首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Background:

MicroRNAs (miRNAs) have been shown to play major roles in carcinogenesis in a variety of cancers. The aim of this study was to determine the miRNA expression signature of oral squamous cell carcinoma (OSCC) and to investigate the functional roles of miR-26a and miR-26b in OSCC cells.

Methods:

An OSCC miRNA signature was constructed by PCR-based array methods. Functional studies of differentially expressed miRNAs were performed to investigate cell proliferation, migration, and invasion in OSCC cells. In silico database and genome-wide gene expression analyses were performed to identify molecular targets and pathways mediated by miR-26a/b.

Results:

miR-26a and miR-26b were significantly downregulated in OSCC. Restoration of both miR-26a and miR-26b in cancer cell lines revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Our data demonstrated that the novel transmembrane TMEM184B gene was a direct target of miR-26a/b regulation. Silencing of TMEM184B inhibited cancer cell migration and invasion, and regulated the actin cytoskeleton-pathway related genes.

Conclusions:

Loss of tumour-suppressive miR-26a/b enhanced cancer cell migration and invasion in OSCC through direct regulation of TMEM184B. Our data describing pathways regulated by tumour-suppressive miR-26a/b provide new insights into the potential mechanisms of OSCC oncogenesis and metastasis.  相似文献   

2.

Background:

On the basis of the microRNA (miRNA) expression signature of maxillary sinus squamous cell carcinoma (MSSCC), we found that miR-874 was significantly reduced in cancer cells. We focused on the functional significance of miR-874 in cancer cells and identification of miR-874-regulated novel cancer networks in MSSCC.

Methods:

We used PCR-based methods to investigate the downregulated miRNAs in clinical specimens of MSSCC. Our signature analyses identified 23 miRNAs that were significantly reduced in cancer cells, such as miR-874, miR-133a, miR-375, miR-204, and miR-1. We focused on miR-874 as the most downregulated novel miRNA in our analysis.

Results:

We found potential tumour suppressive functions such as inhibition of cancer cell proliferation and invasion. A molecular target search of miR-874 revealed that PPP1CA was directly regulated by miR-874. Overexpression of PPP1CA was observed in MSSCC clinical specimens. Silencing of the PPP1CA gene significantly inhibited cancer cell proliferation and invasion.

Conclusion:

The downregulation of miR-874 was a frequent event in MSSCC, which suggests that miR-874 functions as a tumour suppressive miRNA, directly regulating PPP1CA that has a potential role of an oncogene. The identification of novel miR-874-regulated cancer pathways could provide new insights into potential molecular mechanisms of MSSCC oncogenesis.  相似文献   

3.

Background:

Hypopharyngeal squamous cell carcinoma (HSCC) is an aggressive malignancy with one of the worst prognoses among all head and neck cancers. Greater understanding of the pertinent molecular oncogenic pathways could help improve diagnosis, therapy, and prevention of this disease. The aim of this study was to identify tumour-suppressive microRNAs (miRNAs), based on miRNA expression signatures from clinical HSCC specimens, and to predict their biological target genes.

Methods:

Expression levels of 365 human mature miRNAs from 10 HSCC clinical samples were screened using stem-loop real-time quantitative PCR. Downregulated miRNAs were used in cell proliferation assays to identify a tumour-suppressive miRNA. Genome-wide gene expression analyses were then performed to identify the target genes of the tumour-suppressive miRNA.

Results:

Expression analysis identified 11 upregulated and 31 downregulated miRNAs. Gain-of-function analysis of the downregulated miRNAs revealed that miR-489 inhibited cell growth in all head and neck cancer cell lines examined. The gene PTPN11 coding for a cytoplasmic protein tyrosine phosphatase containing two Src Homology 2 domains was identified as a miR-489-targeted gene. Knockdown of PTPN11 resulted in the inhibition of cell proliferation in head and neck SCC cells.

Conclusion:

Identification of the tumour-suppressive miRNA miR-489 and its target, PTPN11, might provide new insights into the underlying molecular mechanisms of HSCC.  相似文献   

4.

Background:

Our present study of the microRNA (miRNA) expression signature in castration-resistant prostate cancer (CRPC) revealed that the clustered miRNAs microRNA-221 (miR-221) and microRNA-222 (miR-222) are significantly downregulated in cancer tissues. The aim of this study was to investigate the functional roles of miR-221 and miR-222 in prostate cancer (PCa) cells.

Methods:

A CRPC miRNA signature was constructed by PCR-based array methods. Functional studies of differentially expressed miRNAs were analysed using PCa cells. The association between miRNA expression and overall survival was estimated by the Kaplan–Meier method. In silico database and genome-wide gene expression analyses were performed to identify molecular targets regulated by the miR-221/222 cluster.

Results:

miR-221 and miR-222 were significantly downregulated in PCa and CRPC specimens. Kaplan–Meier survival curves showed that low expression of miR-222 predicted a short duration of progression to CRPC. Restoration of miR-221 or miR-222 in cancer cells revealed that both miRNAs significantly inhibited cancer cell migration and invasion. Ecm29 was directly regulated by the miR-221/222 cluster in PCa cells.

Conclusions:

Loss of the tumour-suppressive miR-221/222 cluster enhanced migration and invasion in PCa cells. Our data describing targets regulated by the tumour-suppressive miR-221/222 cluster provide insights into the mechanisms of PCa and CRPC progression.  相似文献   

5.

Background:

On the base of the microRNA (miRNA) expression signature of bladder cancer (BC), we found that miR-1 and miR-133a were significantly downregulated in BC. In this study, we focussed on the functional significance of miR-1 and miR-133a in BC cell lines and identified a molecular network of these miRNAs.

Methods and results:

We investigated the miRNA expression signature of BC clinical specimens and identified several downregulated miRNAs (miR-133a, miR-204, miR-1, miR-139-5p, and miR-370). MiR-1 and miR-133a showed potential role of tumour suppressors by functional analyses of BC cells such as cell proliferation, apoptosis, migration, and invasion assays. Molecular target searches of these miRNAs showed that transgelin 2 (TAGLN2) was directly regulated by both miR-1 and miR-133a. Silencing of TAGLN2 study demonstrated significant inhibitions of cell proliferation and increase of apoptosis in BC cell lines. The immunohistochemistry showed a positive correlation between TAGLN2 expression and tumour grade in clinical BC specimens.

Conclusions:

The downregulation of miR-1 and miR-133a was a frequent event in BC, and these miRNAs were recognised as tumour suppressive. TAGLN2 may be a target of both miRNAs and had a potential oncogenic function. Therefore, novel molecular networks provided by miRNAs may provide new insights into the underlying molecular mechanisms of BC.  相似文献   

6.

Background:

Our recent analyses of miRNA expression signatures showed that miR-1 and miR-133a were significantly reduced in several types of cancer. Interestingly, miR-1 and miR-133a are located on the same chromosomal locus in the human genome. We examined the functional significance of miR-1 and miR-133a in prostate cancer (PCa) cells and identified the novel molecular targets regulated by both miR-1 and miR-133a.

Methods and Results:

The expression levels of miR-1 and miR-133a were significantly downregulated in PCa compared with non-PCa tissues. Restoration of miR-1 or miR-133a in PC3 and DU145 cells revealed significant inhibition of proliferation, migration, and invasion. Molecular target identification by genome-wide gene expression analysis and luciferase reporter assay showed that purine nucleoside phosphorylase (PNP) was directly regulated by both miRNAs. Silencing of the PNP gene inhibited proliferation, migration, and invasion in both PC3 and DU145 cells. Immunohistochemistry detected positive staining of PNP in PCa specimens.

Conclusions:

Downregulation of miR-1 and miR-133a was a frequent event in PCa and both function as tumour suppressors. The PNP is a novel target gene of both miRNAs and potentially functions as an oncogene. Therefore, identification of novel molecular networks regulated by miRNAs may provide new insights into the underlying causes of PCa oncogenesis.  相似文献   

7.

Background:

TMPRSS4 is a membrane-anchored protease involved in cell migration and invasion in different cancer types including lung cancer. TMPRSS4 expression is increased in NSCLC and its inhibition through shRNA reduces lung metastasis. However, molecular mechanisms leading to the protumorigenic regulation of TMPRSS4 in lung cancer are unknown.

Methods:

miR-205 was identified as an overexpressed gene upon TMPRSS4 downregulation through microarray analysis. Cell migration and invasion assays and in vivo lung primary tumour and metastasis models were used for functional analysis of miR-205 overexpression in H2170 and H441 cell lines. Luciferase assays were used to identify a new miR-205 direct target in NSCLC.

Results:

miR-205 overexpression promoted an epithelial phenotype with increased E-cadherin and reduced fibronectin. Furthermore, miR-205 expression caused a G0/G1 cell cycle arrest and inhibition of cell growth, migration, attachment to fibronectin, primary tumour growth and metastasis formation in vivo. Integrin α5 (a proinvasive protein) was identified as a new miR-205 direct target in NSCLC. Integrin α5 downregulation in lung cancer cells resulted in complete abrogation of cell migration, a decreased capacity to adhere to fibronectin and reduced in vivo tumour growth, compared with control cells. TMPRSS4 silencing resulted in a concomitant reduction of integrin α5 levels.

Conclusion:

We have demonstrated for the first time a new molecular pathway that connects TMPRSS4 and integrin α5 through miR-205 to regulate cancer cell invasion and metastasis. Our results will help designing new therapeutic strategies to inhibit this novel pathway in NSCLC.  相似文献   

8.

Background:

Our recent studies of microRNA (miRNA) expression signatures demonstrated that microRNA-29s (miR-29s; miR-29a/b/c) were significantly downregulated in head and neck squamous cell carcinoma (HNSCC) and were putative tumour-suppressive miRNAs in human cancers. Our aim in this study was to investigate the functional significance of miR-29s in cancer cells and to identify novel miR-29s-mediated cancer pathways and responsible genes in HNSCC oncogenesis and metastasis.

Methods:

Gain-of-function studies using mature miR-29s were performed to investigate cell proliferation, migration and invasion in two HNSCC cell lines (SAS and FaDu). To identify miR-29s-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-29s target genes.

Results:

Restoration of miR-29s in SAS and FaDu cell lines revealed significant inhibition of cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that miR-29s modulated the focal adhesion pathway. Moreover, laminin γ2 (LAMC2) and α6 integrin (ITGA6) genes were candidate targets of the regulation of miR-29s. Luciferase reporter assays showed that miR-29s directly regulated LAMC2 and ITGA6. Silencing of LAMC2 and ITGA6 genes significantly inhibited cell migration and invasion in cancer cells.

Conclusion:

Downregulation of miR-29s was a frequent event in HNSCC. The miR-29s acted as tumour suppressors and directly targeted laminin–integrin signalling. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and metastasis and suggests novel therapeutic strategies for the disease.  相似文献   

9.

Background:

Our recent studies of microRNA (miRNA) expression signature demonstrated that microRNA-874 (miR-874) was significantly downregulated in maxillary sinus squamous cell carcinoma (MSSCC), and a putative tumour-suppressive miRNA in human cancers. Our aim of this study was to investigate the functional significance of miR-874 in cancer cells and to identify novel miR-874-mediated cancer pathways and responsible genes in head and neck squamous cell carcinoma (HNSCC).

Methods:

Gain-of-function studies using mature miR-874 were performed to investigate cell proliferation and cell cycle distribution in HNSCC cell lines (SAS and FaDu). To identify miR-874-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-874 target genes.

Results:

Expression levels of miR-874 were significantly downregulated in HNSCC tissues (including oral, pharyngeal and laryngeal SCCs) compared with normal counterpart epithelia. Restoration of miR-874 in SAS and FaDu cell lines revealed significant inhibition of cell proliferation and induction of G2/M arrest and cell apoptosis. Our expression data and in silico analysis demonstrated that miR-874 modulated the cell cycle pathway. Moreover, histone deacetylase 1 (HDAC1) was a candidate target of miR-874 regulation. Luciferase reporter assays showed that miR-874 directly regulated HDAC1. Silencing of the HDAC1 gene significantly inhibited cell proliferation and induced G2/M arrest and cell apoptosis in SAS cells.

Conclusions:

Downregulation of miR-874 was a frequent event in HNSCC. miR-874 acted as a tumour suppressor and directly targeted HDAC1. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and suggests novel therapeutic strategies for the disease.  相似文献   

10.

Background:

Wnt-signalling has an important role in renal cancer and it is modulated by genistein in other cancers. Recently, microRNAs (miRNAs) have emerged as new regulators of gene expression. Thus, we focused on miRNAs to examine the regulatory mechanism of genistein on the Wnt-signalling pathway in renal cell carcinoma (RCC).

Methods:

Initially, we investigated the effect of genistein on Wnt-signalling (TOPflash reporter assay (TCF reporter assays)) in renal cancer cells, and using microarray identified candidate miRNAs whose expression was decreased by genistein. We performed functional analyses and investigated the relationship between miRNA expression and renal cancer patient outcomes. We also did 3′UTR luciferase assays to look at direct miRNA regulation of Wnt-signalling-related genes.

Results:

Genistein promoted apoptosis while inhibiting RCC cell proliferation and invasion. Genistein also decreased TCF reporter activity in RCC cells. We found that miR-1260b was highly expressed and significantly downregulated by genistein in RCC cells. The expression of miR-1260b was significantly higher in renal cancer tissues compared with normal, and significantly related to overall shorter survival. In addition, miR-1260b promoted renal cancer cell proliferation and invasion in RCC cells. The 3′UTR luciferase activity of target genes (sFRP1, Dkk2, Smad4) was significantly decreased and their protein expression significantly upregulated in miR-1260b inhibitor-transfected renal cancer cells.

Conclusion:

Our data suggest that genistein inhibited Wnt-signalling by regulating miR-1260b expression in renal cancer cells.  相似文献   

11.

Background:

The ING family of type II tumour suppressors serve as both epigenetic ‘readers'' and target histone acetyl transferase (HAT) and histone deacetylase (HDAC) ‘writers'' of the epigenetic histone code. The ING1 protein has also been implicated in regulating microRNA (miRNA) levels. In this study, we identify a link between ING1b and the miRNA epigenetic network.

Methods:

Primary fibroblasts infected with adenoviruses expressing GFP control or GFP plus ING1b were examined for alterations in miRNA profiles using a miRNA PCR array. Additional experiments confirmed specificity and consequences of altered miRNA expression.

Results:

MicroRNAs miR-203, miR-375, miR-449b and miR-200c were increased by ING1b overexpression. Ectopic expression of miR-203 inhibited U2OS and MDA-MB-231 cancer cell growth, and induced G1 cell cycle arrest in U2OS cells as estimated by flow cytometry. Transfection with miR-203 inhibitor reversed the proliferation inhibition induced by ING1b in U2OS cells. CHIP assays showed that ING1b bound to the promoter of miR-203. Western blot analyses showed that CDK6, c-Abl and Src were downregulated by the transfection of miR-203.

Conclusion:

These results indicate that ING1b epigenetically regulates several miRNAs including miR-203. The several-fold increase in miR-203 by ING1b might inhibit cancer cell proliferation through coordinate downregulation of CDK6, c-Abl and Src.  相似文献   

12.

Background:

FAT4, a cadherin-related protein, was shown to function as a tumour suppressor; however, its role in human gastric cancer remains largely unknown. Here, we investigated the role of FAT4 in gastric cancer and examined the underlying molecular mechanisms.

Methods:

The expression of FAT4 was evaluated by immunohistochemistry, western blotting, and qRT–PCR in relation to the clinicopathological characteristics of gastric cancer patients. The effects of FAT4 silencing on cell proliferation, migration, and invasion were assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay, and migration and invasion assays in gastric cancer cell lines in vitro and in a mouse xenograft model in vivo.

Results:

Downregulation of FAT4 expression in gastric cancer tissues compared with adjacent normal tissues was correlated with lymph-node metastasis and poor survival. Knockdown of FAT4 promoted the growth and invasion of gastric cancer cells via the activation of Wnt/β-catenin signalling, and induced epithelial-to-mesenchymal transition (EMT) in gastric cancer cells, as demonstrated by the upregulation and downregulation of mesenchymal and epithelial markers. Silencing of FAT4 promoted tumour growth and metastasis in a gastric cancer xenograft model in vivo.

Conclusions:

FAT4 has a tumour suppressor role mediated by the modulation of Wnt/β-catenin signalling, providing potential novel targets for the treatment of gastric cancer.  相似文献   

13.

Background:

We have recently identified down-regulated microRNAs including miR-145 and miR-133a in bladder cancer (BC). The aim of this study is to determine the genes targeted by miR-145, which is the most down-regulated microRNA in BC.

Methods:

We focused on fascin homologue 1 (FSCN1) from the gene expression profile in miR-145 transfectant. The luciferase assay was used to confirm the actual binding sites of FSCN1 mRNA. Cell viability was evaluated by cell growth, wound-healing, and matrigel invasion assays. BC specimens were subjected to immunohistochemistry of FSCN1 and in situ hybridisation of miR-145.

Results:

The miR-133a as well as miR-145 had the target sequence of FSCN1 mRNA by the database search, and both microRNAs repressed the mRNA and protein expression of FSCN1. The luciferase assay revealed that miR-145 and miR-133a were directly bound to FSCN1 mRNA. Cell viability was significantly inhibited in miR-145, miR-133a, and si-FSCN1 transfectants. In situ hybridisation revealed that miR-145 expression was markedly repressed in the tumour lesion in which FSCN1 was strongly stained. The immunohistochemical score of FSCN1 in invasive BC (n=46) was significantly higher than in non-invasive BC (n=20) (P=0.0055).

Conclusion:

Tumour suppressive miR-145 and miR-133a directly control oncogenic FSCN1 in BC.  相似文献   

14.

Background:

MicroRNA-7 (miR-7) has been reported to be a tumour suppressor gene. However, whether it has a role in the growth of non-small-cell lung cancer (NSCLC) and what is its target involved in the tumour growth is still under investigation.

Methods:

NSCLC tissue sample, NSCLC cell lines and tissue microarray were investigated in this study. Total RNA, miRNA and protein were used for RT-PCR and western blot analysis. Immunohistochemistry was performed in tissues microarray. Cell culture and intervention experiments were performed in vitro and in vivo. Bioinformatics prediction, western blot and luciferase assay were identified the target of miR-7.

Results:

In this study, we found that the expression of miR-7 was significantly downregulated not only in NSCLC cell lines, but also in human NSCLC tissues compared with the matched adjacent tissues. Restoration of its expression through miR-7 mimics in A549 and H1299 NSCLC cells inhibited cell proliferation, colony formation, and cell-cycle progression in vitro. More importantly, the tumorigenicity in nude mice was reduced after administration of miR-7 in vivo. In advance, through bioinformatic analysis, luciferase assay and western blot, we identified a novel target of miR-7, PA28gamma (a proteasome activator) to be enrolled in the regulation with tumour. PA28gamma mRNA and protein levels are markedly upregulated in NSCLC cell lines and tumour samples, exhibiting a strong inverse relation with that of miR-7. In addition, knockdown of PA28gamma induced similar effects as overexpression of miR-7 in NSCLC cells. Furthermore, miR-7 overexpression or silencing of PA28gamma reduced the cyclinD1 expression at mRNA and protein level in NSCLC cell lines.

Conclusion:

All these findings strongly imply that the overexpression of PA28gamma resulted from miR-7 downexpression in NSCLC has an important role in promoting cancer cell progress and consequently results in NSCLC growth. Thus, strategies targeting PA28gamma and/or miR-7 may become promising molecular therapies in NSCLC treatment.  相似文献   

15.
16.

Background:

Transforming growth factor-β (TGF-β) is a major inducer of epithelial–mesenchymal transition (EMT) in different cell types. TGF-β-mediated EMT is thought to contribute to tumour cell spread and metastasis. Sialyl Lewis antigens synthesised by fucosyltransferase (FUT) 3 and FUT6 are highly expressed in patients with metastatic colorectal cancer (CRC) and are utilised as tumour markers for cancer detection and evaluation of treatment efficacy. However, the role of FUT3 and FUT6 in augmenting the malignant potential of CRC induced by TGF-β is unclear.

Methods:

Colorectal cancer cell lines were transfected with siRNAs for FUT3/6 and were examined by cell proliferation, invasion and migration assays. The expression and phosphorylation status of TGF-β downstream molecules were analysed by western blot. Fucosylation of TGF-β receptor (TβR) was examined by lectin blot analysis.

Results:

Inhibition of FUT3/6 expression by siRNAs suppressed the fucosylation of type I TβR and phosphorylation of the downstream molecules, thereby inhibiting the invasion and migration of CRC cells by EMT.

Conclusion:

Fucosyltransferase 3/6 has an essential role in cancer cell adhesion to endothelial cells by upregulation of sialyl Lewis antigens and also by enhancement of cancer cell migration through TGF-β-mediated EMT.  相似文献   

17.
18.

Background:

The Coxsackie and adenovirus receptor (CAR) has been shown to inhibit cancer cell proliferation, migration, and invasion. The underlying mechanisms, however, are poorly understood.

Methods:

The differential gene expression in the human colon cancer cell line DLD1 on RNAi-mediated functional CAR knockdown was analysed using oligo-array technology. Expression of α-catenin was determined by quantitative RT-PCR and western blotting. Proliferation, migration, and invasion after CAR knockdown were assessed by in vitro assays, and cell morphology in a three-dimensional context was evaluated using matrigel.

Results:

Oligo-array technology identified α-catenin as the strongest downregulated gene after CAR knockdown. Western blotting and quantitative RT-PCR confirmed a reduced α-catenin expression after CAR knockdown in DLD1 cells and in the rat intestinal cell line IEC-6. Functionally, both cell lines showed a marked increase in proliferation, migration, and invasion on CAR knockdown. In matrigel, both cell lines formed amorphous cell clusters in contrast to well-organised three-dimensional structures of CAR-expressing vector controls. Ectopic ‘re''-expression of α-catenin in DLD1 and IEC-6 CAR knockdown cells reversed these functional and morphological effects.

Conclusion

These data suggest that an interaction of CAR and α-catenin mediates the impact of CAR on cell proliferation, migration, invasion, and morphology.  相似文献   

19.

Background:

HOX gene expression is altered in many cancers; previous microarray revealed changes in HOX gene expression in head and neck squamous cell carcinoma (HNSCC), particularly HOXD10.

Methods:

HOXD10 expression was assessed by qPCR and immunoblotting in vitro and by immunohistochemistry (IHC) in tissues. Low-expressing cells were stably transfected with HOXD10 and the phenotype assessed with MTS, migration and adhesion assays and compared with the effects of siRNA knockdown in high-HOXD10-expressing cells. Novel HOXD10 targets were identified using expression microarrays, confirmed by reporter assay, and validated in tissues using IHC.

Results:

HOXD10 expression was low in NOKs, high in most primary tumour cells, and low in lymph node metastasis cells, a pattern confirmed using IHC in tissues. Overexpression of HOXD10 decreased cell invasion but increased proliferation, adhesion and migration, with knockdown causing reciprocal effects. There was no consistent effect on apoptosis. Microarray analysis identified several putative HOXD10-responsive genes, including angiomotin (AMOT-p80) and miR-146a. These were confirmed as HOXD10 targets by reporter assay. Manipulation of AMOT-p80 expression resulted in phenotypic changes similar to those on manipulation of HOXD10 expression.

Conclusions:

HOXD10 expression varies by stage of disease and produces differential effects: high expression giving cancer cells a proliferative and migratory advantage, and low expression may support invasion/metastasis, in part, by modulating AMOT-p80 levels.  相似文献   

20.
M Wang  C Zhao  H Shi  B Zhang  L Zhang  X Zhang  S Wang  X Wu  T Yang  F Huang  J Cai  Q Zhu  W Zhu  H Qian  W Xu 《British journal of cancer》2014,110(5):1199-1210

Background:

MicroRNAs (miRNAs) are involved in gastric cancer development and progression. However, the expression and role of miRNAs in gastric cancer stromal cells are still unclear.

Methods:

The miRNAs differentially expressed in gastric cancer tissue-derived mesenchymal stem cells (GC-MSCs) relative to adjacent non-cancerous tissue-derived MSCs (GCN-MSCs) and in cancer tissues relative to adjacent non-cancerous tissues were screened using miRNA microarray and validated by quantitative RT–PCR. The impact of GC-MSCs on HGC-27 cells was observed in vitro using colony formation and transwell assays, and these cells were subcutaneously co-injected into mice to assess tumour growth in vivo. Exogenous downregulation of miR-221 expression in cells was achieved using an miRNA inhibitor.

Results:

miR-214, miR-221 and miR-222 were found to be commonly upregulated in GC-MSCs and cancer tissues. Their levels were tightly associated with lymph node metastasis, venous invasion and the TNM stage. Gastric cancer tissue-derived mesenchymal stem cells significantly promoted HGC-27 growth and migration and increased the expression of miR-221 via paracrine secretion, and the targeted inhibition of miR-221 in GC-MSCs could block its tumour-supporting role. GC-MSC-derived exosomes were found to deliver miR-221 to HGC-27 cells and promoted their proliferation and migration.

Conclusions:

Gastric cancer tissue-derived mesenchymal stem cells favour gastric cancer progression by transferring exosomal miRNAs to gastric cancer cells, thus providing a novel mechanism for the role of GC-MSCs and new biomarkers for gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号