首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The thermoregulatory responses to 1 h exercise of 14 male (age range 18–65 year) and 7 female (age range 18–46 year) athletes and 4 (3 and 1 ) non-athletic subjects have been investigated in a moderate environment (T db=21 C, T wb=15 C and rh<50%) and analysed in relation to age, sex, and maximum aerobic power output (VO2 max).The maximal sweat loss (M sw max) under the given conditions was closely related (r=+0.90) to VO2 max and for a given relative work load (%VO2 max), rectal (T re) and mean skin (¯T sk) temperatures was the same in all subjects.Sweat loss (004d sw) was linearly related to total heat production (H) and to peripheral tissue heat conductance (K) and if expressed in relative terms (%M sw max) was linearly related to T re. For a given T re relative sweat rate was identical in the groups studied. From these results it would seem that during exercise T re rises to meet the requirements of heat dissipation by establishing a thermal gradient from core to skin and stimulating sweating in proportion to maximal capacity of the system. Thus provided the thermal responses to work were standardised using the appropriate physiological variables, there was no evidence to be found for differences in thermoregulatory function which could be ascribed to sex or age.  相似文献   

2.
Summary Thirteen male subjects performed a running test on the treadmill consisting of four standard exercise intensities [65%, 75%, 85%, 95% maximal O2 uptake (VO2max)] presented in ascending, descending or random order. At the end of each exercise intensity, O2 consumption, heart rate (f c), venous blood lactate concentration ([la]b) and perceived exertion were assessed. This last variable was determined according to the Borg nonlinear CR-20 scale. The same variables were also determined during exercise at a standard intensity (65% or 95%VO2max) performed before and after a Finnish sauna bath. Ratings of perceived exertion showed a good test-retest reliability (r=0.77); they were the same when the exercise intensity was expressed in relative (%VO2max) or absolute (speed) terms, and were independent of the order of presentation of the exercise. The latter had no effect onf c either but it did, however, influence [la]b, which was significantly higher in the descending, as compared to the ascending or random modes of presentation. The sauna bath increasedf c at a given exercise intensity, but left perceived exertion and [la]b unchanged. It was concluded that at least under the present experimental conditions,f c and venous [la]b do not play a major role as determinants of perceived exertion.  相似文献   

3.
Summary The effects of intravenous injections of Atropine (1.8 mg) and practolol (15 mg) on the thermoregulatory responses to 1 h of exercise on a motordriven treadmill have been investigated on six healthy subjects.The results show that -blockade had little effect on thermal responses to work except for a small but significant (p<0.05) decrease in mean skin temperature (¯T sk ) and peripheral tissue heat conductance (K). Metabolic (M) and total heat (H) production, and evaporative sweat loss (E) and rectal temperature (T re ) were similar to control values. In contrast, atropine, particularly at work loads beyond 60% maximal aerobic power output (VO2 max), raised T re (p<0.001), ¯T sk (p<0.001) and reduced E by approximately 50%. At the highest work loads T re increased as a linear function of time during the latter part of exercise, and at the 60th min was almost independent of relative stress (expressed as % VO2 max) imposed on the subjects. At the lower work loads the majority of subjects reached thermal equilibrium before the end of exercise by maintaining their convective heat transfer from core to periphery by increasing peripheral blood flow (as indicated by K), and raising their heat losses to environment by convection and radiation. The latter pathways for heat dissipation were enhanced by the subjects ability to sustain a ¯T sk 4 C above control values independently of M. Atropine had no effect on M or H but greatly affected work performance, no subject was able to exercise at loads >70% VO2 max for 1 h. These results demonstrate the ability of the thermoregulatory system to adapt to -adrenergic and to parasympathetic blockade during light exercise, and underline the effects of a reduction in the capacity of the sweating mechanism on physiological performance at higher rates of work.List of Abbreviations used in the Text M Metabolic heat production - H Total heat production - E Evaporative sweat loss - T re Rectal temperature - ¯T sk Mean skin temperature - K Peripheral tissue heat conductance - PBF Peripheral blood flow - VO2 max Maximal aerobic power output - f H Cardiac frequency  相似文献   

4.
This study examined the effectiveness of endurance training and heat acclimation in reducing the physiological strain imposed by exercising in the heat while wearing protective clothing. Seven young men underwent 8 weeks of physical training [60–80% maximal aerobic power (VO2max) for 30–45 min · day–1, 3–4 days · week–1 at < 25° C] followed by 6 days of heat acclimation (45–55% VO2max for 60 min · day–1 at 40° C, 30% relative humidity). Nine other young men underwent corresponding periods of control observation and heat acclimation. Before and after each treatment, subjects completed a treadmill walk (4.8 km · h–1, 2% grade) in a climatic chamber (40° C, 30% relative humidity), wearing in turn normal combat clothing or clothing protecting against nuclear, biological, and chemical (NBC) agents. Criteria for halting this test were: (1) a rectal temperature (T re) of 39.3° C; (2) a heart rate (f c) 95% of the subject's observed maximum, maintained for 3 min; (3) unwillingness of the subject to continue; (4) the elapse of 120 min. The training regimen increased mean VO2max by 16% and mean plasma volume by 8%. When tested in normal combat clothing, the rates of increase in T re and f c were slower after training. However, when wearing NBC protective clothing, the only significant change induced by training was a higher mean skin temperature (T sk) in the early part of the test. Heat acclimation increased the mean plasma volume of untrained subjects by 8%, but their VO2max remained unchanged. When tested in normal combat clothing, acclimation decreased their mean values of T re, T sk, f c, and metabolic rate. When wearing NBC protective clothing, the only significant decrease after acclimation was in overall T re. In trained subjects, heat acclimation induced no further improvement in any physiological variable when wearing normal combat clothing, but reduced overall T re and T sk when wearing NBC protective clothing. Training- or acclimation-induced increases of sweat secretion (an average increment of 0.14–0.23 kg · h–1) were not accompanied by any statistically significant increase in sweat evaporation when wearing NBC protective clothing. Moreover, tolerance times were unchanged in either normal combat (116–120 min) or NBC protective clothing (47–52 min). We conclude that neither endurance training nor heat acclimation do much to improve exercise tolerance when wearing NBC protective clothing in hot environments, because any added sweat secretion decreases blood volume and increases discomfort without augmenting body cooling.  相似文献   

5.
This study assessed the effects of exposure to cold (?14 and ?9?°C), cool (?4 and 1?°C) and moderate warm (10 and 20?°C) environments on aerobic endurance performance-related variables: maximal oxygen consumption (VO2max), running time to exhaustion (TTE), running economy and running speed at lactate threshold (LT). Nine male endurance athletes wearing cross-country ski racing suit performed a standard running test at six ambient temperatures in a climatic chamber with a wind speed of 5?m?s?1. The exercise protocol consisted of a 10-min warm-up period followed by four submaximal periods of 5?min at increasing intensities between 67 and 91?% of VO2max and finally a maximal test to exhaustion. During the time course mean skin temperature decreased significantly with reduced ambient temperatures whereas T re increased during all conditions. T re was lower at ?14?°C than at ?9 and 20?°C. Running economy was significantly reduced in warm compared to cool environments and was also reduced at 20?°C compared to ?9?°C. Running speed at LT was significantly higher at ?4?°C than at ?9, 10 and 20?°C. TTE was significantly longer at ?4 and 1?°C than at ?14, 10 and 20?°C. No significant differences in VO2max were found between the various ambient conditions. The optimal aerobic endurance performance wearing a cross-country ski racing suit was found to be ?4 and 1?°C, while performance was reduced under moderate warm (10 and 20?°C) and cold (?14 and ?9?°C) ambient conditions.  相似文献   

6.
The effect of ambient temperature on gross-efficiency in cycling   总被引:1,自引:0,他引:1  
Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling will be studied, with the intent of determining if a heat-induced change in GE could account for the performance decrements in time trial exercise found in literature. Ten well-trained male cyclists performed 20-min cycle ergometer exercise at 60% (power output at which VO2max was attained) in a thermo-neutral climate (N) of 15.6 ± 0.3°C, 20.0 ± 10.3% RH and a hot climate (H) of 35.5 ± 0.5°C, 15.5 ± 3.2% RH. GE was calculated based on VO2 and RER. Skin temperature (T sk), rectal temperature (T re) and muscle temperature (T m) (only in H) were measured. GE was 0.9% lower in H compared to N (19.6 ± 1.1% vs. 20.5 ± 1.4%) (P < 0.05). T sk (33.4 ± 0.6°C vs. 27.7 ± 0.7°C) and T re (37.4 ± 0.6°C vs. 37.0 ± 0.6°C) were significantly higher in H. T m was 38.7 ± 1.1°C in H. GE was lower in heat. T m was not high enough to make mitochondrial leakage a likely explanation for the observed reduced GE. Neither was the increased T re. Increased skin blood flow might have had a stealing effect on muscular blood flow, and thus impacted GE. Cycling model simulations showed, that the decrease in GE could account for half of the performance decrement. GE decreased in heat to a degree that could explain at least part of the well-established performance decrements in the heat.  相似文献   

7.
Multiple heterogeneous groups of subjects (both sexes and a wide range of maximal oxygen uptake O2 max , body mass, body surface area (A D),% body fat, and A D/mass coefficient) exercised on a cycle ergometer at a relative (%O2max, REL) or an absolute (60?W) exercise intensity in a cool (CO 21°C, 50% relative humidity), warm humid (WH 35°C, 80%) and a hot dry (HD 45°C, 20%) environment. Rectal temperature (T re) responses were analysed for the influence of the individual's characteristics, environment and exercise intensity. Exposures consisted of 30-min rest, followed by 60-min exercise. The T re was negatively correlated with mass in all conditions. Body mass acted as a passive heat sink in all the conditions tested. While negatively correlated with O2 max and O2 max per kilogram body mass in most climates, T re was positively correlated with O2 max and O2 max per kilogram body mass in the WH/REL condition. Thus, when evaporative heat loss was limited as in WH, the higher heat production of the fitter subjects in the REL trials determined T re and not the greater efficiency for heat loss associated with high O2 max . Body fatness significantly affected T re only in the CO condition, where, with low skin blood flows (measured as increases in forearm blood flow), the insulative effect of fat was pronounced. In the warmer environments, high skin blood flows offset the resistance offered by peripheral adipose tissue. Contrary to other studies, T re was positively correlated with A D/mass coefficient for all conditions tested. For both exercise types used, being big (a high heat loss area and heat capacity) was apparently more beneficial from a heat strain standpoint than having a favourable A D/mass coefficient (high in small subjects). The total amount of variance in T re responses which could be attributed to individual characteristics was dependent on the climate and the type of exercise. Though substantial for absolute exercise intensities (52%–58%) the variance explained in T re differed markedly for relative intensities: 72% for the WH climate with its limited evaporative capacity, and only 10%–26% for the HD and CO climates. The results showed that individual characteristics play a significant role in determining the responses of body core temperature in all conditions tested, but their contribution was low for relative exercise intensities when evaporative heat loss was not restricted. This study demonstrated that effects of individual characteristics on human responses to heat stress cannot be interpreted without taking into consideration both the heat transfer properties of the environment and the metabolic heat production resulting from the exercise type and intensity chosen. Their impact varies substantially among conditions.  相似文献   

8.
The aim of this study was to compare the effects of two high-intensity, treadmill interval-training programs on 3000-m and 5000-m running performance. Maximal oxygen uptake (V˙O2max), the running speed associated with V˙O2max (vV˙O2max), the time for which vV˙O2max can be maintained (T max), running economy (RE), ventilatory threshold (VT) and 3000-m and 5000-m running times were determined in 27 well-trained runners. Subjects were then randomly assigned to three groups; (1) 60% T max, (2) 70% T max and (3) control. Subjects in the control group continued their normal training and subjects in the two T max groups undertook a 4-week treadmill interval-training program with the intensity set at vV˙O2max and the interval duration at the assigned T max. These subjects completed two interval-training sessions per week (60% T max=six intervals/session, 70% T max group=five intervals/session). Subjects were re-tested on all parameters at the completion of the training program. There was a significant improvement between pre- and post-training values in 3000-m time trial (TT) performance in the 60% T max group compared to the 70% T max and control groups [mean (SE); 60% T max=17.6 (3.5) s, 70% T max =6.3 (4.2) s, control=0.5 (7.7) s]. There was no significant effect of the training program on 5000-m TT performance [60% T max=25.8 (13.8) s, 70% T max=3.7 (11.6) s, control=9.9 (13.1) s]. Although there were no significant improvements in V˙O2max, vV˙O2max and RE between groups, changes in V˙O2max and RE were significantly correlated with the improvement in the 3000-m TT. Furthermore, VT and T max were significantly higher in the 60% T max group post- compared to pre-training. In conclusion, 3000-m running performance can be significantly improved in a group of well-trained runners, using a 4-week treadmill interval training program at vV˙O2max with interval durations of 60% T max. Electronic Publication  相似文献   

9.
Summary The thermal responses of two healthy male subjects have been studied at the same mean skin temperature (T sk ) during negative work, positive work and positive work in which additional heating was induced by diathermy. The results showed that for a given metabolic heat production (M) rectal (T re ) and oesophageal (T oes ) temperatures were higher in negative work and positive work with diathermy than normal control experiments. In resting experiments with diathermy, T oes rose to the same level as when an equal amount of heat was produced metabolically by exercise. In negative work and positive work with diathermy sweat loss (M sw ) was higher for a given M and T sk than found for normal exercise, but in all three forms of work the relationship of M sw to total heat production (H) was identical. During positive work with and without diathermy the differences in M sw could be accounted for by using a previously developed model of relative sweating rate: %M sw = – constant + T re (or T oes ) + T sk .In negative work, removal of the difference between predicted and observed %M sw required the inclusion of a further factor into the equation based on muscle temperature. The results suggest that the core temperature in exercise rises to meet the requirements of heat dissipation mainly by stimulating M sw and establishing a heat transfer gradient from core to periphery and is not necessarily or uniquely related to M or to the rate of working. The study underlines the usefulness of negative work and diathermy as physiological tools for the further understanding of thermoregulation during exercise.  相似文献   

10.
Summary A characteristic notch in the heart rate (f c) on-response at the beginning of square-wave exercise is described in 7 very fit marathon runners and 12 sedentary young men, during cycle tests at 30% and 60% of maximal oxygen consumption (VO2max). The (f c) notch revealed af c overshoot with respect to the (f c) values predicted from exponential beat-by-beat fitted models. While at 30% of (VO2max). all subjects showed af c over-shoot, at 60% of (VO2max). it occurred in the marathon runners but not in the sedentary subjects. The mean time of occurrence of thef c overshoot from the onset of the exercise was 16.7 (SD 4.7) s and 12.2 (SD 3.2) s at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 23.8 (SD 8.8) s at 60% of (VO2max). in the runners. The amplitude of the overshoot, with respect to rest, was 41 (SD 12) beats·min–1and 31 (SD 4) beats·min–1 at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 46 (SD 19) beats·min–1 at 60% of (VO2max). in the runners. The existence and the amplitude of thef c overshoot may have been related to central command and muscle heart reflex mechanisms and thus may have been indicators of changes in the balance between sympathetic and parasympathetic activity occurring in fit and unfit subjects.  相似文献   

11.
The aim of this study was to assess the effects of increasing specific (paddling erogmeter) and non-specific (cycle ergometer) exercise on parameters relating to the ventilatory threshold (Thvent) and work efficiency in 11 young female flat-water kayakists. When these trained subjects were tested using non-specific workloads, their oxygen uptake (VO2) values at Thvent, as a percentage ofVO2max (%VO2max), were close to those of untrained subjects [74.2 (5.6) %VO2max, mean (SD)]. However, when we tested the same subjects using specific exercise, we recorded values typical of highly trained athletes [84.8 (4.7) %VO2max). For the non-specific exercise on the cycle erogmeter, we recorded work efficiency values close to those of untrained subjects [22.3 (2.5) %]; however, for the specific exercise on the paddling ergometer, we recorded much lower values [13.4 (3.0) %] both at the level of Thvent. The work efficiency at two warm-up submaximal exercise loads on the paddling ergometer was non-significantly lower than values at Thvent [12.3 (2.8) % and 12.9 (2.9) % respectively]. Significant correlations were found between maximal-performanceVO2 (ml · kg–1 · min–1) and performance at Thvent during paddling and race performance (0.623, 0.630 and 0.648 respectively, allP<0.05). Because the results of both specific and non-specific submaximal exercise tests are different, we suggest caution in the interpretation of physiological variables that may be sensitive to training status. The evaluation of Thvent and work efficiency as supplementary parameters during laboratory studies enables the determination of the effectiveness of the training process and the specific adaptation of the subjects.  相似文献   

12.
Summary Eight young, sedentary men (aged 34 years, SD 3) and six older moderately active, unacclimated men (aged 57 years, SD 2) walked on a treadmill at 30% of their maximum oxygen consumption up to 3.5 h in a thermoneutral [dry bulb temperature (T db) 21°C, relative humidity (r.h.) 43%)], a warm humid (T db 30°C, r.h. 80%) and a hot dry (T db 40°C, r.h. 20%) environment while wearing ordinary working clothes (0.7 c/o). Their oxgen consumption, heart rate (f c), rectal (T re) and mean skin temperature (Tsk), sweat rate (SR), and evaporative rate (ER) were measured during the tests. The ratings of thermal sensation (TS) and perceived exertion (RPE) were assessed using standard scales. In the heat stress tests, the number of experiments discontinued did not significantly differ between the two groups. The mean levels and end-exercise values of T re, Tsk, f c, TS and RPE were not significantly different between the young and older subjects in any of the environments. In the warm humid environment, however, the T re and RPE of the older subjects increased continuously (P<0.05) during the test compared to the young subjects. No significant difference between the groups was observed in SR or in ER. In the hot dry environment, however, the ER of older men increased more slowly compared to the young men. In spite of some time-related differences observed in T re, RPE, and ER, the older subjects did not exhibit higher f c during exercise in the heat, they were not more hyperthermic and their performance times were similar to the young subjects. Therefore, it was concluded that older calendar age is not necessarily associated with a reduced ability to exercise in a hot environment and other factors, such as physical activity habits and aerobic capacity, may be equally important in determining heat tolerance in the elderly.  相似文献   

13.
The present study was undertaken to examine the validity of using the OMNI scale of perceived exertion to regulate intensity during extended exercise periods. Forty-eight subjects (24 male, 24 female) were recruited and each subject completed a maximal graded exercise test (GXT) and two 20-min submaximal exercises. During the GXT, ratings of perceived exertion (RPE) as well as oxygen uptake (V˙O2) and heart rate (HR) equivalent to 50 and 70% of maximum V˙O2 (V˙O2max) were estimated. During each submaximal exercise, subjects were instructed to produce and maintain a workload equivalent to the RPE estimated at 50 or 70% V˙O2max, and V˙O2 and HR were measured every 5 min throughout the exercise. Of the 48 subjects, 12 (6 male and 6 female) performed both the estimation and production trials on a treadmill (TM/TM), 12 (6 male and 6 female) performed both the estimation and production trials on a cycle ergometer (C/C), 12 (6 male and 6 female) performed the estimation trial on a treadmill and the production trial on a cycle ergometer (TM/C), and 12 (6 male and 6 female) performed the estimation trial on a cycle ergometer and the production trial on a treadmill (C/TM). No differences in V˙O2 between the estimation and any 5 min of the production trial were observed at either intensity in TM/TM and C/C. No differences in HR between the estimation and any 5 min of the production trial were also observed at 50% V˙O2max in TM/TM and at both 50 and 70% V˙O2max in C/C. However, HR was higher at 20th min of the production trial at 70% V˙O2max in TM/TM. Both the V˙O2 and HR were generally lower in TM/C and higher in C/TM. However, these differences diminished when values were normalized using V˙O2max of the same mode that other groups had attained. These data suggest that under both intra- and intermodal conditions, using the OMNI perceived exertion scale is effective not only in establishing the target intensity at the onset of exercise, but also in maintaining the intensity throughout a 20-min exercise session. Electronic Publication  相似文献   

14.
Summary The present study was performed to investigate the effect of food intake on thermoregulatory vasodilatation in seven healthy male volunteers. The changes in oesophageal (T oes) and mean skin temperatures, finger and forearm blood flows (BF), oxygen consumption (VO2) and heart rate (f c) with and without food intake were measured before and during a 40-min exercise at an intensity of 35% maximal O2 consumption at an ambient temperature of 25°C. Exercise commenced 60 min after food intake. Ingestion of food equivalent to 50.2 kJ · kg body mass–1 elevated mean body temperature, BF,VO2 andf c in 60 min. Four subjects responded to exercise with a marked increase in finger BF and with no sweating (non-sweating group), while the other three responded with perspiration over almost the whole skin area and with little change in finger BF. Further analyses were made mainly in the non-sweating group. The postprandial increases inT oes, BF,VO2 andf c were persistent during exercise. The rate of increase in finger BF with the increase inT oes and mean body temperature was significantly greater with food intake than without. However, there was no difference in the response of forearm BF to exercise between the two conditions. These results suggested that food intake enhanced finger BF response to the increase in deep body temperature during exercise. It was also concluded that there was a regional difference in cutaneous vasomotor response to thermal load in the post-prandial subjects.  相似文献   

15.
Thermoregulatory responses of young and older men to cold exposure   总被引:2,自引:0,他引:2  
Summary Nine young (20–25 years) and ten older (60–71 years) men, matched for body fatness and surface area :mass ratio, underwent cold tests in summer and winter. The cold tests consisted of a 60-min exposure, wearing only swimming trunks, to an air temperature of 17°C (both seasons) and 12°C (winter only). Rectal (T re) and mean skin ( sk) temperatures, metabolic heat production (M), systolic (BPS) and diastolic (BPd) blood pressures and heart rate (f c) were measured. During the equilibrium period (28°C air temperature) there were no age-related differences inT re, sk, BPS, BPd, orf c regardless of season, although M of the older men was significantly lower (P<0.003). The decrease inT re and sk (due to the marked decrease in six of the older men) and the increase in BPS and BPd were significantly greater (P<0.004) for the older men during all the cold exposures. The rate of increase inM was significantly greater (P<0.01) for the older group when exposed to 12°C in winter and 17°C in summer (due to the marked increase in four of the older men). This trend was not apparent during the 17°C exposure in winter. There was no age-related difference in fc during the exposures. Significant decreases inT re and sk and increases inM, BPS and BPd during the 12°C exposure were observed for the older group (P< 0.003) compared to their responses during the 17°C exposure in winter. In contrast,T re,M, BPS in the young group were not affected as much by the colder environment. It was concluded that older men have more variable responses and some appear more or less responsive to mild and moderate cold air than young men.  相似文献   

16.
The purpose of the present study was to determine the separate and combined effects of a short-term aerobic training program and hypohydration on tolerance during light exercise while wearing nuclear, biological, and chemical protective clothing in the heat (40°C, 30% relative humidity). Males of moderate fitness [<50?ml?·?kg?1?·?min?1 maximal O2 consumption (O2 max )] were tested while euhydrated or hypohydrated by ≈2% of body weight through exercise and fluid restriction the day preceding the trials. Tests were conducted before and after either a 2-week program of daily aerobic training (1?h treadmill exercise at 65% O2 max for 12 days; n?=?8) or a control period (n?=?7), which had no effect on any measured variable. The training increased O2 max by 6.5%, while heart rate (f c) and the rectal temperature (T re) rise decreased during exercise in a thermoneutral environment. In the heat, training resulted in a decreased skin temperature and increased sweat rate, but did not affect f c, T re or tolerance time (TT). In both training and control groups, hypohydration significantly increased T re and f c and decreased the TT. It was concluded that the short-term aerobic training program had no benefit on exercise-heat tolerance in this uncompensable heat stress environment.  相似文献   

17.
Summary The influence of exercise intensity on thermoregulation was studied in 8 men and 8 women volunteers during three levels of arm-leg exercise (level I: 700 ml oxygen (O2) · min–1; level II: 1250 ml O2 · min–1; level III: 1700 ml O2 · min–1 for 1 h in water at 20 and 28°C (T w). For the men inT w 28°C the rectal temperature (T re) fell 0.79°C (P<0.05) during immersion in both rest and level-I exercise. With level-II exercise a drop inT re of 0.54° C (P < 0.05) was noted, while at level-III exerciseT re did not change from the pre-immersion value. AtT w of 20°C,T re fell throughout immersion with no significant difference in finalT re observed between rest and any exercise level. For the women at rest atT w 28°C,T re fell 0.80°C (P<0.05) below the pre-immersion value. With the two more intense levels of exercise,T re did not decrease during immersion. InT w 20°C, the women maintained higherT re (P<0.05) during level-II and level-III exercise compared to rest and exercise at level I. TheT re responses were related to changes in tissue insulation (I t) between rest and exercise with the largest reductions inI t noted between rest and level-I exercise acrossT w and gender. For men and women of similar percentage body fat, decreases inT re were greater for the women at rest and level-I exercise inT w 20°C (P< 0.05). With more intense exercise, the women maintained a higherT re than the men, especially in the colder water. These findings indicate that exercise is not always effective in offsetting the decrease inI t and facilitated heat loss in cool or cold water compared to rest. The factors of exercise intensity,T W, body fat, and gender influence the thermoregulatory responses.  相似文献   

18.
Summary Thermoregulatory responses to exercise in relation to the phase of the menstrual cycle were studied in ten women taking oral contraceptives (P) and in ten women not taking oral contraceptives (NP). Each subject was tested for maximal aerobic capacity ( ) and for 50% exercise in the follicular (F) and luteal (L) phases of the menstrual cycle. Since the oral contraceptives would have prevented ovulation a quasi-follicular phase (q-F) and a quasi-luteal phase (q-L) of the menstrual cycle were assumed for P subjects. Exercise was performed on a cycle ergometer at an ambient temperature of 24° C and relative air humidity of 50%. Rectal (T re), mean skin ( ), mean body ( ) temperatures and heart rate (f c) were measured. Sweat rate was estimated by the continuous measurement of relative humidity of air in a ventilated capsule placed on the chest, converted to absolute pressure (PH2Ochest). Gain for sweating was calculated as a ratio of increase inPH2Ochest to the appropriate increase inT re for the whole period of sweating (G) and for unsteady-state (Gu) separately. The did not differ either between the groups of subjects or between the phases of the menstrual cycle. In P, rectal temperature threshold for sweating (T re, td) was 37.85° C in q-L and 37.60° C in q-F (P < 0.01) and corresponded to a significant difference fromT re at rest. TheT re, andf c increased similarly during exercise in q-F and q-L. No menstrual phase-related differences were observed either in the dynamics of sweating or in G. In NP,T re, td was shorter in L than in F (37.70 vs 37.47° C,P<0.02) with a significantly greater value fromT re at rest. The dynamics and G for sweating were also greater in L than in F. The Gu was 36.8 versus 16.6 kPa · ° C–1 (P<0.01) while G was 6.4 versus 3.8 kPa · ° C–1 (P<0.05), respectively. TheT re, andf c increased significantly more in phase F than in phase L. It was concluded that in these women performing moderate exercise, there was a greater temperature threshold and larger gains for sweating in phase L than in phase F. Intake of oral contraceptives reduced the differences in the gains for sweating making the thermoregulatory responses to exercise more uniform.  相似文献   

19.
Aim: Recent findings have challenged the belief that the cardiac output (CO) and oxygen consumption (VO2) relationship is linear from rest to maximal exercise. The purpose of this study was to determine the CO and stroke volume (SV) response to a range of exercise intensities, 40–100% of VO2max, during cycling. Methods: Ten well‐trained cyclists performed a series of discontinuous exercise bouts to determine the CO and SV vs. VO2 responses. Results: The rate of increase in CO, relative to VO2, during exercise from 40 to 70% of VO2max was 4.4 ± 1.4 L L?1. During exercise at 70–100% of VO2max, the rate of increase in CO was reduced to 2.1 ± 0.9 L L?1 (P = 0.01). Stroke volume during exercise at 80–100% of VO2max was reduced by 7% when compared to exercise at 50–70% of VO2max (134 ± 5 vs. 143 ± 5 mL per beat, P = 0.02). Whole body arterial‐venous O2 difference increased significantly as intensity increased. Conclusion: The observation that the rate of increase in CO is reduced as exercise intensity increases suggests that cardiovascular performance displays signs of compromised function before maximal VO2 is reached.  相似文献   

20.
This study investigated the question: is core temperature measurement influenced by whether exercise involves predominantly upper- or lower-body musculature? Healthy men were allocated to three groups: treadmill ergometry (T) n=4, cycle ergometry (C) n=6 and arm crank ergometry (AC) n=5. Subjects underwent an incremental exercise test to exhaustion on an exercise-specific ergometer to determine maximum/peak oxygen consumption (O2max). One week later subjects exercised for 36?min on the same ergometer at approximately 65% O2max while temperatures at the rectum (T re) and esophagus (T es) were simultaneously measured. The O2max (l?·?min?1) for groups T [4.76 (0.50)] and C [4.35 (0.30)] was significantly higher than that for the AC group [2.61 (0.24)]. At rest, T re was significantly higher than T es in all groups (P<0.05). At the end of submaximal exercise in the C group, T re [38.32 (0.11)°C] was significantly higher than T es [38.02 (0.12)°C, P<0.05]. No significant differences between T re and T es at the end of exercise were noted for AC and T groups. The temperature difference (T diff) between T re and T es was dissimilar at rest in the three groups; however, by the end of exercise T diff was approximately 0.2°C for each of the groups, suggesting that at the end of steady-state exercise T re can validly be used to estimate core temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号