首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonic stem cell (hESC)-derived cardiomyocytes are a promising cell source for cardiac repair. Whether these cells can be transported long distance, survive, and mature in hearts subjected to ischemia/reperfusion with minimal infarction is unknown. Taking advantage of a constitutively GFP-expressing hESC line we investigated whether hESC-derived cardiomyocytes could be shipped and subsequently form grafts when transplanted into the left ventricular wall of athymic nude rats subjected to ischemia/reperfusion with minimal infarction. Co-localization of GFP-epifluorescence and cardiomyocyte-specific marker staining was utilized to analyze hESC-derived cardiomyocyte fate in a rat ischemia/reperfused myocardium. Differentiated, constitutively green fluorescent protein (GFP)-expressing hESCs (hES3-GFP; Envy) containing about 13% cardiomyocytes were differentiated in Singapore, and shipped in culture medium at 4 degrees C to Los Angeles (shipping time approximately 3 days). The cells were dissociated and a cell suspension (2 x 10(6) cells for each rat, n=10) or medium (n=10) was injected directly into the myocardium within the ischemic risk area 5 min after left coronary artery occlusion in athymic nude rats. After 15 min of ischemia, the coronary artery was reperfused. The hearts were harvested at various time points later and processed for histology, immunohistochemical staining, and fluorescence microscopy. In order to assess whether the hESC-derived cardiomyocytes might evade immune surveillance, 2 x 10(6) cells were injected into immune competent Sprague-Dawley rat hearts (n=2), and the hearts were harvested at 4 weeks after cell injection and examined as in the previous procedures. Even following 3 days of shipping, the hESC-derived cardiomyocytes within embryoid bodies (EBs) showed active and rhythmic contraction after incubation in the presence of 5% CO(2) at 37 degrees C. In the nude rats, following cell implantation, H&E, immunohistochemical staining and GFP epifluorescence demonstrated grafts in 9 out of 10 hearts. Cells that demonstrated GFP epifluorescence also stained positive (co-localized) for the muscle marker alpha-actinin and exhibited cross striations (sarcomeres). Furthermore, cells that stained positive for the antibody to GFP (immunohistochemistry) also stained positive for the muscle marker sarcomeric actin and demonstrated cross striations. At 4 weeks engrafted hESCs expressed connexin 43, suggesting the presence of nascent gap junctions between donor and host cells. No evidence of rejection was observed in nude rats as determined by inspection for lymphocytic infiltrate and/or giant cells. In contrast, hESC-derived cardiomyocytes injected into immune competent Sprague-Dawley rats resulted in an overt lymphocytic infiltrate. hESCs-derived cardiomyocytes can survive several days of shipping. Grafted cells survived up to 4 weeks after transplantation in hearts of nude rats subjected to ischemia/reperfusion with minimal infarction. They continued to express cardiac muscle markers and exhibit sarcomeric structure and they were well interspersed with the endogenous myocardium. However, hESC-derived cells did not escape immune surveillance in the xenograft setting in that they elicited a rejection phenomenon in immune competent rats.  相似文献   

2.
OBJECTIVE: Embryonic stem cell-derived cardiomyocytes are a useful source for cell transplantation into the heart, as well as for tissue engineering of the extracardiac vascular system. The present study was designed to investigate the survival and contractile function of embryonic stem cell-derived cardiomyocytes around large blood vessels to assess the feasibility of their ectopic use for future engineering of cardiovascular tissues. METHODS: The mouse embryonic stem cell-derived cardiomyocytes were transplanted into the retroperitoneum of the adult nude mice, and the myocardial tissues that developed were characterized by electrophysiological and histological techniques. RESULTS: Macroscopic and electrophysiological analyses showed spontaneously contracting transplants in the host retroperitoneum 7 and 30 days after transplantation. Immunohistochemistry detected developing cardiomyocytes in the transplants on Day 7, which formed the myocardial tissues. They were positive for cardiac troponin I, cadherin, connexin 43, and proliferating cell nuclear antigen, but negative for alpha-smooth muscle actin. Vascular formation was discernible in the transplant tissues. By Day 30, more mature myocardial tissues had been established in the transplants. Electron microscopic study emphasized that the transplant tissues comprised cardiomyocytes, in which myofibrils with organized sarcomeres were observed. Desmosomes, fasciae adherens and gap junctions were evident in the cellular junctions. CONCLUSIONS: The cardiomyocytes derived from the mouse ES cells were demonstrated to be viable and function in the ectopic site of the host retroperitoneum up to Day 30, following a process of proliferation and differentiation. Vascularization and host perfusion beneficial for the survival of the cardiomyocytes occurred in the transplants.  相似文献   

3.
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in culture are randomly organized and do not typically show directional alignment. In the present study, we used uniaxial cyclic stretch to facilitate the alignment of cultured human embryonic stem cell-derived cardiomyocytes (hESC-CMs), so that these cells can be more adult-like for potential future application in drug screening and in vitro studies of cardiac function. We then explored the functional role of mechanosensitive TRPV4 channels in cyclic stretch-induced realignment of hESC-CMs. RT-PCR, immunoblots and immunostaining detected TRPV4 expression in these cells. 4α-phorbol 12,13-didecanoate (4α-PDD), a TRPV4 agonist, elicited a cytosolic Ca2 + ([Ca2 +]i) rise, the effect of which was abolished by TRPV4 inhibitors RN1734 and HC067047, and a TRPV4 dominant negative construct. These results confirmed the functional presence of TRPV4 in these cells. Importantly, longitudinal stretch was found to induce a [Ca2 +]i rise, the effect of which was inhibited by TRPV4 antagonists. Furthermore, uniaxial cyclic stretch for 2 h induced realignment of hESC-CMs in the direction transverse to the direction of stretch, the effect of which was also abolished by TRPV4 antagonists. Akt phosphorylation was found to be a downstream signal of TRPV4. Taken together, these data strongly suggest endogenous TRPV4 channels as a mechanosensor, mediating cyclic stretch-induced realignment of hESC-CMs.  相似文献   

4.
Several studies have shown that cell-transplantation therapy following myocardial infarction has some efficacy in aiding myocardial repair and subsequent recovery of heart function. Large-scale production of human embryonic stem cell-derived cardiomyocytes can potentially provide an abundant supply of donor cells for myocardial transplantation.There are, however, immunological barriers to their use in human clinical therapy.A novel approach would be to look at utilizing human embryonic stem cell-derived cardiomyocytes to reprogram autologous adult stem cells to express cardiomyogenic function, instead of using these directly for transplantation.This could be achieved through a number of novel techniques. Enucleated cytoplasts generated from human embryonic stem cell-derived cardiomyocytes could be fused with autologous adult stem cells to generate cytoplasmic hybrids or cybrids.Adult stem cells could also be temporarily permeabilized and exposed to cytoplasmic extracts derived from these cardiomyocytes. Alternatively, intact cells or enucleated cytoplasts from human embryonic stem cell-derived cardiomyocytes could be co-cultured with adult stem cells in vitro, to provide the cellular contacts and electrical coupling that might enable some degree of trans-differentiation to take place. This review would therefore examine the potential advantages and disadvantages of such a novel approach, in comparison to other more conventional techniques such as the use of exogenous cytokines/growth factors or the use of genetic modulation.  相似文献   

5.
6.
The purpose of this study was to assess the in vitro ability of two types of cardiomyocytes (cardiomyocytes derived from human embryonic stem cells (hESC-CM) and rat neonatal cardiomyocytes (rN-CM)) to survive and generate a functional cardiac syncytium in a three-dimensional in situ polymerizable hydrogel environment. Each cell type was cultured in a PEGylated fibrinogen (PF) hydrogel for up to two weeks while maturation and cardiac function were documented in terms of spontaneous contractile behavior and biomolecular organization. Quantitative contractile parameters including contraction amplitude and synchronization were measured by non-invasive image analysis. The rN-CM demonstrated the fastest maturation and the most significant spontaneous contraction. The hESC-CM maturation occurred between 10-14 days in culture, and exhibited less contraction amplitude and synchronization in comparison to the rN-CMs. The maturation of both cell types within the hydrogels was confirmed by cardiac-specific biomolecular markers, including alpha-sarcomeric actin, actinin, and connexin-43. Cellular responsiveness to isoproterenol, carbamylcholine and heptanol provided further evidence of the cardiac maturation in the 3-D PF hydrogel as well as identified a potential to use this system for in vitro drug screening. These findings indicate that the PF hydrogel biomaterial can be used as an in situ polymerizable biomaterial for stem cells and their cardiomyocyte derivatives.  相似文献   

7.
8.
Previous studies have demonstrated that expression of p193 and p53 mutants with dominant-interfering activities renders embryonic stem cell-derived cardiomyocytes responsive to the growth promoting activities of the E1A viral oncoproteins. In this study, the effects of p53 and p193 antagonization on cardiomyocyte cell cycle activity in normal and infarcted hearts were examined. Transgenic mice expressing the p193 and/or the p53 dominant-interfering mutants in the heart were generated. Transgene expression had no effect on cardiomyocyte cell cycle activity in uninjured adult hearts. In contrast expression of either transgene resulted in a marked induction of cardiomyocyte cell cycle activity at the infarct border zone at 4 weeks after permanent coronary artery occlusion. Expression of the p193 dominant-interfering mutant was also associated with an induction of cardiomyocyte DNA synthesis in the interventricular septa of infarcted hearts. A concomitant and marked reduction in hypertrophic cardiomyocyte growth was observed in the septa of hearts expressing the p193 dominant-interfering transgene, suggesting that cell cycle activation might partially counteract the adverse ventricular remodeling that occurs after infarction. Collectively these data suggest that antagonization of p193 and p53 activity relaxes the otherwise stringent regulation of cardiomyocyte cell cycle reentry in the injured adult heart.  相似文献   

9.
10.
11.
The goal of the present report was to establish a new in vitro model for the study of impulse propagation in human cardiac tissue. By using the human embryonic stem cell differentiating system, spontaneously contracting areas were generated in three-dimensional differentiating cell aggregates (embryoid bodies). Morphological analysis revealed an isotropic tissue of early-stage cardiac phenotype. Gap junctions, assessed by immunostaining of connexin43 and connexin45, were distributed along the cell borders. High-resolution activation maps demonstrated the presence of a functional syncytium with stable focal activation and conduction properties. Conduction was significantly slower in narrow bands of contracting tissue compared with broad cardiomyocyte regions. Establishment of this unique in vitro human model may be used for the assessment of long-term structure-function relationships, for pharmacological studies, for tissue engineering, and may permit the study of genetically modified cardiomyocytes.  相似文献   

12.
13.
胚胎干细胞及其心肌细胞定向分化研究进展   总被引:1,自引:5,他引:1       下载免费PDF全文
康新勤  臧伟进  宋土生  臧益民 《心脏杂志》2003,15(2):159-162,164
近年来 ,胚胎干细胞已成为生命科学研究的热点之一。作者在回顾胚胎干细胞的生物学特性、获取和培养方法的基础上 ,着重综述在胚胎干细胞分化为心肌细胞后 ,心肌细胞特异性基因表达的变化、电生理特征、离子通道出现、形态学特征和治疗心肌梗死实验的初步结果  相似文献   

14.
15.
Since human embryonic stem cells were first differentiated to beating cardiomyocytes a decade ago, interest in their potential applications has increased exponentially. This has been further enhanced over recent years by the discovery of methods to induce pluripotency in somatic cells, including those derived from patients with hereditary cardiac diseases. Human pluripotent stem cells have been among the most challenging cell types to grow stably in culture, but advances in reagent development now mean that most laboratories can expand both embryonic and induced pluripotent stem cells robustly using commercially available products. However, differentiation protocols have lagged behind and in many cases only produce the cell types required with low efficiency. Cardiomyocyte differentiation techniques were also initially inefficient and not readily transferable across cell lines, but there are now a number of more robust protocols available. Here, we review the basic biology underlying the differentiation of pluripotent cells to cardiac lineages and describe current state-of-the-art protocols, as well as ongoing refinements. This should provide a useful entry for laboratories new to this area to start their research. Ultimately, efficient and reliable differentiation methodologies are essential to generate desired cardiac lineages to realize the full promise of human pluripotent stem cells for biomedical research, drug development, and clinical applications.  相似文献   

16.
目的探讨维生素(Vit)-C联合内皮素(ET)-1对胚胎干细胞(ESC)向心肌细胞分化的影响及其可能机制。方法体外培养ESC并给予Vit-C,摸索Vit-C作用于ESC的最佳浓度和干预时间;然后给予ET-1(100 nmol/L)或Vit-C(100μmol/L)+ET-1(100 nmol/L),观察两组对拟胚体搏动、Nkx 2.5、GATA-4及Shox2表达的影响。同时,以RNA干扰方法沉默Nkx 2.5、GATA-4及Shox2表达,观察沉默相应启动子表达水平后对Vit-C联合ET-1介导的拟胚体搏动增加的影响。结果 Vit-C最佳作用浓度为100μmol/L,最佳干预时间为分化的第4~9天,可使拟胚体搏动增加11.19%,同时上调拟胚体中心肌细胞标志物c Tn T以及心肌发育启动子Nkx 2.5、GATA-4及Shox2表达。在Vit-C基础上进一步给予ET-1,可进一步使拟胚体搏动增加11.07%,同时进一步上调c Tn T、Nkx 2.5、GATA-4及Shox2表达水平。沉默Shox2基因表达使拟胚体搏动幅度减少最明显,达12.94%。结论 Vit-C联合ET-1可获得进一步纯化的心肌细胞,上调Shox2是其促进ESC分化的最重要机制。  相似文献   

17.
PURPOSE: To determine the association between the expression of P-gp with Ets-1 and p53 proteins in oral squamous cell carcinomas (SCCs). MATERIALS AND METHODS: Immunohistochemical analysis of Ets-1, P-glycoprotein (P-gp), and p53 proteins was carried out in 40 formalin-fixed, paraffin-embedded tissue sections from oral SCCs using specific antibodies for these proteins. RESULTS: Expression of Ets-1 protein was observed in 27/40 (68%) cases, P-gp was overexpressed in 27/40 (68%) cases, and p53 accumulation was observed in 26/40 (65%) cases. Twenty-two of 27 (82%) SCCs showed concomitant overexpression of Ets-1 and P-gp underpinning an association between the expression of these two proteins ( P=0.007). Twenty-one of 27 (78%) Ets-1 overexpressing oral SCCs showed accumulation of p53 protein ( P=0.015). Nineteen of the 27 (70%) P-gp expressing tumours showed p53 accumulation. Concomitant Ets-1 and P-gp overexpression was significantly associated with poor prognosis ( P=0.002). In multivariate analysis using Cox's proportional hazards model, P-glycoprotein emerged as the most significant adverse predictor of disease-free survival (HR=6.2, P=0.003). The hallmark of the study was the significant association between the expression of Ets-1, P-gp, and p53 proteins in oral SCCs and their association with poor prognosis. Oral cancer patients showing concomitant expression of Ets-1, P-gp, and p53 proteins had shorter disease-free survival (median time of no recurrence=18 months) and worst prognosis ( P=0.001) as compared to the cases overexpressing any of these proteins. CONCLUSION: Concomitant expression of Ets-1, P-gp, and p53 proteins adversely affects the clinical outcome in oral SCCs.  相似文献   

18.
Both p53 and the Wnt signaling pathway play important roles in regulating the differentiation of mouse embryonic stem cells (mESCs). However, it is not known whether they directly and/or functionally crosstalk in mESCs. Here we report a surprising antidifferentiation function of p53 in mESCs through directly regulating the Wnt signaling pathway. A chromatin-immunoprecipitation-based microarray (ChIP-chip) and gene expression microarray assays reveal that the Wnt signaling pathway is significantly (P value, 0.000048) overrepresented in p53-regulated genes in mESCs. The expression of five Wnt ligand genes is robustly induced by various genotoxic and nongenotoxic insults in a p53-dependent manner. Moreover, the induction of these Wnt genes is greatly attenuated in mouse embryonic fibroblast (MEF) cells and ESC-derived neural stem/progenitor cells, suggesting that the induction is mESC specific. It is established that the activation of the Wnt signaling pathway inhibits the differentiation of mESCs. Consistent with this notion, we detected an antidifferentiation activity from the conditioned medium (CM) collected from UV (UV)-treated mESCs. This antidifferentiation activity can be lowered by either the addition of Wnt antagonists into the CM or the reduction of p53 levels in UV-treated mESCs. Therefore, reminiscent of its dual functions on death and survival in somatic cells, p53 appears to regulate both prodifferentiation and antidifferentiation programs in mESCs. Our findings uncover a direct and functional connection between p53 and the Wnt signaling pathway, and expand the catalog of p53 regulated genes in mESCs.  相似文献   

19.
20.
BACKGROUND/AIMS: Carcinogenesis is characterized by the abnormal regulation of cell cycle. The abnormal expression of the regulators of cell cycle may be related to the prognosis. Since the clinical significance of the expression of the three proteins in colorectal carcinomas is still controversial, we evaluated the prognostic value of the expression of cyclin E, p27 and mutant p53 in stage II colorectal cancer. METHODS: The expression levels of cyclin E, p27 and mutant p53 proteins in 41 patients with stage II colorectal carcinomas were analyzed by immunohistochemistry. RESULTS: In the univariate analysis, the level of CEA at diagnosis was associated with disease relapse. In the multivariate analysis, the clinicopathological variables such as age, gender, site of primary tumor, tumor size, state of tumor differentiation and preoperative plasma CEA level were not associated with disease relapse. When Kaplan-Meier survival curves were constructed to determine the prognosis, cyclin E, p27 and mutant p53 expressions did not predict poor prognosis. CONCLUSIONS: Our results suggested that the expression of cyclin E, p27 and mutant p53 proteins did not predict the clinical outcome in the stage II colorectal carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号