首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One type of striatonigral neuron in the rat has been characterized. Golgi impregnation of striatal neurons that had been retrogradely labeled by horseradish peroxidase has shown that the medium-sized, densely spiny neurons project to the substantia nigra.Some of the synapses on three of these identified striatonigral neurons have been studied in the electron microscope following replacement of the Golgi deposit by means of the ‘gold-toning’ method. Synapsing axonal boutons were found on the following sites: soma and axon initial segment (symmetrical, with flattened or pleomorphic vesicles); primary and secondary dendritic shafts (symmetrical with pleomorphic vesicles); dendritic spines (asymmetrical, with spheroidal vesicles).These findings show that new information concerning neuronal connectivity can be obtained by combining three classical procedures in the same material: first, the Golgi method, that characterizes the type of neuron on the basis of its dendritic morphology; second, a retrograde tracing method, that identifies the projection area of the neuron; and, third, ultrastructural analysis of the nature of afferent terminals on the neuron.  相似文献   

2.
After placement of lesions (either electrolytic or by injection of kainic acid) in an area including the nucleus accumbens and part of the ventral striatum in the rat, the ipsilateral substantia nigra was studied in the electron microscope. Degenerating axons and nerve terminals were found mainly in the zona reticulata and in the ventral layer of the zona compacta. Degenerating synaptic boutons were found in contact with cell bodies (symmetric synapses) and dendrites (mainly symmetric, but a few asymmetric).The postsynaptic target of some of the afferent fibres from the accumbens-ventral striatum was established by demonstrating degenerating synaptic boutons of the above types in contact with nigrostriatal neurones which had been identified by the retrograde transport of horseradish peroxidase (HRP) from the main body of the striatum. Some of the HRP-labelled cells were also impregnated by the Golgi stain and degenerating boutons were found in contact with their distal dendrites. We also observed two types of HRP-containing boutons (presumably labelled anterogradely) in the substantia nigra after injection of HRP into the main body of the striatum: type 1 boutons contained large spherical vesicles, and formed symmetrical synapses mainly on dendritic shafts in the zona reticulata and in one case the dendrite was from a nigrostriatal neurone; type 2 boutons had pleomorphic and flattened vesicles and formed symmetrical synapses with perikarya and proximal dendrites, especially in the zona compacta. The latter type of HRP-labelled bouton was frequently found in synaptic contact with the cell bodies of nigrostriatal neurones and the same neurones sometimes also received degenerating boutons originating from neurones in the nucleus accumbens-ventral striatum.It is concluded that part of the striato-nigro-striatal circuit includes a monosynaptic link between neurones in the ventral striatum-accumbens and some nigrostriatal neurones. The possible convergence of input from different regions of the striatum on to single nigrostriatal neurones is also suggested.  相似文献   

3.
Dual labelling methods were applied to localize simultaneously neuropeptide Y (NPY) and glutamate decarboxylase (GAD) immunoreactivities on ultrathin sections of the rat caudate-putamen (CP). By means of a double peroxidase-anti-peroxidase technique, using 3,3'-diaminobenzidine and benzidine dihydrochloride as chromogens in animals with no colchicine pretreatment, GAD immunoreactivity was found to be present in terminals only whereas NPY immunoreactivity was detected in neurons displaying the features of aspiny type cells and processes. With this approach, we observed numerous synaptic associations of the symmetrical type between GAD-immunoreactive (-Ir) axonal boutons and NPY-Ir cell bodies and dendrites. By combining immunoperoxidase and radioimmunocytochemical labelling in animals pretreated with colchicine, NPY was again detected in a single population of aspiny type neurons whereas GAD immunoreactivity was observed in neurons which could be classified as aspiny and spiny on the basis of their ultrastructural characteristics. All the cells of the aspiny type displaying clear-cut NPY immunoreactivity were also found to be GAD-positive. Some other neurons of both the aspiny and the spiny type were found to be immunoreactive to GAD alone. GAD/NPY dually labelled terminals were also observed and some axo-axonic appositions between GAD- and NPY-Ir terminals were also detected. All in all, these data show that NPY aspiny type neurons of the rat CP receive GABAergic afferents and provide morphological support for two hypotheses: that NPY is co-localized with GABA in some cell bodies, dendrites and axons, and that presynaptic interactions may occur between NPY and GABAergic neuronal systems.  相似文献   

4.
Medium spiny projection neurons of the striatum consist of two major neuropeptide-specific types, one type containing substance P and another type containing enkephalin. Both of these types have been shown to receive dopaminergic input onto their perikarya and proximal dendrites. However, whether each of these types receives direct dopaminergic input onto distal dendritic shafts and onto dendritic spines has not been explored in depth. In the present study, we used electron microscopic immunohistochemical double-label techniques to examine the synaptic organization of dopaminergic input onto enkephalin-positive (ENK +) striatal neurons in pigeons, in whom ENK + striatal perikarya, dendritic shafts and spines can be readily labeled. Antibodies against tyrosine hydroxylase were used to label dopaminergic terminals using a silver-intensified immunogold method. ENK + neurons were labeled using diaminobenzidine. We found that dopaminergic terminals make appositions and form symmetric synapses with the perikarya, dendritic shafts, and dendritic spine necks of ENK + striatal neurons. Thus, nigral dopaminergic neurons provide a monosynaptic input onto ENK + striatal neurons in a manner similar to that described previously by us for substance P-positive striatal medium spiny neurons.  相似文献   

5.
The ultrastructural substrate for functional interactions between intrinsic cholinergic neurons and catecholaminergic afferents to the caudate-putamen nucleus and nucleus accumbens septi (NAS) was investigated immunocytochemically. Single sections of glutaraldehyde-fixed rat brain were processed 1) for the immunoperoxidase labeling of a rat monoclonal antibody against the acetylcholine-synthesizing enzyme choline acetyltransferase (CAT) and 2) for the immunoautoradiographic localization of a rabbit polyclonal antiserum against the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH). The ultrastructural morphology and cellular associations did not significantly differ in the caudate-putamen versus NAS. Immunoperoxidase reaction for CAT versus NAS. Immunoperoxidase reaction for CAT was seen in perikarya, dendrites, and terminals, whereas immunoautoradiography for TH was in terminals. The perikarya and dendrites immunolabeled for CAT were large, sparsely spiny, and postsynaptic mainly to unlabeled axon terminals. Only 2-3% of the CAT-labeled terminals (n = 136) and less than 1% of the TH-labeled terminals (n = 86) were apposed to, or formed synapses with, perikarya or dendrites immunoreactive for CAT. Most unlabeled and all labeled terminals formed symmetric synapses. In the same sample, 18% of the CAT and 16% of the TH-labeled terminals were directly apposed to each other. Unlabeled dendritic shafts received the major (40% for CAT versus 23% for TH) synaptic input from cholinergic terminals, while unlabeled spines received the major (47% for TH versus 23% for CAT) synaptic input from catecholaminergic terminals. Neither the unlabeled dendrites or spines received detectable convergent input from CAT and TH-labeled terminals. Thirteen percent of the CAT-labeled and 14% of TH-labeled terminals were in apposition to unlabeled terminals forming asymmetric, presumably excitatory, synapses with unlabeled dendritic spines. We conclude that in both the caudate-putamen and NAS cholinergic and catecholaminergic terminals 1) form symmetric, most likely inhibitory, synapses primarily with non-cholinergic neurons, 2) differentially synapse on shafts or spines of separate dendrites, and 3) have axonal appositions suggesting the possibility of presynaptic physiological interactions. These results support the hypothesis that the cholinergic-dopaminergic balance in striatal function may be mediated through inhibition of separate sets of spiny projection neurons with opposing excitatory and inhibitory functions.  相似文献   

6.
Somatostatin-immunoreactive neurons in the rat neostriatum were studied by correlated light and electron microscopy using the peroxidase-antiperoxidase immunocytochemical technique. Immunoreactivity was localized in neuronal perikarya and processes. The perikarya were of spindle or fusiform shape (average length 16.9 microns) and were found in all parts of the neostriatum. From each neuron there arose two to four straight immunoreactive dendritelike processes, which could frequently be traced as far as about 130 microns from their perikaryon. Immunoreactive varicose axonlike processes were occasionally found, some of which were proximal axons of identified immunoreactive cells. Nine of the light microscopically identified neurons showing somatostatin-immunoreactivity were studied in the electron microscope; two of them had proximal axons with varicosities. Each neuron had an oval or elongated nucleus, which was always indented. These morphological features correspond well to those of certain "medium-size aspiny" neurons classified by Golgi studies. Although the immunoreactive endproduct was diffusely located throughout the neuron, it was characteristically located in the saccules and large granules (diameter 133 nm) of the Golgi apparatus, and large immunoreactive vesicles of similar size to those in the Golgi apparatus frequently occurred in all parts of axon. Very little synaptic input was found on the perikarya and dendrites of somatostatin-immunoreactive neurons. The perikarya and proximal dendrites received both symmetrical and asymmetrical synaptic input, while the distal dendrites usually received boutons that formed asymmetrical contacts. The somatostatin-immunoreactive boutons contained pleomorphic electron-lucent vesicles (diameter 39.3 nm) and a few large immunoreactive granular vesicles; these boutons always formed symmetrical synapses. Their postsynaptic targets were dendritic shafts, spines, and unclassified dendritic profiles. On the other hand, the varicosities of identified proximal axons of somatostatin-positive neurons did not form typical synapses, since they lacked clusters of small vesicles, but some of them were in direct apposition (via membrane specializations) to unlabelled perikarya or dendrites. It is concluded that somatostatin is a useful marker for a particular type of neuron in the neostriatum. The presence of somatostatin immunoreactivity in synaptic boutons is consistent with the view that somatostatin could be a neurotransmitter in the neostriatum.  相似文献   

7.
The ultrastructure and synaptic organization of the nucleus medialis and cerebellar crest of the teleost Chelon labrosus have been investigated. The nucleus medialis receives projections from the anterior and posterior lateral line nerves. This nucleus consists of oval neurons and large crest cells (“Purkinje-like” cells) whose apical dendrites branch in the overlying molecular layer, the cerebellar crest. In the dorsal region of the nucleus medialis, the perikarya and smooth primary dendrites of the crest cells are interspersed among myelinated fibers and nerve boutons. The ventral layer of the nucleus medialis contains crest cell perikarya and dendrites as well as oval neurons. The cerebellar crest lacks neuronal bodies, but the apical dendrites of crest cells receive synapses from unmyelinated and myelinated fibers. In the cerebellar crest, two types of terminals are presynaptic to the crest cell dendrites: boutons with spherical vesicles that from asymmetric synapses with dendritic spines and boutons containing pleomorphic vesicles that from symmetric synapses with dendritic spines and boutons containing pleomorphic vesicles that from symmetric synapses directly on the dendritic shaft. Most axon terminals found on the somata and primary dedrites of crest cells in the nucleus medialis have pleomorphic vesicles and form symmetric contacts, though asymmetric with spherical vesicles and mixed synapses can be observed; these mixed synapses exhibit gap junctions and contain spherical vesicles. Unlike crest cells, the oval neuron perikarya receive three types of contacts (symmetric, asymmetric, and mixed). The origins and functions of these different bouton types in the nucleus medialis are discussed. © 1995 Willy-Liss, Inc.  相似文献   

8.
The morphology of certain Golgi-stained cells was examined in the striate and peristriate cortex of the cat and in the striate cortex of the rhesus monkey. Neurons in layer III were selected on the basis of their characteristic vertical axon bundles, which are 20–150 μ in diameter and traverse layers II–V Selected neurons were examined under the electron microscope to characterize their synapses and to establish their postsynaptic targets. It was found that double bouquet cells form symmetrical or type II synapses. In the cat the postsynaptic membrane specialization was more extensive than in the monkey. After removing the Golgi precipitate from boutons of two cells in the cat, small pleomorphic and flattened vesicles were found in the boutons Earlier suggestions that double bouquet cells make synapses preferentially with spines of apical dendrites could not be confirmed. Out of 66 boutons in area 17 of the cat, 86.4% formed synapses with dendritic shafts, many of them belonging to nonpyramidal cells, 9% with perikarya of nonpyramidal cells, and only 4.6% with spines. Out of 19 synapses examined in area 18, 74% were contacting dendritic shafts and the rest contacted spines. In the monkey 60% of a total of 35 double bouquet cell synapses made synapses with dendritic shafts. A different type of double bouquet cell with densely spiny dendrites is also described in layer IV of the monkey striate cortex. This neuron formed asymmetrical synapses It is suggested that layer III double bouquet cells with vertical axon bundles are probably inhibitory and act on other nonpyramidal cells and certain parts of pyramidal cells.  相似文献   

9.
Following the injection of horseradish peroxidase into the ipsilaeral substantia nigra, 36 retrogradely labelled neurons in the striatum were characterized (in three rats) by Golgi staining and gold toning: each neuron was of the medium-size, densely spinous type. Prior to the injection of horseradish peroxidase, two of the rats had had lesions placed in the ipsilateral motor cortex, the third rat had had a lesion placed in the ipsilateral frontal and prefrontal cortex. In the electron microscope, degenerating boutons of cortical neurons were found in asymmetrical synaptic contact with the spines of proximal and distal dendrites of all six of the identified striatonigral neurons that were studied. Some of the degenerating boutons were small (diameter 0.1–0.3 μ), while others were larger (1–2 μ). An individual dendrite of a striatonigral neuron was in synaptic contact with very few degenerating boutons Local axon collaterals im the striatum could be traced from two of the identified striatonigral neurons that received degenerating cortical boutons. These were studied in the electron microscope; their boutons formed symmetrical synapses with spines or dendritic shafts of other striatal neurons. The synaptic boutons contained large, clear, round and pleomorphic vesicles. The postsynaptic targets of these boutons morphologically resemble the dendrites of medium-size spiny neurons It is concluded that afferents from the cortex make monosynaptic contact with the dendritic spines of medium-size spiny striatonigral neurons and that such neurons have local axon collaterals in the striatum that form synapses with other spiny neurons.  相似文献   

10.
Synaptic organization of cholinergic neurons in the monkey neostriatum   总被引:1,自引:0,他引:1  
Cholinergic neurons in the monkey neostriatum were examined at the light and electron microscopic level by immunohistochemical methods in order to localize choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. At the light microscopic level a sparse distribution of cholinergic neurons was identified throughout the caudate nucleus. Neurons had large (25-30 microns) somata, eccentric invaginated nuclei, primary dendrites of unequal diameters, and varicosities on distal dendritic branches. Ultrastructural study showed that the cholinergic cells had a cytoplasm abundant in organelles. Within dendritic branches, mitochondria and cisternae were localized primarily to varicosities. Synaptic inputs were distributed mostly to the dendrites and at least four types that formed symmetric or asymmetric synapses were observed. Immunoreactive fibers were relatively numerous within the neuropil and exhibited small diameters (0.1-0.15) micron) and swellings at frequent intervals. Cholinergic boutons that formed synapses were compared to unlabeled terminals making asymmetric synapses with dendritic spines. Results showed that ChAT-positive axons had significantly smaller cross-sectional areas, shorter synaptic junctions, and a higher density and surface area of mitochondria than the unlabeled boutons. Cholinergic axons formed symmetric synapses mostly with dendritic spines (53%) and the shafts of unlabeled primary and distal dendrites (37%). A relatively small proportion of the boutons contacted axon initial segments (1%) and cell bodies (9%) that included medium-sized neurons with unindented (spiny) and indented (aspiny) nuclei. The majority of dendritic spines contacted by cholinergic axons were also postsynaptic to unlabeled boutons forming asymmetric synapses. The results suggest that cholinergic neurons in the primary neostriatum belong to a single morphological class corresponding to the large aspiny (type II) interneuron identified in previous Golgi studies. Present results along with earlier Golgi-electron microscopic observations from this laboratory suggest that neostriatal cholinergic cells integrate many sources of intrinsic and extrinsic inputs. The observed convergence of ChAT-immunoreactive boutons and unlabeled axons onto the same dendritic spines suggests that intrinsic cholinergic axons modulate extrinsic inputs onto neostriatal spiny neurons at postsynaptic sites close to the site of afferent input.  相似文献   

11.
The entopeduncular nucleus is one of the major output stations of the basal ganglia. In order to better understand the role of this structure in information flow through the basal ganglia, experiments have been performed in the rat to examine the chemical nature, morphology, and synaptology of the projections from the globus pallidus and striatum to the entopeduncular nucleus. In order to examine the morphology and synaptology of pallidoentopeduncular terminals and striatoentopeduncular terminals, rats were subjected to a double anterograde labelling study. The globus pallidus was injected with Phaseolus vulgaris-leucoagglutinin (PHA-L), and on the same side of the brain, the striatum was injected with biocytin. The entopeduncular nuclei of these animals were then examined for anterogradely labelled pallidal and striatal terminals. Rich plexuses of PHA-L-labelled pallidal terminals and biocytin-labelled striatal terminals were identified throughout the entopeduncular nucleus. At the electron microscopic level, the pallidal boutons were classified as two types. The majority (Type 1), were large boutons that formed symmetrical synapses with the dendrites and perikarya of neurones in the entopeduncular nucleus. Type 2 PHA-L-labelled terminals were much rarer, slightly smaller, and formed asymmetrical synapses. It is suggested that the Type 2 boutons are not derived from the globus pallidus but from the subthalamic nucleus. The biocytin-labelled terminals from the striatum had the typical morphological features of striatal terminals and formed symmetrical synapses. The distribution of the postsynaptic targets of the pallidal terminals and the striatal terminals differed in that the pallidal terminals preferentially made synaptic contact with the more proximal regions of the neurones in the entopeduncular nucleus, whereas the striatal terminals were located more distally on the dendritic trees. Examination in the electron microscope of areas where there was an overlap of the two sets of anterogradely labelled boutons revealed that terminals from the globus pallidus and the striatum made convergent synaptic contact with the perikarya and dendrites of individual neurones in the entopeduncular nucleus. In order to examine the chemical nature of the input to the entopeduncular nucleus from the globus pallidus and the striatum, ultrathin sections were immunostained by the postembedding method to reveal endogenous GABA. Three classes of GABA-containing terminals were identified; two of them formed symmetrical synapses and one rare type formed asymmetrical synapses. The combination of the GABA immunocytochemistry and anterograde labelling revealed that both the striatal and pallidal afferents that make symmetrical synapses with neurones in the entopeduncular nucleus, including those involved in convergent inputs, are GABAergic.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Immunohistochemical studies in rats have demonstrated dopaminergic input onto medium spiny neurons of the striatum. Medium spiny neurons, however, are known to consist of two major neuropeptide-specific types, those containing substance P (SP) and those containing enkephalin. Although both of these types have been shown to receive dopaminergic input onto their perikarya and proximal dendrites, the extent to which both types also receive direct dopaminergic input onto distal dendritic shafts or onto dendritic spines is uncertain. In the present study, we used EM immunohistochemical double-label techniques to examine the synaptic organization of dopaminergic input onto SP+ striatal neurons. We examined the striatum of pigeons, in whom SP+ striatal neurons, including their dendritic shafts and spines, can be readily labeled. Antibodies against tyrosine hydroxylase (TH) were used to identify dopaminergic terminals, which were labeled using silver-intensified immunogold. The SP+ neurons were labeled immunohistochemically using diaminobenzidine. We found that dopaminergic terminals make appositions and form symmetric synapses with the perikarya, dendritic shafts and dendritic spines of SP+ neurons. Thus, nigral dopaminergic neurons provide a monosynaptic input onto SP+ striatal neurons in a manner similar to that described for dopaminergic input onto striatal medium spiny neurons in general.  相似文献   

13.
Single- and double-label electron microscopic immunocytochemistry was used to examine the ultrastructure of striatal neurons containing nitric oxide synthase (NOS+) and evaluate the synaptic relationship of NOS+ striatal neurons with those containing parvalbumin (PV+). In both the single-label and double-label studies, NOS+ perikarya were observed to possess polylobulated nuclei. In the single-label studies, NOS+ terminals were seen forming synaptic contacts with dendritic shafts and dendritic spines that did not contain NOS, but not with NOS+ perikarya or dendrites. In the double-label studies (using diaminobenzidine and silver intensified immunogold as markers), nitric oxide synthase and parvalbumin immunoreactions were found in two different populations of medium-sized aspiny striatal neurons. The PV+ axon terminals were seen forming symmetric synapses on the dendritic spines of neurons devoid of PV or NOS labeling, on PV+ dendrites, and on NOS+ soma and dendrites. In contrast, NOS+ terminals were not observed to form synaptic contacts with the dendrites or soma of either PV+ or NOS+ neurons. These findings suggest that NOS+ striatal interneurons form synaptic contact with the spines and presumably the dendrites of striatal projection neurons, but not with the dendrites or soma of PV+ or NOS+ striatal interneurons. NOS+ neurons do, however, receive synaptic input from PV+ neurons.  相似文献   

14.
Monoclonal antibodies to choline acetyltransferase (ChAT) were used in an immunocytochemical study to characterize putative cholinergic neurons and synaptic junctions in rat caudate-putamen. Light microscopy (LM) revealed that ChAT-positive neurons are distributed throughout the striatum. These cells have large oval or multipolar somata, and exhibit three to four primary dendrites that branch and extend long distances. Quantitative analysis of counterstained preparations indicated that ChAT-positive neurons constitute 1.7% of the total neuronal population. Electron microscopy (EM) of immunoreactive neurons initially studied by LM revealed somata characterized by deeply invaginated nuclei and by abundant amounts of organelle-rich cytoplasm. Surfaces of ChAT-positive neurons are frequently smooth, but occasional somatic protrusions and dendritic spines occur. Although infrequently observed, axons of ChAT-positive neurons branch, receive synapses, and become myelinated. Unlabeled boutons make both symmetrical and asymmetrical synapses with ChAT-positive somata and proximal dendrites, but are more numerous on distal dendrites. In addition, some unlabeled terminals form asymmetrical synapses with ChAT-positive somata and dendrites that are distinguished by prominent subsynaptic dense bodies. Light microscopy demonstrated a dense distribution of ChAT-positive fibers and punctate structures in the striatum, and these structures appear to correlate, respectively, with labeled preterminal axons and presynaptic boutons identified by EM. ChAT-positive boutons contain pleomorphic vesicles, and make symmetrical synapses primarily with unlabeled dendritic shafts. Furthermore, they establish synaptic contacts with somata, dendrites and axon initial segments of unlabeled neurons that ultrastructurally resemble medium spiny neurons. These observations, together with the results of other investigations, suggest that medium spiny GABAergic projection neurons receive a cholinergic innervation that is probably derived from ChAT-positive striatal cells. The results of this study also indicate that cholinergic neurons within caudate-putamen belong to a single population of cells that have large somata and extensive sparsely spined dendrites. Such neurons, in combination with dense concentrations of ChAT-positive fibers and terminals, are the likely basis for the large amounts of ChAT and acetylcholine detected biochemically within the neostriatum.  相似文献   

15.
Based on a gold-toning, Golgi-electron microscope examination of 12 small and medium-sized spiny stellate neurons in laminae 4A, 4B, and 4C of the monkey visual cortex (area 17), the ultrastructure of the cell somata, dendrites, and axons of these neurons is described. Particular attention is paid to the synapses involving the surface of different parts of these neurons. Only symmetric synapses occur on the somata of spiny stellate neurons, and these occur with a frequency of 11.0-15.9 synapses/100 microns2 perikaryal surface. Symmetric synapses also occur on dendritic shafts and, occasionally, on dendritic spines. Asymmetric synapses are occasionally present along the dendritic shafts of spiny stellate neurons, but the majority of asymmetric synapses (75-95%) occur on their dendritic spines. The initial axon segments of the smallest spiny stellate neurons possess no axo-axonal synapses, but several symmetric synapses are present along the initial segment of a medium-sized, spiny stellate neuron in layer 4B. Fifty-three synapses made by boutons of the axons of these spiny stellate neurons have been identified, and all are asymmetric. Sixty per cent of the synapses are formed by boutons en passant and the remainder by the terminal swellings of spine-like axonal appendages, boutons terminaux. Of the synapses formed by the axons of spiny stellate cells, axo-spinous synapses outnumber axo-dendritic synapses two to one, and axo-dendritic synapses involve both spinous and aspinous dendrites. Evidence is presented which suggests that many of the axon terminals forming asymmetric synapses with the dendritic shafts and spines of spiny stellate neurons are derived from other spiny stellate neurons.  相似文献   

16.
Details of the terminal connection of corticocortical and thalamocortical fibers on pyramidal and stellate neurons in the cat motor cortex were studied using the electron microscope in combination with the Golgi and axonal degeneration techniques. Corticocortical terminals were examined in 23 identified neurons of which 11 were pyramidal and 12 were stellate. Stellate neurons located in layer III received many degenerating terminals (average 8.4 +/- 2.2 per unit length of dendrite (ULD)) and the majority of these (95%) were found on the proximal dendrites or on the cell bodies. The pyramidal neurons received fewer degenerating terminals (average 2.1 +/- 0.27/ULD) and these were located on more distal dendritic shafts or on dendritic spines. The majority of these synapses were of the asymmetric type. Thalamocortical terminals were examined in 9 pyramidal and 9 stellate neurons. Pyramidal neurons received many terminals (average 6.0 +/- 1.23/ULD) and these were found on the basal as well as the apical dendrites and on dendrite spines. Stellate neurons received fewer terminals (average 4.2 +/- 0.64/ULD) and were located primarily on proximal dendritic shafts. The majority of these synapses were of the asymmetric type. The functional role of these synapses is discussed in relation to the physiological results reported in the preceding paper.  相似文献   

17.
The ultrastructural features and synaptic relationships of cholecystokinin (CCK)-immunoreactive cells of rat and cat hippocampus were studied using the unlabeled antibody immunoperoxidase technique and correlated light and electron microscopy. CCK-positive perikarya of variable shape and size were distributed in all layers and were particularly concentrated in stratum pyramidale and radiatum: the CCK-immunoreactive neurons were nonpyramidal in shape and the three most common types had the morphological features of tufted, bipolar, and multipolar cells. Electron microscopic examination revealed that all the CCK-positive boutons established symmetrical (Gray's type II) synaptic contacts with perikarya and dendrites of pyramidal and nonpyramidal neurons. The origin of some of the boutons was established by tracing fine collaterals that arose from the main axon of two CCK-immunostained cells and terminated in the stratum pyramidale; these collaterals were then examined in the electron microscope. The axon of one such neuron exhibited a course parallel to the pyramidal layer and formed pericellular nets of synaptic boutons upon the perikarya of pyramidal neurons. This pattern of axonal arborization is very similar to that of some of the basket cells, previously suggested to be the anatomical correlate for pyramidal cell inhibition. Typical dendrites of pyramidal cells also received symmetrical synaptic contacts from CCK-immunoreactive boutons, and some of these boutons could be shown to originate from a local neuron in stratum radiatum. Many CCK-immunoreactive cells received CCK-labeled boutons upon their soma and dendritic shafts. Synaptic relationship, established by multiple "en passant" boutons, was observed between CCK-positive interneurons of the stratum lacunosum-moleculare and radiatum. The soma and dendrites of the CCK-immunostained neurons also received symmetrical and asymmetrical synapses from nonimmunoreactive boutons. These results indicate that the CCK-immunoreactive neurons participate in complex local synaptic interactions in the hippocampus.  相似文献   

18.
The morphology and postsynaptic targets of GABA-containing boutons were determined in the striate cortex of cat, using a postembedding immunocytochemical technique at the electron microscopic level. Two types of terminals, both making symmetrical synaptic contacts, were GABA-positive. The first type (95% of all GABA-positive boutons) contained small pleomorphic vesicles, the second type (5%) contained larger ovoid vesicles. Furthermore, 99% of all cortical boutons containing pleomorphic vesicles were GABA positive, and all boutons with pleomorphic vesicles made symmetrical synaptic contacts. These results together with previously published stereological data (Beaulieu and Colonnier, 1985, 1987) were used to estimate the density of GABA-containing synapses, which is about 48 million/mm3 in the striate cortex. The postsynaptic targets of GABA positive boutons were also identified and the distribution was calculated to be as follows: 58% dendritic shafts, 26.4% dendritic spines, 13.1% somata and 2.5% axon initial segments. A total of 11% of the postsynaptic targets were GABA immunoreactive and therefore originated from GABAergic neurons. The results demonstrate that the majority of GABAergic synapses exert their action on the membrane of dendrites and spines rather than on the somata and axons of neurons.  相似文献   

19.
Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R‐ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R–negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R+). Some M2R+ dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R‐ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R+ terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R+. The main targets of M2R+ terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R+ dendritic shafts. M2R‐ir was also seen in VAChT+ cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R‐mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ‐aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400–2417, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
An antibody to tyrosine hydroxylase has been used in a correlated light and electron microscopic study to characterize dopaminergic neurons and synaptic junctions in three-dimensional reaggregate cell culture. Dissociated fetal mesencephalic cells containing dopamine neurons were coaggregated with dissociated fetal striatal cells in rotatory culture for 21 days. Sections of the coaggregates were stained by the peroxidase anti-peroxidase technique to reveal tyrosine hydroxylase-immunoreactive structures. Clusters of immunoreactive perikarya as well as dendrites and axons were observed. Immunolabeled perikarya were round or oval and approximately 20 microns in diameter. Boutons immunoreactive for tyrosine hydroxylase formed symmetric synapses, primarily with unlabeled dendritic shafts. Symmetric membrane specializations were also observed between tyrosine hydroxylase-positive boutons and unlabeled dendritic spines as well as with the perikaryon of an unlabeled medium-size neuron possessing a slightly indented nucleus. To characterize the neurochemical nature of the neurons postsynaptic to tyrosine hydroxylase-positive boutons in the reaggregates, an antibody against DARPP-32 (a dopamine and adenosine 3':5'-monophosphate-regulated phosphoprotein) and an antibody against tyrosine hydroxylase were employed to visualize striatal dopaminoceptive neurons and dopaminergic structures, respectively, in the same section. Examination of reaggregate sections at the light microscopic level demonstrated that DARPP-32-immunoreactive cells were distributed into discrete clusters that were associated with patches of tyrosine hydroxylase-positive axonal varicosities. Ultrastructural analysis of tyrosine hydroxylase-positive boutons in such clusters revealed that dopaminergic axons synaptically contacted DARPP-32-immunoreactive neurons as well as unlabeled neuronal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号