首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)‐mediated biotransformation. The carcinogen 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/?) and Trp53(?/?) mice with a single oral dose of 50 mg/kg body weight PhIP. N‐(Deoxyguanosin‐8‐yl)‐2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP‐C8‐dG) levels in DNA, measured by liquid chromatography‐tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(?/?) mice compared to Trp53(+/+) mice. Lower PhIP‐DNA adduct levels in the livers of Trp53(?/?) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin‐O‐demethylase activity) in these animals. Interestingly, PhIP‐DNA adduct levels were significantly higher in kidney and bladder of Trp53(?/?) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2‐naphthylsulfate formation from 2‐naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue‐dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP‐DNA adduct formation.  相似文献   

2.
Recurrent respiratory papillomas are premalignant tumors of the airway caused by human papillomaviruses (HPVs), primarily Types 6 and 11. We had reported that respiratory papillomas overexpress the epidermal growth factor receptor (EGFR), the small GTPase Rac1 and cyclooxygenase‐2 (COX‐2), and have enhanced nuclear factor‐κB (NFκB) activation with decreased levels of IκB‐β but not IκB‐α. We also showed that EGFR‐activated Rac1 mediates expression of COX‐2 through activation of p38 mitogen‐activated protein kinase. We have now asked whether the p21‐activated kinases Pak1 or Pak2 mediate activation of p38 by Rac1 in papilloma cells. Pak1 and Pak2 were constitutively activated in vivo in papilloma tissue compared with normal epithelium, and Rac1 siRNA reduced the level of both phospho‐Pak1 and phospho‐Pak2 in cultured papilloma cells. Reduction in Pak1 and Pak2 with siRNA decreased the COX‐2 expression in papilloma cells, increased the levels of IκB‐β and reduced the nuclear localization of NF‐κB, but had no effect on p38 phosphorylation. Our studies suggest that Rac1 → Pak1/Pak2 → NFκB is a separate pathway that contributes to the expression of COX‐2 in HPV‐induced papillomas, independently of the previously described Rac1 → p38 → COX‐2 pathway.  相似文献   

3.
Some driver gene mutations, including epidermal growth factor receptor (EGFR), have been reported to be involved in expression regulation of the immunosuppressive checkpoint protein programmed cell death ligand 1 (PD‐L1), but the underlying mechanism remains obscure. We investigated the potential role and precise mechanism of EGFR mutants in PD‐L1 expression regulation in non‐small‐cell lung cancer (NSCLC) cells. Examination of pivotal EGFR signaling effectors in 8 NSCLC cell lines indicated apparent associations between PD‐L1 overexpression and phosphorylation of AKT and ERK, especially with increased protein levels of phospho‐IκBα (p‐IκBα) and hypoxia‐inducible factor‐1α (HIF‐1α). Flow cytometry results showed stronger membrane co‐expression of EGFR and PD‐L1 in NSCLC cells with EGFR mutants compared with cells carrying WT EGFR. Additionally, ectopic expression or depletion of EGFR mutants and treatment with EGFR pathway inhibitors targeting MEK/ERK, PI3K/AKT, mTOR/S6, IκBα, and HIF‐1α indicated strong accordance among protein levels of PD‐L1, p‐IκBα, and HIF‐1α in NSCLC cells. Further treatment with pathway inhibitors significantly inhibited xenograft tumor growth and p‐IκBα, HIF‐1α, and PD‐L1 expression of NSCLC cells carrying EGFR mutant in nude mice. Moreover, immunohistochemical analysis revealed obviously increased protein levels of p‐IκBα, HIF‐1α, and PD‐L1 in NSCLC tissues with EGFR mutants compared with tissues carrying WT EGFR. Non‐small‐cell lung cancer tissues with either p‐IκBα or HIF‐1α positive staining were more likely to possess elevated PD‐L1 expression compared with tissues scored negative for both p‐IκBα and HIF‐1α. Our findings showed important roles of phosphorylation activation of AKT and ERK and potential interplay and cooperation between NF‐κB and HIF‐1α in PD‐L1 expression regulation by EGFR mutants in NSCLC.  相似文献   

4.
5.
Lymphotoxin beta receptor (LTβR) activation on mouse fibrosarcoma cells (BFS‐1) results in enhanced solid tumor growth paralleled by increased angiogenesis induced by the expression of pro‐angiogenic CXCL2. In our study, we demonstrate that both functional ligands of the LTβR, namely LTα1β2 and LIGHT, are involved in the activation of LTβR in solid fibrosarcomas. To identify whether the lymphocyte population is involved in the activation of LTβR in these fibrosarcoma tumors, we used conditional LTβ‐deficient mice that specifically lack LTβ expression either on T cells (T‐LTβ?/?) or on B cells (B‐LTβ?/?). Solid tumor growth was reduced in both mouse strains when compared to tumor growth in wild‐type mice, indicating the participation of both T and B host lymphocytes in the activation of LTβR in these tumors. Tumor growth was also reduced in LIGHT‐deficient mice, suggesting a contribution of this ligand to the activation of LTβR in BFS‐1 fibrosarcomas. LTβR signaling can involve IκBα and/or NFκB‐inducing kinase (NIK) for subsequent NFκB activation in different types of cells. Expression of a dominant negative form of IκBα or of a dominant negative mutant of NIK resulted in decreased activation of NFκB signaling and reduced expression of pro‐angiogenic CXCL2 in vitro. Moreover, expression of dominant negative form of NIK or an IκBα repressor in these fibrosarcoma cells resulted in reduced solid tumor growth in vivo, suggesting that both IκBα and NIK are involved in pro‐angiogenic signaling after LTβR activation. Our data support the idea that the ablation of LTβR signaling should be considered for cancer treatment.  相似文献   

6.
Nuclear factor‐κB (NF‐κB) plays a major role in host inflammatory responses and carcinogenesis and as such is an important drug target for adjuvant therapy. In this study, we examined the effect of caffeic acid phenethyl ester (CAPE), an NF‐κB inhibitor, on Helicobacter pylori (H. pylori)‐induced NF‐κB activation in cell culture and chronic gastritis in Mongolian gerbils. In AGS gastric cancer cells, CAPE significantly inhibited H. pylori‐stimulated NF‐κB activation and mRNA expression of several inflammatory factors in a dose‐dependent manner, and prevented degradation of IκB‐α and phosphorylation of p65 subunit. To evaluate the effects of CAPE on H. pylori‐induced gastritis, specific pathogen‐free male, 6‐week‐old Mongolian gerbils were intragastrically inoculated with H. pylori, fed diets containing CAPE (0–0.1%) and sacrificed after 12 weeks. Infiltration of neutrophils and mononuclear cells and expression of NF‐κB p50 subunit and phospho‐IκB‐α were significantly suppressed by 0.1% CAPE treatment in the antrum of H. pylori‐infected gerbils. Labeling indices for 5′‐bromo‐2′‐deoxyuridine both in the antrum and corpus and lengths of isolated pyloric glands were also markedly reduced at the highest dose, suggesting a preventive effect of CAPE on epithelial proliferation. Furthermore, in the pyloric mucosa, mRNA expression of inflammatory mediators including tumor necrosis factor‐α, interferon‐γ, interleukin (IL)‐2, IL‐6, KC (IL‐8 homologue), and inducible nitric oxide synthase was significantly reduced. These results suggest that CAPE has inhibitory effects on H. pylori‐induced gastritis in Mongolian gerbils through the suppression of NF‐κB activation, and may thus have potential for prevention and therapy of H. pylori‐associated gastric disorders. © 2009 UICC  相似文献   

7.
Dimethylaminoparthenolide (DMAPT) is a water soluble parthenolide analog with preclinical activity in hematologic malignancies. Using non–small lung cancer (NSCLC) cell lines (A549 and H522) and an immortalized human bronchial epithelial cell line (BEAS2B) and TCC cell lines (UMUC‐3, HT‐1197 and HT‐1376) and a bladder papilloma (RT‐4), we aimed to characterize DMAPT's anticancer activity in tobacco‐associated neoplasms. Flow cytometric, electrophoretic mobility gel shift assays (EMSA), and Western blot studies measured generation of reactive oxygen species (ROS), inhibition of NFκB DNA binding, and changes in cell cycle distribution and apoptotic proteins. DMAPT generated ROS with subsequent JNK activation and also decreased NFκB DNA binding and antiapoptotic proteins, TRAF‐2 and XIAP. DMAPT‐induced apoptotic cell death and altered cell cycle distribution with upregulation of p21 and p73 levels in a cell type–dependent manner. DMAPT suppressed cyclin D1 in BEAS2B. DMAPT retained NFκB and cell cycle inhibitory activity in the presence of the tobacco carcinogen nitrosamine ketone, 4(methylnitrosamino)‐1‐(3–pyridyl)‐1‐butanone (NNK). Using a BrdU accumulation assay, 5–20 μM of DMAPT was shown to inhibit cellular proliferation of all cell lines by more than 95%. Oral dosing of DMAPT suppressed in vivo A549 and UMUC‐3 subcutaneous xenograft growth by 54% (p = 0.015) and 63% (p < 0.01), respectively, and A549 lung metastatic volume by 28% (p = 0.043). In total, this data demonstrates DMAPT's novel anticancer properties in both early and late stage tobacco‐associated neoplasms as well as its significant in vivo activity. The data provides support for the conduct of clinical trials in TCC and NSCLC.  相似文献   

8.
Recent studies have demonstrated that increased expression of coding region determinant‐binding protein (CRD‐BP) in response to β‐catenin signaling leads to the stabilization of β‐TrCP1, a substrate‐specific component of SCF E3 ubiquitin ligase complex, resulting in an accelerated degradation of IκBα and activation of canonical nuclear factor‐κB (NF‐κB) pathway. Here, we show that the noncanonical NF‐κB1 p105 pathway is constitutively activated in colorectal carcinoma specimens, being particularly associated with β‐catenin‐mediated increased expression of CRD‐BP and β‐TrCP1. In the carcinoma tissues exhibiting high levels of nuclear β‐catenin the phospho‐p105 levels were increased and total p105 amounts were decreased in comparison to that of normal tissue indicating an activation of this NF‐κB pathway. Knockdown of CRD‐BP in colorectal cancer cell line SW620 resulted in significantly higher basal levels of both NF‐κB inhibitory proteins, p105 and IκBα. Furthermore decreased NF‐κB binding activity was observed in CRD‐BP siRNA‐transfected SW620 cells as compared with those transfected with control siRNA. Altogether, our findings suggest that activation of NF‐κB1 p105 signaling in colorectal carcinoma might be attributed to β‐catenin‐mediated induction of CRD‐BP and β‐TrCP1. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
3,3′‐Diindolylmethane (DIM) is a major acid‐condensation product of indole‐3‐carbinol and is present in cruciferous vegetables. In this study, we evaluated the effects of DIM on antiinflammatory and antitumor promotion activity in mouse skin and explored the relevant mechanisms. When 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was applied topically to the mouse ear to induce inflammation, DIM pretreatment effectively inhibited TPA‐induced ear edema formation. To evaluate the mechanisms underlying DIM's antiinflammatory effects, DIM was topically treated to the shaved backs of mice 30 min before TPA treatment. DIM inhibited the TPA‐induced increases in the expression of cyclooxygenase (COX)‐2, inducible nitric oxide synthase (iNOS), chemokine (C‐X‐C motif) ligand (CXCL) 5, and interleukin (IL)‐6 in mouse skin. DIM also inhibited nuclear factor‐kappa B (NF‐κB)'s DNA binding activity, the nuclear translocation of p65, and the degradation of inhibitor of κB (IκB) α in TPA‐stimulated mouse skin. Furthermore, DIM reduced TPA‐induced increases in the activity of extracellular signal regulated protein kinase (ERK)‐1/2 and IκB kinase (IKK). When mouse skin papillomas were initiated via the topical application of 7,12‐dimethylbenz[α]anthracene (DMBA) and promoted with repeated topical applications of TPA, repeated topical applications of DIM prior to each TPA treatment significantly suppressed the incidence and multiplicity of the papillomas. DIM also reduced the expression of COX‐2 and iNOS, ERK phosphorylation, and the nuclear translocation of p65 in papillomas. Collectively, these results show that DIM exerts antiinflammatory and chemopreventive effects in mouse skin via the downregulation of COX‐2, iNOS, CXCL5, and IL‐6 expression, which may be mediated by reductions in NF‐κB activation. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Low selectivity is one of the major problems of currently used anticancer drugs, therefore, there is a high demand for novel, selective antitumor agents. In this study, the anticancer effects and mechanisms of guttiferone K (GUTK), a novel polyprenylated acylphloroglucinol derivative isolated from Garcinia cowa Roxb., were examined for its development as a novel drug targeting colon cancer. GUTK concentration‐ and time‐dependently reduced the viability of human colon cancer HT‐29 cells (IC50 value 5.39 ± 0.22 μM) without affecting the viability of normal human colon epithelial CCD 841 CoN cells and induced G0/G1 cell cycle arrest in HT‐29 cells by down‐regulating cyclins D1, D3 and cyclin‐dependent kinases 4 and 6, while selectively restoring p21Waf1/Cip1 and p27Kip1 to levels comparable to those observed in normal colon cells, without affecting their levels in normal cells. GUTK (10.0 μM) induced cleavage of PARP, caspases‐3, ‐8 and ‐9 and chromatin condensation to stimulate caspase‐3‐mediated apoptosis. The addition of a JNK inhibitor, SP600125, partially reversed GUTK‐induced caspase‐3 activity, indicating the possible involvement of JNK in GUTK‐induced apoptosis. Furthermore, GUTK (10 mg/kg, i.p.) significantly decreased the tumor volume in a syngeneic colon tumor model when used alone or in combination with 5‐fluorouracil without toxicity to the mice. Immunohistochemical staining of the tumor sections revealed a mechanism involving an increase in cleaved caspase‐3 and a decrease in cell proliferation marker Ki‐67. Our results support GUTK as a promising novel, potent and selective antitumor drug candidate for colon cancer.  相似文献   

11.
Carcinoma‐associated fibroblasts (CAFs) play a key onco‐supportive role during prostate cancer (PCa) development and progression. We previously reported that the reactive oxygen species (ROS)‐producing enzyme NADPH oxidase 4 (Nox4) is essential for TGFβ1‐mediated activation of primary prostate human fibroblasts to a CAF‐like phenotype. This study aimed to further investigate the functional relevance of prostatic Nox4 and determine whether pharmacological inhibition of stromal Nox4 abrogates paracrine‐mediated PCa‐relevant processes. RNA in situ hybridization revealed significantly elevated Nox4 mRNA levels predominantly in the peri‐tumoral stroma of clinical PCa with intense stromal Nox4 staining adjacent to tumor foci expressing abundant TGFβ protein levels. At pharmacologically relevant concentrations, the Nox1/Nox4 inhibitor GKT137831 attenuated ROS production, CAF‐associated marker expression and migration of TGFβ1‐activated but not nonactivated primary human prostate fibroblasts. Similar effects were obtained upon shRNA‐mediated silencing of Nox4 but not Nox1 indicating that GKT137831 primarily abrogates TGFβ1‐driven fibroblast activation via Nox4 inhibition. Moreover, inhibiting stromal Nox4 abrogated the enhanced proliferation and migration of PCa cell lines induced by TGFβ1‐activated prostate fibroblast conditioned media. These effects were not restricted to recombinant TGFβ1 as conditioned media from PCa cell lines endogenously secreting high TGFβ1 levels induced fibroblast activation in a stromal Nox4‐ and TGFβ receptor‐dependent manner. Importantly, GKT137831 also attenuated PCa cell‐driven fibroblast activation. Collectively, these findings suggest the TGFβ‐Nox4 signaling axis is a key interface to dysregulated reciprocal stromal–epithelial interactions in PCa pathophysiology and provide a strong rationale for further investigating the applicability of Nox4 inhibition as a stromal‐targeted approach to complement current PCa treatment modalities.  相似文献   

12.
13.
14.
Despite convincing evidence that 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP)—a heterocyclic amine generated by cooking meats at high temperatures—is carcinogenic in animal models, it remains unclear whether PhIP exposure leads to increased cancer risk in humans. PhIP‐DNA adduct levels were measured in specimens from 534 prostate cancer case‐control pairs nested within a historical cohort of men with histopathologically benign prostate specimens. We estimated the overall and race‐stratified risk of subsequent prostate cancer associated with higher adduct levels. PhIP‐DNA adduct levels in benign prostate were significantly higher in Whites than African Americans (0.274 optical density units (OD) ±0.059 vs. 0.256 OD ±0.054; p<0.0001). Prostate cancer risk for men in the highest quartile of PhIP‐DNA adduct levels was modestly increased [odds ratio (OR) = 1.25; 95% confidence interval (CI) = 0.76–2.07]. In subset analyses, the highest risk estimates were observed in White patients diagnosed more than 4 years after cohort entry (OR = 2.74; 95% CI = 1.01–7.42) or under age 65 (OR = 2.80; 95% CI = 0.87–8.97). In Whites, cancer risk associated with high‐grade prostatic intraepithelial neoplasia combined with elevated PhIP‐DNA adduct levels (OR = 3.89; 95% CI = 1.56–9.73) was greater than risk associated with either factor alone. Overall, elevated levels of PhIP‐DNA adducts do not significantly increase prostate cancer risk. However, our data show that White men have higher PhIP‐DNA adduct levels in benign prostate tissue than African American men, and suggest that in certain subgroups of White men high PhIP‐DNA adduct levels may predispose to an increased risk for prostate cancer.  相似文献   

15.
16.
Inactivation of the TP53 tumor suppressor gene is essential during cancer development and progression. Mutations of TP53 are often missense and occur in various human cancers. In some fraction of wild‐type (wt) TP53 tumors, p53 is inactivated by upregulated murine double minute homolog 2 (MDM2) and MDM4. We previously reported that simultaneous knockdown of MDM4 and MDM2 using synthetic DNA‐modified siRNAs revived p53 activity and synergistically inhibited in vitro cell growth in cancer cells with wt TP53 and high MDM4 expression (wtTP53/highMDM4). In the present study, MDM4/MDM2 double knockdown with the siRNAs enhanced 5‐fluorouracil (5‐FU)‐induced p53 activation, arrested the cell cycle at G1 phase, and potentiated the antitumor effect of 5‐FU in wtTP53/highMDM4 human colon (HCT116 and LoVo) and gastric (SNU‐1 and NUGC‐4) cancer cells. Exposure to 5‐FU alone induced MDM2 as well as p21 and PUMA by p53 activation. As p53‐MDM2 forms a negative feedback loop, enhancement of the antitumor effect of 5‐FU by MDM4/MDM2 double knockdown could be attributed to blocking of the feedback mechanism in addition to direct suppression of these p53 antagonists. Intratumor injection of the MDM4/MDM2 siRNAs suppressed in vivo tumor growth and boosted the antitumor effect of 5‐FU in an athymic mouse xenograft model using HCT116 cells. These results suggest that a combination of MDM4/MDM2 knockdown and conventional cytotoxic drugs could be a promising treatment strategy for wtTP53/highMDM4 gastrointestinal cancers.  相似文献   

17.
18.
19.
The prognosis of advanced colon cancer patients is profoundly affected by the presence or absence of liver metastasis. miR‐493 functions as a potent suppressor of liver metastasis, and low‐level miR‐493 expression in human primary colon cancer is associated with an elevated incidence of liver metastasis. We previously showed that IGF1R is a target gene of miR‐493, and that the inhibition of IGF1R partly explains how miR‐493 suppresses liver metastasis. However, major functional targets that mediate the antimetastatic activity of miR‐493 remain elusive. Here, we extended our search for target genes and identified MKK7, a mitogen‐activated protein kinase kinase, as a novel target of miR‐493. miR‐493 inhibits MKK7 expression by targeting the binding site at the 3′‐UTR of the mkk7 gene. MKK7 was expressed in six out of seven colon cancer cell lines examined but not in non‐transformed colon epithelial cells, and its expression was required for the activating phosphorylation of JNK. RNA interference‐mediated inhibition of MKK7 resulted in marked suppression of liver metastasis of colon cancer cells. A significant decrease of metastasized cells by the MKK7 knockdown was observed, even at early stages of the metastatic settlement, in accordance with a time course of the miR‐493‐mediated inhibition of the metastasis. Immunohistochemical examination in human primary colon tumors revealed that the occurrence of liver metastasis is associated with elevated levels of MKK7. Thus, MKK7 is a major functional target of miR‐493, and its suppression thwarts liver metastasis of colon cancer cells.  相似文献   

20.
N6‐isopentenyladenosine (i6A) inhibits the tumor cell growth by inducing cell apoptosis in various cancer cell lines. However, little is known regarding the mechanisms by which the drug induces cell apoptosis. In this study, we further explored the molecular mechanisms of i6A as an anticancer agent on a human breast cancer cell line MDA MB 231. Treatment with i6A decreased the cell proliferation of MDA MB 231 cells in a dose‐dependent manner by arresting the cells at G0/G1 phase. This effect was strongly associated with concomitant decrease in the level of cyclin D1, cyclin E, cdk2, and increase of p21waf1 and p27kip. In addition i6A also induced apoptotic cell death by increasing the expression of Bax, and decreasing the levels of Bcl‐2 and Bcl‐xL, and subsequently triggered mitochondria apoptotic pathway (release of cytochrome c and activation of caspase‐3). We observed that i6A suppressed the nuclear factor kappaB (NF‐κB) pathway and inhibited the Akt activation. The results of this study indicate that i6A decreases cell proliferation and induces apoptotic cell death in human breast cancer cells, possibly by decreasing signal transduction through the Akt/NF‐κB cell survival pathway. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号