70 in Swap‐70?/? osteoclasts in vitro rescues their deficiencies in bone resorption and F‐actin ring formation. Rescue requires a functional pleckstrin homology (PH) domain, known to support membrane localization of SWAP‐70, and the F‐actin binding domain. Transplantation of SWAP‐70–proficient bone marrow into Swap‐70?/? mice restores osteoclast resorption capacity in vivo. The identification of the role of SWAP‐70 in promoting osteoclast function through modulating membrane‐proximal F‐actin rearrangements reveals a new pathway to control osteoclasts and bone homeostasis. © 2012 American Society for Bone and Mineral Research.  相似文献   

3.
Interferon γ (IFN‐γ) is a cytokine produced locally in the bone microenvironment by cells of immune origin as well as mesenchymal stem cells. However, its role in normal bone remodeling is still poorly understood. In this study we first examined the consequences of IFN‐γ ablation in vivo in C57BL/6 mice expressing the IFN‐γ receptor knockout phenotype (IFNγR1?/?). Compared with their wild‐type littermates (IFNγR1+/+), IFNγR1?/? mice exhibit a reduction in bone volume associated with significant changes in cortical and trabecular structural parameters characteristic of an osteoporotic phenotype. Bone histomorphometry of IFNγR1?/? mice showed a low‐bone‐turnover pattern with a decrease in bone formation, a significant reduction in osteoblast and osteoclast numbers, and a reduction in circulating levels of bone‐formation and bone‐resorption markers. Furthermore, administration of IFN‐γ (2000 and 10,000 units) to wild‐type C57BL/6 sham‐operated (SHAM) and ovariectomized (OVX) female mice significantly improved bone mass and microarchitecture, mechanical properties of bone, and the ratio between bone formation and bone resorption in SHAM mice and rescued osteoporosis in OVX mice. These data therefore support an important physiologic role for IFN‐γ signaling as a potential new anabolic therapeutic target for osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

4.
5.
Parathyroid hormone (PTH) is the only approved anabolic agent for osteoporosis treatment. It acts via osteoblasts to stimulate both osteoclast formation and bone formation, with the balance between these two activities determined by the mode of administration. Oncostatin M (OSM), a gp130‐dependent cytokine expressed by osteoblast lineage cells, has similar effects and similar gene targets in the osteoblast lineage. In this study, we investigated whether OSM might participate in anabolic effects of PTH. Microarray analysis and quantitative real‐time polymerase chain reaction (qPCR) of PTH‐treated murine stromal cells and primary calvarial osteoblasts identified significant regulation of gp130 and gp130‐dependent coreceptors and ligands, including a significant increase in OSM receptor (OSMR) expression. To determine whether OSMR signaling is required for PTH anabolic action, 6‐week‐old male Osmr?/? mice and wild‐type (WT) littermates were treated with hPTH(1–34) for 3 weeks. In WT mice, PTH increased trabecular bone volume and trabecular thickness. In contrast, the same treatment had a catabolic effect in Osmr?/? mice, reducing both trabecular bone volume and trabecular number. This was not explained by any alteration in the increased osteoblast formation and mineral apposition rate in response to PTH in Osmr?/? compared with WT mice. Rather, PTH treatment doubled osteoclast surface in Osmr?/? mice, an effect not observed in WT mice. Consistent with this finding, when osteoclast precursors were cultured in the presence of osteoblasts, more osteoclasts were formed in response to PTH when Osmr?/? osteoblasts were used. Neither PTH1R mRNA levels nor cAMP response to PTH were modified in Osmr?/? osteoblasts. However, RANKL induction in PTH‐treated Osmr?/? osteoblasts was sustained at least until 24 hours after PTH exposure, an effect not observed in WT osteoblasts. These data indicate that the transient RANKL induction by intermittent PTH administration, which is associated with its anabolic action, is changed to a prolonged induction in OSMR‐deficient osteoblasts, resulting in bone destruction. © 2012 American Society for Bone and Mineral Research.  相似文献   

6.
We examined parathyroid and skeletal function in 3‐month‐old mice expressing the null mutation for 25‐hydroxyvitamin D–1α‐hydroxylase [1α(OH)ase?/?] and in mice expressing the null mutation for both the 1α(OH)ase and the calcium‐sensing receptor [Casr?/?1α(OH)ase?/?] genes. On a normal diet, all mice were hypocalcemic, with markedly increased parathyroid hormone (PTH), increased trabecular bone volume, increased osteoblast activity, poorly mineralized bone, enlarged and distorted cartilaginous growth plates, and marked growth retardation, especially in the compound mutants. Osteoclast numbers were reduced in the Casr?/?1α(OH)ase?/? mice. On a high‐lactose, high‐calcium, high‐phosphorus “rescue” diet, serum calcium and PTH were normal in the 1α(OH)ase?/? mice but increased in the Casr?/?1α(OH)ase?/? mice with reduced serum phosphorus. Growth plate architecture and mineralization were improved in both mutants, but linear growth of the double mutants remained abnormal. Mineralization of bone improved in all mice, but osteoblast activity and trabecular bone volume remained elevated in the Casr?/?1α(OH)ase?/? mice. These studies support a role for calcium‐stimulated maturation of the cartilaginous growth plate and mineralization of the growth plate and bone and calcium‐stimulated CaSR‐mediated effects on bone resorption. PTH‐mediated bone resorption may require calcium‐stimulated CaSR‐mediated enhancement of osteoclastic activity. © 2010 American Society for Bone and Mineral Research. © 2010 American Society for Bone and Mineral Research  相似文献   

7.
Sef (similar expression to fgf genes) is a feedback inhibitor of fibroblast growth factor (FGF) signaling and functions in part by binding to FGF receptors and inhibiting their activation. Genetic studies in mice and humans indicate an important role for fibroblast growth factor signaling in bone growth and homeostasis. We, therefore, investigated whether Sef had a function role in skeletal acquisition and remodeling. Sef expression is increased during osteoblast differentiation in vitro, and LacZ staining of Sef+/? mice showed high expression of Sef in the periosteum and chondro‐osseous junction of neonatal and adult mice. Mice with a global deletion of Sef showed increased cortical bone thickness, bone volume, and increased periosteal perimeter by micro‐computed tomography (micro‐CT). Histomorphometric analysis of cortical bone revealed a significant increase in osteoblast number. Interestingly, Sef?/? mice showed very little difference in trabecular bone by micro‐CT and histomorphometry compared with wild‐type mice. Bone marrow cells from Sef?/? mice grown in osteogenic medium showed increased proliferation and increased osteoblast differentiation compared with wild‐type bone marrow cells. Bone marrow cells from Sef?/? mice showed enhanced FGF2‐induced activation of the ERK pathway, whereas bone marrow cells from Sef transgenic mice showed decreased FGF2‐induced signaling. FGF2‐induced acetylation and stability of Runx2 was enhanced in Sef?/? bone marrow cells, whereas overexpression of Sef inhibited Runx2‐responsive luciferase reporter activity. Bone marrow from Sef?/? mice showed enhanced hematopoietic lineage‐dependent and osteoblast‐dependent osteoclastogenesis and increased bone resorptive activity relative to wild‐type controls in in vitro assays, whereas overexpression of Sef inhibited osteoclast differentiation. Taken together, these studies indicate that Sef has specific roles in osteoblast and osteoclast lineages and that its absence results in increased osteoblast and osteoclast activity with a net increase in cortical bone mass. © 2014 American Society for Bone and Mineral Research.  相似文献   

8.
The objective of this study was to investigate the role of the serine‐threonine kinase mitogen‐activated protein kinase 2 (MK2) in bone homeostasis. Primary bone cell cultures from MK2+/+ and MK2–/– mice were assessed for osteoclast and osteoblast differentiation, bone resorption, and gene expression. Bone architecture of MK2+/+ and MK2–/– mice was investigated by micro–computed tomography and histomorphometry. Ovariectomy was performed in MK2+/+ and MK2–/– mice to assess the role of MK2 in postmenopausal bone loss. Osteoclastogenesis, bone resorption, and osteoclast gene expression were significantly impaired in monocytes from MK2–/– compared to MK2+/+ mice. Mechanistically, loss of MK2 causes impaired DNA binding of c‐fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) to tartrate‐resistant acid phosphatase (TRAP) and the calcitonin receptor gene promoter. In addition, MK2–/– mice showed an age‐dependent increase in trabecular bone mass and cortical thickness, fewer osteoclasts, and lower markers of bone resorption than MK2+/+ mice. Furthermore, MK2–/– mice were protected from ovariectomy‐induced bone loss. Osteoblastogenesis and bone formation were unchanged in MK2–/– mice, whereas osteoblast expression of osteoprotegerin (OPG) and serum levels of OPG were higher in MK2–/– than in MK2+/+ mice. Loss of MK2 effectively blocks bone resorption and prevents the development of postmenopausal bone loss. Small‐molecule inhibitors of MK2 could thus emerge as highly effective tools to block bone resorption and to treat postmenopausal bone loss. © 2013 American Society for Bone and Mineral Research.  相似文献   

9.
Since the hematopoetic system is located within the bone marrow, it is not surprising that recent evidence has demonstrated the existence of molecular interactions between bone and immune cells. While interleukin 1 (IL‐1) and IL‐18, two cytokines of the IL‐1 family, have been shown to regulate differentiation and activity of bone cells, the role of IL‐33, another IL‐1 family member, has not been addressed yet. Since we observed that the expression of IL‐33 increases during osteoblast differentiation, we analyzed its possible influence on bone formation and observed that IL‐33 did not affect matrix mineralization but enhanced the expression of Tnfsf11, the gene encoding RANKL. This finding led us to analyze the skeletal phenotype of Il1rl1‐deficient mice, which lack the IL‐33 receptor ST2. Unexpectedly, these mice displayed normal bone formation but increased bone resorption, thereby resulting in low trabecular bone mass. Since this finding suggested a negative influence of IL‐33 on osteoclastogenesis, we next analyzed osteoclast differentiation from bone marrow precursor cells and observed that IL‐33 completely abolished the generation of TRACP+ multinucleated osteoclasts, even in the presence of RANKL and macrophage colony‐stimulating factor (M‐CSF). Although our molecular studies revealed that IL‐33 treatment of bone marrow cells caused a shift toward other hematopoetic lineages, we further observed a direct negative influence of IL‐33 on the osteoclastogenic differentiation of RAW264.7 macrophages, where IL‐33 repressed the expression of Nfatc1, which encodes one of the key transciption factors of osteoclast differentiation. Taken together, these findings have uncovered a previously unknown function of IL‐33 as an inhibitor of bone resorption. © 2011 American Society for Bone and Mineral Research.  相似文献   

10.
Delta‐like 1/fetal antigen 1 (DLK1/FA‐1) is a transmembrane protein belonging to the Notch/Delta family that acts as a membrane‐associated or a soluble protein to regulate regeneration of a number of adult tissues. Here we examined the role of DLK1/FA‐1 in bone biology using osteoblast‐specific Dlk1‐overexpressing mice (Col1‐Dlk1). Col1‐Dlk1 mice displayed growth retardation and significantly reduced total body weight and bone mineral density (BMD). Micro–computed tomographis (µCT) scanning revealed a reduced trabecular and cortical bone volume fraction. Tissue‐level histomorphometric analysis demonstrated decreased bone‐formation rate and enhanced bone resorption in Col1‐Dlk1 mice compared with wild‐type mice. At a cellular level, Dlk1 markedly reduced the total number of bone marrow (BM)–derived colony‐forming units fibroblasts (CFU‐Fs), as well as their osteogenic capacity. In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast‐dependent increased production of proinflammatory bone‐resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)–induced bone loss was associated with increased production of Dlk1 in the bone marrow by activated T cells. Interestingly, Dlk1?/? mice were significantly protected from ovx‐induced bone loss compared with wild‐type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1 production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss. © 2011 American Society for Bone and Mineral Research.  相似文献   

11.
Fibroblast growth factor receptor 3 (FGFR3) participates in bone remodeling. Both Fgfr3 global knockout and activated mice showed decreased bone mass with increased osteoclast formation or bone resorption activity. To clarify the direct effect of FGFR3 on osteoclasts, we specifically deleted Fgfr3 in osteoclast lineage cells. Adult mice with Fgfr3 deficiency in osteoclast lineage cells (mutant [MUT]) showed increased bone mass. In a drilled‐hole defect model, the bone remodeling of the holed area in cortical bone was also impaired with delayed resorption of residual woven bone in MUT mice. In vitro assay demonstrated that there was no significant difference between the number of tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclasts derived from wild‐type and Fgfr3‐deficient bone marrow monocytes, suggesting that FGFR3 had no remarkable effect on osteoclast formation. The bone resorption activity of Fgfr3‐deficient osteoclasts was markedly decreased accompanying with downregulated expressions of Trap, Ctsk, and Mmp 9. The upregulated activity of osteoclastic bone resorption by FGF2 in vitro was also impaired in Fgfr3‐deficient osteoclasts, indicating that FGFR3 may participate in the regulation of bone resorption activity of osteoclasts by FGF2. Reduced adhesion but not migration in osteoclasts with Fgfr3 deficiency may be responsible for the impaired bone resorption activity. Our study for the first time genetically shows the direct positive regulation of FGFR3 on osteoclastic bone resorption. © 2016 American Society for Bone and Mineral Research.  相似文献   

12.
While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col‐Cre Egfrf/f), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant‐negative allele, Wa5, and generated Col‐Cre EgfrWa5/f mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony‐forming unit–fibroblast (CFU‐F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild‐type mice caused a significant reduction in trabecular bone volume. In contrast, EgfrDsk5/+ mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism. © 2011 American Society for Bone and Mineral Research.  相似文献   

13.
Osteal macrophages (osteomacs) support osteoblast function and promote bone anabolism, but their contribution to osteoporosis has not been explored. Although mouse ovariectomy (OVX) models have been repeatedly used, variation in strain, experimental design and assessment modalities have contributed to no single model being confirmed as comprehensively replicating the full gamut of osteoporosis pathological manifestations. We validated an OVX model in adult C3H/HeJ mice and demonstrated that it presents with human postmenopausal osteoporosis features with reduced bone volume in axial and appendicular bone and bone loss in both trabecular and cortical bone including increased cortical porosity. Bone loss was associated with increased osteoclasts on trabecular and endocortical bone and decreased osteoblasts on trabecular bone. Importantly, this OVX model was characterized by delayed fracture healing. Using this validated model, we demonstrated that osteomacs are increased post-OVX on both trabecular and endocortical bone. Dual F4/80 (pan-macrophage marker) and tartrate-resistant acid phosphatase (TRAP) staining revealed osteomacs frequently located near TRAP+ osteoclasts and contained TRAP+ intracellular vesicles. Using an in vivo inducible macrophage depletion model that does not simultaneously deplete osteoclasts, we observed that osteomac loss was associated with elevated extracellular TRAP in bone marrow interstitium and increased serum TRAP. Using in vitro high-resolution confocal imaging of mixed osteoclast-macrophage cultures on bone substrate, we observed macrophages juxtaposed to osteoclast basolateral functional secretory domains scavenging degraded bone byproducts. These data demonstrate a role for osteomacs in supporting osteoclastic bone resorption through phagocytosis and sequestration of resorption byproducts. Overall, our data expose a novel role for osteomacs in supporting osteoclast function and provide the first evidence of their involvement in osteoporosis pathogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

14.
15.
H1 calponin (CNN1) is known as a smooth muscle‐specific, actin‐binding protein which regulates smooth muscle contractive activity. Although previous studies have shown that CNN1 has effect on bone, the mechanism is not well defined. To investigate the role of CNN1 in maintaining bone homeostasis, we generated transgenic mice overexpressing Cnn1 under the control of the osteoblast‐specific 3.6‐kb Col1a1 promoter. Col1a1‐Cnn1 transgenic mice showed delayed bone formation at embryonic stage and decreased bone mass at adult stage. Morphology analyses showed reduced trabecular number, thickness and defects in bone formation. The proliferation and migration of osteoblasts were decreased in Col1a1‐Cnn1 mice due to alterations in cytoskeleton. The early osteoblast differentiation of Col1a1‐Cnn1 mice was increased, but the late stage differentiation and mineralization of osteoblasts derived from Col1a1‐Cnn1 mice were significantly decreased. In addition to impaired bone formation, the decreased bone mass was also associated with enhanced osteoclastogenesis. Tartrate‐resistant acid phosphatase (TRAP) staining revealed increased osteoclast numbers in tibias of 2‐month‐old Col1a1‐Cnn1 mice, and increased numbers of osteoclasts co‐cultured with Col1a1‐Cnn1 osteoblasts. The ratio of RANKL to OPG was significantly increased in Col1a1‐Cnn1 osteoblasts. These findings reveal a novel function of CNN1 in maintaining bone homeostasis by coupling bone formation to bone resorption. © 2013 American Society for Bone and Mineral Research.  相似文献   

16.
We previously isolated a low bone mass mouse, Gja1Jrt/ + , with a mutation in the gap junction protein, alpha 1 gene (Gja1), encoding for a dominant negative G60S Connexin 43 (Cx43) mutant protein. Similar to other Cx43 mutant mouse models described, including a global Cx43 deletion, four skeletal cell conditional‐deletion mutants, and a Cx43 missense mutant (G138R/ +), a reduction in Cx43 gap junction formation and/or function resulted in mice with early onset osteopenia. In contrast to other Cx43 mutants, however, we found that Gja1Jrt/+ mice have both higher bone marrow stromal osteoprogenitor numbers and increased appendicular skeleton osteoblast activity, leading to cell autonomous upregulation of both matrix bone sialoprotein (BSP) and membrane‐bound receptor activator of nuclear factor‐κB ligand (mbRANKL). In younger Gja1Jrt/+ mice, these contributed to increased osteoclast number and activity resulting in early onset osteopenia. In older animals, however, this effect was abrogated by increased osteoprotegerin (OPG) levels and serum alkaline phosphatase (ALP) so that differences in mutant and wild‐type (WT) bone parameters and mechanical properties lessened or disappeared with age. Our study is the first to describe a Cx43 mutation in which osteopenia is caused by increased rather than decreased osteoblast function and where activation of osteoclasts occurs not only through increased mbRANKL but an increase in a matrix protein that affects bone resorption, which together abrogate age‐related bone loss in older animals. © 2013 American Society for Bone and Mineral Research.  相似文献   

17.
Apert syndrome is one of the most severe craniosynostoses, resulting from gain‐of‐function mutations in fibroblast growth factor receptor 2 (FGFR2). Previous studies have shown that gain‐of‐function mutations of FGFR2 (S252W or P253R) cause skull malformation of human Apert syndrome by affecting both chondrogenesis and osteogenesis, underscoring the key role of FGFR2 in bone development. However, the effects of FGFR2 on bone formation at the adult stage have not been fully investigated. To investigate the role of FGFR2 in bone formation, we generated mice with tamoxifen‐inducible expression of mutant FGFR2 (P253R) at the adult stage. Mechanical bone marrow ablation (BMX) was performed in both wild‐type and Fgfr2 mutant (MT) mice. Changes in newly formed trabecular bone were assessed by micro‐computed tomography and bone histomorphometry. We found that MT mice exhibited increased trabecular bone formation and decreased bone resorption after BMX accompanied with a remarkable increase in bone marrow stromal cell recruitment and proliferation, osteoblast proliferation and differentiation, and enhanced Wnt/β‐catenin activity. Furthermore, pharmacologically inhibiting Wnt/β‐catenin signaling can partially reverse the increased trabecular bone formation and decreased bone resorption in MT mice after BMX. Our data demonstrate that gain‐of‐function mutation in FGFR2 exerts a Wnt/β‐catenin‐dependent anabolic effect on trabecular bone by promoting bone formation and inhibiting bone resorption at the adult stage. © 2017 American Society for Bone and Mineral Research.  相似文献   

18.
Preclinical and clinical data support a role of the sympathetic nervous system in the regulation of bone remodeling, but the contribution of parasympathetic arm of the autonomic nervous system to bone homeostasis remains less studied. In this study, we sought to determine whether acetylcholine (ACh) contributes to the regulation of bone remodeling after peak bone mass acquisition. We show that reduced central ACh synthesis in mice heterozygous for the choline transporter (ChT) leads to a decrease in bone mass in young female mice, thus independently confirming the previously reported beneficial effect of ACh signaling on bone mass accrual. Increasing brain ACh levels through the use of the blood brain barrier (BBB)-permeable acetylcholinesterase inhibitor (AChEI) galantamine increased trabecular bone mass in adult female mice, whereas a peripheral increase in ACh levels induced by the BBB-impermeable AChEI pyridostigmine caused trabecular bone loss. AChEIs did not alter skeletal norepinephrine level, and induced an overall increase in osteoblast and osteoclast densities, two findings that do not support a reduction in sympathetic outflow as the mechanism involved in the pro-anabolic effect of galantamine on the skeleton. In addition, we did not detect changes in the commitment of skeletal progenitor cells to the osteoblast lineage in vivo in AChEI-treated mice, nor a direct impact of these drugs in vitro on the survival and differentiation of osteoblast and osteoclast progenitors. Last, ChT heterozygosity and galantamine treatment triggered bone changes in female mice only, thus revealing the existence of a gender-specific skeletal response to brain ACh level. In conclusion, this study supports the stimulatory effect of central ACh on bone mass accrual, shows that it also promotes peak bone mass maintenance in adult mice, and suggests that central ACh regulates bone mass via different mechanisms in growing versus sexually mature mice. © 2020 American Society for Bone and Mineral Research.  相似文献   

19.
20.
The physiological functions of platelet-derived growth factor receptors (PDGFRs) α and β in osteoblast biology and bone metabolism remain to be established. Here, we show that PDGFRA and PDGFRB genes are expressed by osteoblast-lineage canopy and reversal cells in close proximity to PDGFB-expressing osteoclasts within human trabecular bone remodeling units. We also report that, although removal of only one of the two PDGFRs in Osterix-positive cells does not affect bone phenotype, suppression of both PDGFRs in those osteoblast lineage cells increases trabecular bone volume in male mice as well as in female gonad-intact and ovariectomized mice. Furthermore, osteoblast lineage-specific suppression of PDGFRs reduces Csf1 expression, bone marrow level of macrophage colony-stimulating factor (M-CSF), number of osteoclasts, and, therefore, bone resorption, but does not change bone formation. Finally, abrogation of PDGFR signaling in osteoblasts blocks PDGF-induced ERK1/2-mediated Csf1 expression and M-CSF secretion in osteoblast cultures and calcitriol-mediated osteoclastogenesis in co-cultures. In conclusion, our results indicate that PDGFR signaling in osteoblast lineage cells controls bone resorption through ERK1/2-mediated Csf1 expression. © 2020 American Society for Bone and Mineral Research (ASBMR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号