首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Identification of brown fat (beige/brite) in white adipose tissue (WAT) prompted us to investigate whether melatonin is a brown‐fat inducer. We used Zücker diabetic fatty (ZDF) rats, a model of obesity‐related type 2 diabetes and a strain in which melatonin reduces obesity and improves their metabolic profiles. At 5 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control and those treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk. Melatonin induced browning of inguinal WAT in both ZDF and ZL rats. Hematoxylin–eosin staining showed patches of brown‐like adipocytes in inguinal WAT in ZDF rats and also increased the amounts in ZL animals. Inguinal skin temperature was similar in untreated lean and obese rats. Melatonin increased inguinal temperature by 1.36 ± 0.02°C in ZL and by 0.55 ± 0.04°C in ZDF rats and sensitized the thermogenic effect of acute cold exposure in both groups. Melatonin increased the amounts of thermogenic proteins, uncoupling protein 1 (UCP1) (by ~2‐fold, < 0.01) and PGC‐1α (by 25%, < 0.05) in extracts from beige inguinal areas in ZL rats. Melatonin also induced measurable amounts of UCP1 and stimulated by ~2‐fold the levels of PGC‐1α in ZDF animals. Locomotor activity and circulating irisin levels were not affected by melatonin. These results demonstrate that chronic oral melatonin drives WAT into a brown‐fat‐like function in ZDF rats. This may contribute to melatonin′s control of body weight and its metabolic benefits.  相似文献   

2.
Mitochondrial dysfunction in adipose tissue may contribute to obesity‐related metabolic derangements such as type 2 diabetes mellitus (T2DM). Because mitochondria are a target for melatonin action, the goal of this study was to investigate the effects of melatonin on mitochondrial function in white (WAT) and beige inguinal adipose tissue of Zücker diabetic fatty (ZDF) rats, a model of obesity‐related T2DM. In this experimental model, melatonin reduces obesity and improves the metabolic profile. At 6 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control (C‐ZDF and C‐ZL) and treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk (M‐ZDF and M‐ZL). After the treatment period, animals were sacrificed, tissues dissected, and mitochondrial function assessed in isolated organelles. Melatonin increased the respiratory control ratio (RCR) in mitochondria from white fat of both lean (by 26.5%, P < 0.01) and obese (by 34.5%, P < 0.01) rats mainly through a reduction of proton leaking component of respiration (state 4) (28% decrease in ZL, P < 0.01 and 35% in ZDF, P < 0.01). However, melatonin treatment lowered the RCR in beige mitochondria of both lean (by 7%, P < 0.05) and obese (by 13%, P < 0.05) rats by maintaining high rates of uncoupled respiration. Melatonin also lowered mitochondrial oxidative status by reducing nitrite levels and by increasing superoxide dismutase activity. Moreover, melatonin treatment also caused a profound inhibition of Ca‐induced opening of mPTP in isolated mitochondria from both types of fat, white and beige, in both lean and obese rats. These results demonstrate that chronic oral melatonin improves mitochondrial respiration and reduces the oxidative status and susceptibility to apoptosis in white and beige adipocytes. These melatonin effects help to prevent mitochondrial dysfunction and thereby to improve obesity‐related metabolic disorders such as diabetes and dyslipidemia of ZDF rats.  相似文献   

3.
Hepatic mitochondrial dysfunction is thought to play a role in the development of liver steatosis and insulin resistance, which are both common characteristics of obesity and type 2 diabetes mellitus (T2DM). It was hypothesized that the antioxidant properties of melatonin could potentially improve the impaired functions of hepatic mitochondria in diabetic obese animals. Male Zucker diabetic fatty (ZDF) rats and lean littermates (ZL) were given either melatonin (10 mg/kg BW/day) orally for 6 wk (M‐ZDF and M‐ZL) or vehicle as control groups (C‐ZDF and C‐ZL). Hepatic function was evaluated by measurement of serum alanine transaminase and aspartate transaminase levels, liver histopathology and electron microscopy, and hepatic mitochondrial functions. Several impaired functions of hepatic mitochondria were observed in C‐ZDF in comparison with C‐ZL rats. Melatonin treatment to ZDF rats decreases serum levels of ALT (< 0.001), alleviates liver steatosis and vacuolation, and also mitigates diabetic‐induced mitochondrial abnormalities, glycogen, and lipid accumulation. Melatonin improves mitochondrial dysfunction in M‐ZDF rats by increasing activities of mitochondrial citrate synthase (< 0.001) and complex IV of electron transfer chain (< 0.05) and enhances state 3 respiration (< 0.001), respiratory control index (RCR) (< 0.01), and phosphorylation coefficient (ADP/O ratio) (< 0.05). Also melatonin augments ATP production (< 0.05) and diminishes uncoupling protein 2 levels (< 0.001). These results demonstrate that chronic oral melatonin reduces liver steatosis and mitochondria dysfunction in ZDF rats. Therefore, it may be beneficial in the treatment of diabesity.  相似文献   

4.
The aim of this study was to investigate the effects of melatonin on low‐grade inflammation and oxidative stress in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups, each composed of 10 rats: naive (N), vehicle treated (V), and melatonin treated (M) (10 mg/kg/day) for 6 wk. Vehicle and melatonin were added to the drinking water. Pro‐inflammatory state was evaluated by plasma levels of interleukin‐6 (IL‐6), tumor necrosis factor‐α (TNF‐α), and C‐reactive protein (CRP). Also, oxidative stress was assessed by plasma lipid peroxidation (LPO), both basal and after Fe2+/H2O2 inducement. ZDF rats exhibited higher levels of IL‐6 (112.4 ± 1.5 pg/mL), TNF‐α (11.0 ± 0.1 pg/mL) and CRP (828 ± 16.0 µg/mL) compared with lean rats (IL‐6, 89.9 ± 1.0, < 0.01; TNF‐α, 9.7 ± 0.4, < 0.01; CRP, 508 ± 21.5, < 0.001). Melatonin lowered IL‐6 (10%, < 0.05), TNF‐α (10%, < 0.05), and CRP (21%, < 0.01). Basal and Fe2+/H2O2‐induced LPO, expressed as malondialdehyde equivalents (µmol/L), were higher in ZDF rats (basal, 3.2 ± 0.1 versus 2.5 ± 0.1 in ZL, < 0.01; Fe2+/H2O2‐induced, 8.7 ± 0.2 versus 5.5 ± 0.3 in ZL; < 0.001). Melatonin improved basal LPO (15%, < 0.05) in ZDF rats, and Fe2+/H2O2‐ induced LPO in both ZL (15.2%, < 0.01) and ZDF rats (39%, < 0.001). These results demonstrated that oral melatonin administration ameliorates the pro‐inflammatory state and oxidative stress, which underlie the development of insulin resistance and their consequences, metabolic syndrome, diabetes, and cardiovascular disease.  相似文献   

5.
Abstract: The study objective was to investigate the effects of melatonin on obesity and obesity‐associated systolic hypertension and dyslipidemia in young male Zucker diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome. ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups (n = 10): naive (N), vehicle‐treated (V), and melatonin‐treated (M) (10 mg/kg/day) for 6 wk. Vehicle and melatonin were added to the drinking water. Melatonin reduced mean weight gain (51 ± 2/100 g BW) versus N‐ZDF group (58 ± 3, P < 0.05) without food intake differences. M‐ZDF rats showed an apparent reduction in systolic hypertension that proved not to be statistically significant, and a significant improvement in dyslipidemia, with a reduction in hypertriglyceridemia from 580 ± 40 to 420.6 ± 40.9 mg/dL (P < 0.01). Melatonin raised high‐density‐lipoprotein (HDL) cholesterol in ZDF (from 81.6 ± 4.9 to 103.1 ± 4.5 mg/dL, P < 0.01) and ZL rats (from 62.8 ± 4.8 to 73.5 ± 4.8 mg/dL, P < 0.05) and significantly reduced low‐density‐lipoprotein (LDL) cholesterol in ZDF rats from 5.20 ± 0.4 to 4.14 ± 0.3 mg/dL (P < 0.05) but had no effect on total cholesterol levels. To our knowledge, this is the first evidence of a positive effect of melatonin on overweight and lipid pattern of obese Zucker diabetic rats, supporting the proposition that melatonin administration may ameliorate overweight and lipid metabolism in humans. Because these benefits occurred in youth, before advanced metabolic and vascular complications, melatonin might help to prevent cardiovascular disease associated with obesity and dyslipidemia.  相似文献   

6.
The aim of this study was to investigate the effects of melatonin on glucose homeostasis in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n=30) and lean littermates (ZL) (n=30) were used. At 6wk of age, both lean and fatty animals were subdivided into three groups, each composed of ten rats: naive (N), vehicle treated (V), and melatonin treated (M) (10mg/kg/day) for 6wk. Vehicle and melatonin were added to the drinking water. ZDF rats developed DM (fasting hyperglycemia, 460±39.8mg/dL; HbA(1) c 8.3±0.5%) with both insulin resistance (HOMA-IR 9.28±0.9 versus 1.2±0.1 in ZL) and decreased β-cell function (HOMA1-%B) by 75%, compared with ZL rats. Melatonin reduced fasting hyperglycemia by 18.6% (P<0.05) and HbA(1) c by 11% (P<0.05) in ZDF rats. Also, melatonin lowered insulinemia by 15.9% (P<0.05) and HOMA-IR by 31% (P<0.01) and increased HOMA1-%B by 14.4% (P<0.05). In addition, melatonin decreased hyperleptinemia by 34% (P<0.001) and raised hypoadiponectinemia by 40% (P<0.001) in ZDF rats. Moreover, melatonin reduced serum free fatty acid levels by 13.5% (P<0.05). These data demonstrate that oral melatonin administration ameliorates glucose homeostasis in young ZDF rats by improving both insulin action and β-cell function. These observations have implications on melatonin's possible use as a new pharmacologic therapy for improving glucose homeostasis and of obesity-related T2DM, in young subjects.  相似文献   

7.
We tested the hypothesis that daily melatonin treatment protects endothelial lineage and functional integrity against the aging process, oxidative stress/endothelial denudation (ED), and toxic environment and restored blood flow in murine critical limb ischemia (CLI). In vitro study using HUVECs, in vivo models (ie, CLI through left femoral artery ligation and ED through carotid artery wire injury), and model of lipopolysaccharide‐induced aortic injury in young (3 months old) and aged (8 months old) mice were used to elucidate effects of melatonin treatment on vascular endothelial integrity. In vitro study showed that menadione‐induced oxidative stress (NOX‐1/NOX‐2), inflammation (TNF‐α/NF‐kB), apoptosis (cleaved caspase‐3/PARP), and mitochondrial damage (cytosolic cytochrome c) in HUVECs were suppressed by melatonin but reversed by SIRT3‐siRNA (all < .001). In vivo, reduced numbers of circulating endothelial progenitor cells (EPCs) (C‐kit/CD31+/Sca‐1/KDR+/CXCR4/CD34+), and angiogenesis (Matrigel assay of bone marrow‐derived EPC and ex vivo aortic ring cultures) in older (compared with younger) mice were significantly reversed through daily melatonin administration (20 mg/kg/d, ip) (all < .001). Aortic vasorelaxation and nitric oxide release were impaired in older mice and reversed in age‐match mice receiving melatonin (all < .01). ED‐induced intimal/medial hyperplasia, reduced blood flow to ischemic limb, and angiogenesis (reduced CD31+/vWF+ cells/small vessel number) were improved after daily melatonin treatment (all < .0001). Lipopolysaccharide‐induced aortic endothelial cell detachment, which was more severe in aged mice, was also alleviated after daily melatonin treatment (P < .0001). Daily melatonin treatment protected both structural and functional integrity of vascular endothelium against aging‐, oxidative stress‐, lipopolysaccharide‐, and ischemia‐induced damage probably through upregulating the SIRT signaling pathway.  相似文献   

8.
We examined whether a polymorphism of the PERIOD3 gene (PER3; rs57875989) modulated the sleep-promoting effects of melatonin in Delayed Sleep-Wake Phase Disorder (DSWPD). One hundred and four individuals (53 males; 29.4 ±10.0 years) with DSWPD and a delayed dim light melatonin onset (DLMO) collected buccal swabs for genotyping (PER34/4 n = 43; PER3 5 allele [heterozygous and homozygous] n = 60). Participants were randomised to placebo or 0.5 mg melatonin taken 1 hour before desired bedtime (or ~1.45 hours before DLMO), with sleep attempted at desired bedtime (4 weeks; 5-7 nights/week). We assessed sleep (diary and actigraphy), Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), Patient-Reported Outcomes Measurement Information System (PROMIS: Sleep Disturbance, Sleep-Related Impairment), Sheehan Disability Scale (SDS) and Patient- and Clinician-Global Improvement (PGI-C, CGI-C). Melatonin treatment response on actigraphic sleep onset time did not differ between genotypes. For PER34/4 carriers, self-reported sleep onset time was advanced by a larger amount and sleep onset latency (SOL) was shorter in melatonin-treated patients compared to those receiving placebo (P = .008), while actigraphic sleep efficiency in the first third of the sleep episode (SE T1) did not differ. For PER3 5 carriers, actigraphic SOL and SE T1 showed a larger improvement with melatonin (P < .001). Melatonin improved ISI (P = .005), PROMIS sleep disturbance (P < .001) and sleep-related impairment (P = .017), SDS (P = .019), PGI-C (P = .028) and CGI-C (P = .016) in PER34/4 individuals only. Melatonin did not advance circadian phase. Overall, PER34/4 DSWPD patients have a greater response to melatonin treatment. PER3 genotyping may therefore improve DSWPD patient outcomes.  相似文献   

9.
Melatonin reduces reperfusion arrhythmias when administered before coronary occlusion, but in the clinical context of acute coronary syndromes, most of the therapies are administered at the time of reperfusion. Patients frequently have physiological modifications that can reduce the response to therapeutic interventions. This work determined whether acute melatonin administration starting at the moment of reperfusion protects against ventricular arrhythmias in Langendorff‐perfused hearts isolated from fructose‐fed rats (FFR), a dietary model of metabolic syndrome, and from spontaneous hypertensive rats (SHR). In both experimental models, we confirmed metabolic alterations, a reduction in myocardial total antioxidant capacity and an increase in arterial pressure and NADPH oxidase activity, and in FFR, we also found a decrease in eNOS activity. Melatonin (50 μm ) initiated at reperfusion after 15‐min regional ischemia reduced the incidence of ventricular fibrillation from 83% to 33% for the WKY strain, from 92% to 25% in FFR, and from 100% to 33% in SHR (= 0.0361, = 0.0028, = 0.0013, respectively, by Fisher's exact test, n = 12 each). Although, ventricular tachycardia incidence was high at the beginning of reperfusion, the severity of the arrhythmias progressively declined in melatonin‐treated hearts. Melatonin induced a shortening of the action potential duration at the beginning of reperfusion and in the SHR group also a faster recovery of action potential amplitude. We conclude that melatonin protects against ventricular fibrillation when administered at reperfusion, and these effects are maintained in hearts from rats exposed to major cardiovascular risk factors. These results further support the ongoing translation to clinical trials of this agent.  相似文献   

10.
The purpose of this study was to investigate the effects of melatonin on selected biomarkers of innate and humoral immune response as well as the antioxidant/oxidant status (superoxide dismutase—SOD and reduced glutathione levels (GSH) to understand whether age‐related changes would influence the development of acute Trypanosoma cruzi (T. cruzi) infection. Young‐ (5 weeks) and middle‐aged (18 months) Wistar rats were orally treated with melatonin (gavage) (05 mg/kg/day), 9 days after infection. A significant increase in both SOD activity and GSH levels was found in plasma from all middle‐aged melatonin‐treated animals. Melatonin triggered enhanced expression of major histocompatibility class II (MHC‐II) antigens on antigen‐presenting cell (APC) and peritoneal macrophages in all treated animals. High levels of CD4+CD28‐negative T cells (*P<.05) were detected in middle‐aged control animals. Melatonin induced a significant reduction (***P<.001) in CD28negative in CD4+ and CD8+ T cells in middle‐aged control animals. Contrarily, the same group displayed upregulated CD4+CD28+T and CD8+CD28+T cells. Melatonin also triggered an upregulation of CD80 and CD86 expression in all young‐treated groups. Significant percentages of B and spleen dendritic cells in middle‐aged infected and treated animals were observed. Our data reveal new features of melatonin action in inhibiting membrane lipid peroxidation, through the reduction in 8‐isoprostane, upregulating the antioxidant defenses and triggering an effective balance in the antioxidant/oxidant status during acute infection. The ability of melatonin to counteract the immune alterations induced by aging added further support to its use as a potential therapeutic target not only for T. cruzi infection but also for other immunocompromised states.  相似文献   

11.
Brown adipose tissue (BAT) influences energy balance through nonshivering thermogenesis, and its metabolism daily and seasonal variations are regulated by melatonin through partially known mechanisms. We evaluated the role of melatonin in BAT molecular machinery of male Control, pinealectomized (PINX), and melatonin‐treated pinealectomized (PINX/Mel) adult rats. BAT was collected either every 3 hours over 24 hours or after cold or high‐fat diet (HFD) acute exposure. HFD PINX animals presented decreased Dio2 expression, while HFD PINX/Mel animals showed increased Dio2, Ucp1, and Cidea expression. Cold‐exposed PINX rats showed decreased Dio2 and Lhs expression, and melatonin treatment augmented Adrβ3, Dio2, Ucp1, and Cidea expression. Daily profiles analyses showed altered Dio2, Lhs, Ucp1, Pgc1α, and Cidea gene and UCP1 protein expression in PINX animals, leading to altered rhythmicity under sub‐thermoneutral conditions, which was partially restored by melatonin treatment. The same was observed for mitochondrial complexes I, II, and IV protein expression and enzyme activity. Melatonin absence seems to impair BAT responses to metabolic challenges, and melatonin replacement reverses this effect, with additional increase in the expression of crucial genes, suggesting that melatonin plays an important role in several key points of the thermogenic activation pathway, influencing both the rhythmic profile of the tissue and its ability to respond to metabolic challenges, which is crucial for the organism homeostasis.  相似文献   

12.
《Diabetes & metabolism》2009,35(5):364-370
AimThis study aimed to investigate the role played by sympathovagal balance in arterial stiffness, a common feature of insulin resistance and type 2 diabetes.MethodsWe investigated the relationship between autonomic nervous system activity and arterial stiffness in Zucker diabetic fatty rats (ZDF: Gmi-fa/fa) and their age-matched controls (lean: ?/fa). Using simultaneous catheterization of the proximal and distal aorta, we measured intra-arterial blood pressure (BP), heart rate (HR), their variability (spectral analysis) and aortic pulse wave velocity (PWV) in a series of at least six conscious rats aged 6, 12, 18 and 24 weeks.ResultsBP and PWV increased with age (P < 0.001) in both strains with no differences between strains, despite the insulin resistance already present at 6 weeks in ZDF rats. HR was significantly lower (P < 0.001) in ZDF than in lean rats. In ZDF compared with lean rats, the low-frequency (LF) component of the systolic BP variations and the LF/high-frequency (HF) component of the pulse interval (PI) variation ratio were reduced (P < 0.01 and P < 0.05, respectively), while the HF component of the PI (HF-PI) variation was raised (P < 0.05). PWV was negatively correlated with HF-PI (r = −0.37, P < 0.01), but not with biochemical parameters. HF-PI was an independent variable explaining the variation in PWV.ConclusionDuring the development of disease of ZDF rats, sympathovagal balance might account for the lack of increase in PWV.  相似文献   

13.
This study investigated whether melatonin‐treated adipose‐derived mesenchymal stem cells (ADMSC) offered superior protection against acute lung ischemia–reperfusion (IR) injury. Adult male Sprague‐Dawley rats (n = 30) were randomized equally into five groups: sham controls, lung IR–saline, lung IR–melatonin, lung IR–melatonin–normal ADMSC, and lung IR–melatonin–apoptotic ADMSC. Arterial oxygen saturation was lowest in lung IR–saline; lower in lung IR–melatonin than sham controls, lung IR–melatonin–normal ADMSC, and lung IR–melatonin–apoptotic ADMSC; lower in lung IR–melatonin–normal ADMSC than sham controls and lung IR–melatonin–apoptotic ADMSC; lower in lung IR–melatonin–apoptotic ADMSC than sham controls (P < 0.0001 in each case). Right ventricular systolic blood pressure (RVSBP) showed a reversed pattern among all groups (all < 0.0001). Changes in histological scoring of lung parenchymal damage and CD68+ cells showed a similar pattern compared with RVSBP in all groups (all < 0.001). Changes in inflammatory protein expressions such as VCAM‐1, ICAM‐1, oxidative stress, TNF‐α, NF‐κB, PDGF, and angiotensin II receptor, and changes in apoptotic protein expressions of cleaved caspase 3 and PARP, and mitochondrial Bax, displayed identical patterns compared with RVSBP in all groups (all < 0.001). Numbers of antioxidant (GR+, GPx+, NQO‐1+) and endothelial cell biomarkers (CD31+ and vWF+) were lower in sham controls, lung IR–saline, and lung IR–melatonin than lung IR–melatonin–normal ADMSC and lung IR–melatonin–apoptotic ADMSC, and lower in lung IR–melatonin–normal ADMSC than lung IR–melatonin–apoptotic ADMSC (< 0.001 in each case). In conclusion, when the animals were treated with melatonin, the apoptotic ADMSC were superior to normal ADMSC for protection of lung from acute IR injury.  相似文献   

14.
Objectives The role of melatonin in regulating gut motility in human subjects is not clear. The aim of this study was to investigate the effects of exogenous melatonin on colonic transit time (CTT) in healthy subjects and in patients with irritable bowel syndrome (IBS). Methods Colonic transit time was measured in 17 healthy controls using the radio-opaque, blue dye, and Bristol stool form score method before and after 30 days of melatonin treatment 3 mg daily. A double blind cross-over study aimed at measuring CTT was also performed in 17 matched IBS patients using the blue dye and Bristol stool form score methods. The patients were randomized and received either melatonin 3 mg or placebo daily for 8 weeks, followed by a 4-week washout, and then placebo or melatonin in the reverse order for a second 8-week period. Results The melatonin treatment of the control subjects caused an increase in CTT (mean ± SD) from 27.4 ± 10.5 to 37.4 ± 23.8 h (= 0.04). Compared with the CTT of the controls (25.2 ± 7.7), that of the constipation-predominant IBS patients appeared prolonged—65.2 ± 33.3 h (< 0.01). The CTT did not change significantly in IBS patients after melatonin treatment. Conclusion Melatonin may be a promising candidate for the future research of agents that can modulate bowel motility.  相似文献   

15.
16.

Aims/hypothesis  

We examined the link between altered gap junctional communication and renal haemodynamic abnormalities in diabetes in studies performed on Zucker lean (ZL) and the Zucker diabetic fatty (ZDF) rat model of type 2 diabetes.  相似文献   

17.
Recent evidence shows that the NMDAR postsynaptic density‐95 (PSD‐95), growth‐associated protein‐43 (GAP‐43), and matrix metalloproteinase‐9 (MMP‐9) protein enhance neuroplasticity at the subacute stage of stroke. Here, we evaluated whether melatonin would modulate the PSD‐95, GAP‐43, and MMP‐9 proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to experimental stroke. Adult male Sprague–Dawley rats were treated with melatonin (5 mg/kg) or vehicle at reperfusion onset after transient occlusion of the right middle cerebral artery (tMCAO) for 90 min. Animals were euthanized for Western immunoblot analyses for the PSD‐95 and GAP‐43 proteins and gelatin zymography for the MMP‐9 activity at 7 days postinsult. Another set of animals was sacrificed for histologic and Golgi–Cox‐impregnated sections at 28 days postinsult. In cultured neurons exposed to glutamate excitotoxicity, melatonin significantly upregulated the GAP‐43 and PSD‐95 expressions and improved dendritic aborizations (< 0.05, respectively). Relative to controls, melatonin‐treated stroke animals caused a significant improvement in GAP‐43 and PSD‐95 expressions as well as the MMP‐9 activity in the ischemic brain (< 0.05). Consequently, melatonin also significantly promoted the dendritic spine density and reduced infarction in the ischemic brain, and improved neurobehaviors as well at 28 days postinsult (< 0.05, respectively). Together, melatonin upregulates GAP‐43, PSD‐95, and MMP‐9 proteins, which likely accounts for its actions to improve neuroplasticity in cultured neurons exposed to glutamate excitotoxicity and to enhance long‐term neuroprotection, neuroplasticity, and brain remodeling in stroke rats.  相似文献   

18.
19.
NAFLD is closely related with the metabolic syndrome (MetS) and increased risk of cardiovascular disease. Liver fat associates with post‐prandial hypertriglyceridemia, potentially contributing to triglyceride‐enrichment of high‐density lipoproteins (HDL‐TG), and subsequent HDL dysfunction. We assessed liver fat by MR spectroscopy, and its association with HDL physiochemical properties, and endothelial function, measured as flow‐mediated dilation (FMD), before and following three consecutive meals, in 36 men with type 2 diabetes mellitus (T2DM), with the MetS, and controls. Plasma triglycerides increased significantly following the meals (< .001). Fasting HDL‐TG was highest in T2DM, relative to MetS and controls (P = .002), and increased post‐prandially in all groups (< .001). HDL function was negatively associated with HDL‐TG following three meals (r = ?.32, P<.05). Liver fat associated with HDL‐TG after three meals (r = .65, < .001). HDL‐TG was independently associated with FMD following three consecutive meals (r = ?.477, P = .003). We conclude liver fat is associated with post‐prandial HDL‐TG enrichment which was closely related with endothelial and HDL dysfunction.  相似文献   

20.
Excessive activity of NADPH oxidase (Nox) is considered to be of importance for the progress of diabetic nephropathy. The aim of the study was to elucidate the effect of melatonin, known for its nephroprotective properties, on Nox activity under diabetic conditions. The experiments were performed on three groups of animals: (i) untreated lean (?/+) Zucker diabetic fatty (ZDF) rats; (ii) untreated obese diabetic (fa/fa) ZDF rats; and (iii) ZDF fa/fa rats treated with melatonin (20 mg/L) in drinking water. Urinary albumin excretion was measured weekly. After 4 wk of the treatment, the following parameters were determined in kidney cortex: Nox activity, expression of subunits of the enzyme, their phosphorylation and subcellular distribution. Histological studies were also performed. Compared to ?/+ controls, ZDF fa/fa rats exhibited increased renal Nox activity, augmented expression of Nox4 and p47phox subunits, elevated level of p47phox phosphorylation, and enlarged phospho‐p47phox and p67phox content in membrane. Melatonin administration to ZDF fa/fa rats resulted in the improvement of renal functions, as manifested by considerable attenuation of albuminuria and some amelioration of structural abnormalities. The treatment turned out to nearly normalize Nox activity, which was accompanied by considerably lowered expression and diminished membrane distribution of regulatory subunits, that is, phospho‐p47phox and p67phox. Thus, it is concluded that: (i) melatonin beneficial action against diabetic nephropathy involves attenuation of the excessive activity of Nox; and (ii) the mechanism of melatonin inhibitory effect on Nox is based on the mitigation of expression and membrane translocation of its regulatory subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号