首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological reaction of sensory neurons of dorsal root ganglia after peripheral nerve transection was investigated by a nerve tracing method using E. coli lacZ (beta-galactosidase) gene recombinant adenovirus. The sciatic nerve of the rat was transected and inoculated with the gene recombinant adenovirus from the cutting end of nerve fibers. The fixation was accomplished from one to six weeks after inoculation. A whole mount specimen was observed after the reaction in a X-galactocidase substrate. Newly formed sprouting processes of dorsal root ganglion (DRG) cells appeared, all of them sprouting from the primary segment of DRG cells. Developed branches were morphologically categorized in to two types: one was the "linear type" which showed diverged branches running straightly along the major axis of the DRG; the other was the "winding type" which exhibited a random running pattern to the original axons and wound and extended in all directions in dorsal root ganglia with many branches. Many of this type encircled other cell bodies and formed a ring-like structure. There was no difference in the size of cell bodies in either type or between the ring-like structure forming the cells and those cells encircled by them.  相似文献   

2.
The motor and sensory fiber arrangements in the proximal region of the spinal nerves are important for understanding the relationship of the peripheral nerves to neuron distribution. On the other hand, the fiber arrangements are also important for the treatment of peripheral nerve grafting. We studied the fiber arrangements of two divisions (ventral and dorsal) in the proximal region of the brachial plexus and the fiber arrangements of the lateral cutaneous rami in Th7 and Th8 intercostal nerves in adult rats with a method using the fluorescent pigments DiI and DiO. Results showed that fiber arrangements belonging to the two divisions have a specific separate distribution in the distal region. However, this specific separate distribution form was absent in the proximal region of the spinal nerves in the plexus. Fiber arrangements of the lateral cutaneous ramus in the anterior branches of the thoracic nerves (intercostal nerves) were also observed in comparison with those in the brachial plexus by the same method. In the intercostal nerves, fibers of the lateral cutaneous ramus were distributed in the dorsal portion from distal to proximal. These results suggest that there are two types of fiber arrangement in the proximal regions of the spinal nerves: a ventrodorsal distributional type, comprising intercostal nerves and the dorsal branches of the spinal nerves; and a mixed type, comprising the anterior branches of the cervical and brachial (and perhaps lumbar) plexuses. On the other hand, fibers of the lateral cutaneous rami in the intercostal nerves were distributed on the dorsal part of the nerves. These results of fiber arrangement analysis for the intercostal nerves may offer an opportunity to improve the effect of treatments using peripheral nerve grafting and suturing in the brachial and lumbar plexus with intercostal nerves.  相似文献   

3.
Intestinal inflammation induces hyperexcitability of dorsal root ganglia sensory neurons, which has been implicated in increased pain sensation. This study examined whether alteration of sodium (Na+) and/ or potassium (K+) currents underlies this hyperexcitability. Ileitis was induced in guinea pig ileum with trinitrobenzene sulphonic acid (TBNS) and dorsal root ganglion neurons innervating the site of inflammation were identified by Fast Blue or DiI fluorescence labelling. Whole cell recordings were made from acutely dissociated small-sized neurons at 7–10 days. Neurons exhibited transient A-type and sustained outward rectifier K+ currents. Compared to control, both A-type and sustained K+ current densities were significantly reduced (42 and 34 %, respectively;   P < 0.05  ) in labelled neurons from the inflamed intestine but not in non-labelled neurons. A-type current voltage dependence of inactivation was negatively shifted in labelled inflamed intestine neurons. Neurons also exhibited tetrodotoxin-sensitive and resistant Na+ currents. Tetrodotoxin-resistant sodium currents were increased by 37 % in labelled neurons from the inflamed intestine compared to control (   P < 0.01  ), whereas unlabelled neurons were unaffected. The activation and inactivation curves of these currents were unchanged by inflammation. These data suggest ileitis increases excitability of intestinal sensory neurons by modulating multiple ionic channels. The lack of effect in non-labelled neurons suggests signalling originated at the nerve terminal rather than through circulating mediators and, given that Na+ currents are enhanced whereas K+ currents are suppressed, one or more signalling pathways may be involved.  相似文献   

4.
Nitric oxide synthase (NOS) was selectively stained in nerve fibers of the uterine cervix and neurons of the paracervical (PG) and dorsal root ganglia (DRG) by NADPH diaphorase histochemistry. In the cervix, numerous NADPH-diaphorase-positive nerve fibers were observed in the myometrium, endometrium and around arteries. In addition, a subpopulation of neurons within ganglia that innervate the cervix, i.e., the PG and DRG, were NADPH-diaphorase positive; thus the fibers in the cervix could be sensory and/or autonomic. NADPH-diaphorase/NOS localization identifies sites where nitric oxide (NO) can be synthesized. Since NO relaxes vascular and nonvascular smooth muscle, the prevalence and anatomical localization of NADPH-diaphorase-positive fibers suggest that they could influence functions of the uterine cervix.  相似文献   

5.
6.
Qualitative and quantitative examination was performed to evaluate the expression of peripherin and 200 kDa neurofilament in the sensory compartment of the peripheral nervous system of the rat both in vivo and in a new in vitro model. Under physiological conditions, these two neuronal intermediate filaments show different expression patterns in sensory neurons. To have a more complete comprehension of the role of these intermediate filaments and to fill in the blanks left in previously reported literature, we demonstrate in vivo using a morphological approach that peripherin and 200 kDa neurofilament define two distinct subpopulations within the dorsal root ganglia sensory neurons. Moreover, peripherin is specifically expressed in unmyelinated fibers while 200 kDa neurofilament is expressed in myelinated fibers. Additionally, in vitro analysis of RNA taken from dorsal root ganglia explants suggested that 200 kDa neurofilament is downregulated and peripherin is transiently expressed throughout sensory fiber regrowth. In particular, both neuronal intermediate filaments are downregulated immediately after sensory fiber axotomy thus suggesting that neither peripherin nor 200 kDa neurofilament has a role in the first steps of fiber regrowth. However, the upregulation of peripherin a few days after the beginning of fiber regrowth in vitro suggests that low levels of peripherin may be require to carry on the sequence of events involved in the correct regeneration and direction of sensory fibers.  相似文献   

7.
Spike activity in dorsal root ganglion (DRG) neurons depolarizes passive neighbors that share the same ganglion. We asked whether age or prior nerve injury affect this 'cross-depolarization' signal. Intracellular recordings made from excised DRGs in vitro revealed that the prevalence and duration of cross-depolarization were no greater in adult than in young rats, and that its amplitude was significantly smaller in adults. The amplitude of cross-depolarization was not affected by nerve injury. The decrease in membrane input resistance (R(in)) observed during cross-depolarization was less than that expected from equivalent depolarization alone. This affirms prior evidence that the neural process underlying cross-depolarization causes a net increase in R(in).  相似文献   

8.
D A Riley  S Ellis  J L Bain 《Neuroscience》1984,13(1):189-206
Some of the myelinated axons in rat peripheral nerves possess marked axoplasmic carbonic anhydrase activity [Riley, Ellis and Bain (1982) J. Histochem. Cytochem. 30, 1275-1288; Riley and Lang (1984) J. Hand Surg. 9A, 112-120]. A mixture of reactive and nonreactive neurons was a general observation in cervical, thoracic and lumbar ganglia. Nonmyelinated axons in lumbar dorsal roots were nonreactive; this was consistent with the lack of carbonic anhydrase in small sensory neurons. The carbonic anhydrase cytochemical method marked the larger afferent or sensory neurons and distinguished them from the smaller sensory neurons which were devoid of carbonic anhydrase activity. Nonmyelinated axons in the lumbar ventral roots were also nonreactive. Examination of muscle spindle innervation revealed staining of the primary sensory and gamma motor endings. This was strongly suggestive that some of the reactive sensory neurons were primary afferents and a portion of the reactive ventral root axons were gamma motor. The reactive central processes of spinal neurons sent collaterals into the grey matter of the spinal cord, entered the dorsal funiculi, and terminated in synaptic glomeruli in the cuneate and gracilis nuclei. Oligodendroglial cells appeared to be the only intrinsic cellular elements of the brain stem and spinal cord that exhibited high carbonic anhydrase activity. Both oligodendroglial and Schwann cells exhibited intense carbonic anhydrase activity in thin pockets of cytoplasm internal to compact myelin. The subcellular distribution of reaction product within sensory neurons and oligodendroglial cells agreed with biochemical reports of cytosol and membrane-bound forms of carbonic anhydrase. A general staining of the cytoplasm was suggestive of soluble carbonic anhydrase fixed in situ by the glutaraldehyde. Clumps of reaction product on the cytoplasmic surface of the endoplasmic reticulum possibly represented membrane-bound enzyme. Most of the membrane-bound carbonic anhydrase was associated with the internal membranes rather than the axolemma or limiting plasma membrane of the axon. In contrast to biochemical reports, a small fraction of neuronal mitochondria exhibited staining in the intracristal spaces. We suggest that the association of carbonic anhydrase with endoplasmic reticulum and mitochondria implicates the enzyme in regulating intracellular calcium because both organelles are known to sequester calcium.  相似文献   

9.
In a previous study we provided evidence that dorsal root ganglion (DRG) neurons of different phenotypes have different birthdates. The present study aimed at determining if birthdates of DRG neurons are related to different types of peripheral nerves, namely cutaneous versus muscle, and somatic versus visceral. Pregnant rats were injected intraperitoneally with bromodeoxyuridine (BrdU) to label the neurons on one of the embryonic days E12–E16. When the progeny rats reached adulthood, a mixture of 1% B-fragment of cholera toxin and 1% isolectin B4 from Griffonia simplicifolia I was injected into the peripheral nerves, or a 5% Fluoro-Gold solution was applied to the transected end of the nerves. The saphenous and sural nerves were used as cutaneous nerves, the gastrocnemius nerve as a muscle nerve, the intercostal nerves T9–11 as somatic nerves and the greater splanchnic nerve as a visceral nerve. Cell size measurements were made of DRG neurons labeled from the two cutaneous nerves and the muscle nerve, as well as of neurons of the saphenous and gastrocnemius nerves labeled by BrdU at different embryonic stages. Most of the DRG neurons of the muscle and intercostal nerves were generated early, with peaks at E13, and those of the cutaneous and visceral afferent nerves later, with peaks at E14. The temporal differences were reflected in the cell size spectrum, the muscle nerve having a greater proportion of large neurons compared to the cutaneous nerves. The findings add to previous knowledge regarding the sequence of development of different DRG phenotypes.  相似文献   

10.
11.
Current surgical treatment of spinal root injuries aims at reconnecting ventral roots to the spinal cord while severed dorsal roots are generally left untreated. Reactive changes in dorsal root ganglia (DRGs) and in injured dorsal roots after such complex lesions have not been analysed in detail. We studied dorsal root remnants and lesioned DRGs 6 months after C7 dorsal rhizotomy, ventral root avulsion and immediate ventral root replantation in adult rabbits. Replanted ventral roots were fixed to the spinal cord with fibrin glue only or with glue containing ciliary neurotrophic factor and/or brain-derived neurotrophic factor. Varying degrees of degeneration were observed in the deafferented dorsal spinal cord in all experimental groups. In cases with well-preserved morphology, small myelinated axons extended into central tissue protrusions at the dorsal root entry zone, suggesting sprouting of spinal neuron processes into the central dorsal root remnant. In lesioned DRGs, the density of neurons and myelinated axons was not significantly altered, but a slight decrease in the relative frequency of large neurons and an increase of small myelinated axons was noted (significant for axons). Unexpectedly, differences in the degree of these changes were found between control and neurotrophic factor-treated animals. Central axons of DRG neurons formed dorsal root stumps of considerable length which were attached to fibrous tissue surrounding the replanted ventral root. In cases where gaps were apparent in dorsal root sheaths, a subgroup of dorsal root axons entered this fibrous tissue. Continuity of sensory axons with the spinal cord was never observed. Some axons coursed ventrally in the direction of the spinal nerve. Although the animal model does not fully represent the situation in human plexus injuries, the present findings provide a basis for devising further experimental approaches in the treatment of combined motor/sensory root lesions.  相似文献   

12.
Morphine induces profound analgesic tolerance in vivo despite inducing little internalization of the mu opioid receptor (muOR). Previously proposed explanations suggest that this lack of internalization could either lead to prolonged signaling and associated compensatory changes in downstream signaling systems, or that the receptor is unable to recycle and resensitize and so loses efficacy, either mechanism resulting in tolerance. We therefore examined, in cultured neurons, the relationship between muOR internalization and desensitization in response to two agonists, D-Ala2, N-MePhe4, Gly5-ol-enkephalin (DAMGO) and morphine. In addition, we studied the chimeric mu/delta opioid receptor (mu/ partial differentialOR) which could affect internalization and desensitization in neurons. Dorsal root ganglia neurons from muOR knockout mice were transduced with an adenovirus expressing either receptor and their respective internalization, desensitization and trafficking profiles determined. Both receptors desensitized equally, measured by Ca2+ current inhibition, during the first 5 min of agonist exposure to DAMGO or morphine treatment, although the mu/partial differentialOR desensitized more extensively. Such rapid desensitization was unrelated to internalization as DAMGO, but not morphine, internalized both receptors after 20 min. In response to DAMGO the mu/partial differentialOR internalized more rapidly than the muOR and was trafficked through Rab4-positive endosomes and lysosomal-associated membrane protein-1-labeled lysosomes whereas the muOR was trafficked through Rab4 and Rab11-positive endosomes. Chronic desensitization of the Ca2+ current response, after 24 h of morphine or DAMGO incubation, was seen in the DAMGO, but not morphine-treated, muOR-expressing cells. Such persistence of signaling after chronic morphine treatment suggests that compensation of downstream signaling systems, rather than loss of efficacy due to poor receptor recycling, is a more likely mechanism of morphine tolerance in vivo. In contrast to the muOR, the mu/partial differentialOR showed equivalent desensitization whether morphine or DAMGO treated, but internalized further with DAMGO than morphine. Such ligand-independent desensitization could be a result of the observed higher rate of synthesis and degradation of this chimeric receptor.  相似文献   

13.
We previously reported experimental sensory neuropathy in rabbit induced by the immunization of ganglioside GD1b. The major pathological change in diseased rabbits was degeneration of primary sensory neurons with central axons extending to the dorsal column of the spinal cord. The loss of primary sensory neurons that mediate proprioceptive sensation prompted us to investigate the expression of trkC in dorsal root ganglia (DRG) because this type of neuron is thought depend mainly on neurotrophin-3-mediated trkC signaling. Northern blotting analysis revealed markedly reduced expression of trkC in DRG of diseased rabbits in acute phase. This result together with the absence of lymphocytic infiltration in DRG of diseased rabbits at any stage suggests the anti-GD1b antibody-mediated downregulation of trkC expression could be one of the pathogenesis of this experimental sensory ataxic neuropathy.  相似文献   

14.
目的:研究蛋白酶活化受体4(PAR4)在小鼠背根神经节(DRG)感觉神经元的表达,及与瞬时受体电位香草酸亚型1(TRPV1)和降钙素基因相关肽(CGRP)的共存,为探讨PAR4在感觉神经伤害性刺激信号传导中的作用提供形态学依据。方法:免疫荧光组织化学双标方法结合激光共聚焦显微镜技术。结果:DRG内大量的感觉神经元表达PAR4。PAR4阳性胞体多为中、小型神经元,并可见部分阳性神经纤维。免疫荧光双标显示许多PAR4阳性神经元表达TRPV1或与CGRP共存。几乎所有的TRPV1阳性神经元均表达PAR4,大部分CGRP标记神经元呈PAR4阳性,另外还可见到许多CGRP/TRPV1双标神经元。结论:小鼠DRG初级感觉神经元广泛的表达PAR4,该受体可能通过影响TRPV1和CGRP参与伤害性刺激的调节。  相似文献   

15.
Several lines of evidence indicate that peripheral 5-HT2A receptors are involved in the development of inflammatory and neuropathic pain. However, their localization in sensory cell bodies is not accurately known. We therefore studied 5-HT2A receptor distribution in rat lumbar dorsal root ganglia using immunocytochemistry. Forty percent of L3 lumbar dorsal root ganglion cells were immunoreactive for 5-HT2A receptor. Most were small- to medium-sized cell bodies. Double-labeled experiments revealed that they expressed various chemical phenotypes. The smaller 5-HT2AR cell bodies often bind the isolectin B4 although some 5-HT2AR cell bodies also express substance P (SP). Many 5-HT2A-positive small dorsal root ganglion cells expressed the capsaicin receptor transient receptor potential vanilloid type 1 receptor (TRPV1), confirming their nociceptive nature. In addition, a few large cell bodies were labeled for 5-HT2A, and they also expressed NF200 suggesting that they were at the origin of Aδ or Aβ fibers. A total absence of double labeling with parvalbumin showed that they were not proprioceptors. 5-HT2A immunoreactivity in dorsal root ganglia cells was found in the cytoplasm and along the plasma membrane at the interface between sensory cell and the adjacent satellite cells; this distribution was confirmed under the electron microscope, and suggested a functional role for the 5-HT2A receptor at these sites. We therefore investigated the presence of 5-HT and 5-HIAA in lumbar dorsal root ganglia by high performance liquid chromatography. There were 5.75±0.80 ng 5-HT and 3.19±0.37 ng 5-hydroxyindoleacetic acid (5-HIAA) per mg of protein with a ratio 5-HIAA/5-HT of 0.67±0.10, similar to values typically observed in brain tissues. These findings suggest that 5-HT, via the 5-HT2AR, may be involved in the peripheral control of sensory afferents, mainly unmyelinated nociceptors and to a lesser extent neurons with Aδ or Aβ fibers, and in the control of cellular excitability of some dorsal root cell bodies through a paracrine mechanism of action.  相似文献   

16.
Sizes of neuronal somata in the cat cervical dorsal root ganglia were determined at different levels (C1-C8). The average value and class distribution of mean cell diameter were analyzed. The ganglia from C1 to C5 could be clearly distinguished from those at levels of brachial plexus afferents (C6-C8) with respect to cell size range, distribution and average. The size distribution, most often limited to 70 microns from C1 to C5, skewed to more than 90 microns from C6 to C8. Cells in the 35-50 microns range of diameter constituted the main portion of the cell population (49-52%) at the C1-C5 levels, whereas from C6 to C8 51-77% of the ganglion cell bodies were more than 50 microns in diameter. The cell size distribution of afferents projecting from C1 to C5 and supplying different muscle or cutaneous targets was studied following retrograde labeling with horseradish peroxidase conjugated to wheatgerm agglutinin. Sizes of cell bodies of biventer cervicis (postural muscle), phrenic (purely respiratory muscle) and cutaneous afferents were all similar. The labelled cell bodies were in the majority (51-64%) less than 35 microns in diameter and ranged towards smaller diameters than counterstained cells in the corresponding ganglia. In spite of similarities in cell size distribution it was estimated from the fiber caliber spectra of the labelled afferents that both unmyelinated and myelinated cutaneous afferents originate from larger cell bodies than muscle afferents in the same diameter range.  相似文献   

17.
Degenerative change in cervical segments C5-C7 was documented to determine whether osteo-ligamentous adaptations were age-related. In addition, companion morphological studies were carried out to determine whether parallel changes occurred in related soft tissues, including DRG. Independent of the provoking stimulus, aberrant soft tissue change may be expected with segmental degeneration. Two associations were identified: between the incidence of segmental degeneration and severity of DRG distortion, and between segmental degeneration and DRG inflammatory mast cell density. Peripheral type C cells seemed more susceptible to compression in circumstances of DRG distortion. In light of neuropeptide expression in these cell types, predominant type C cell compression may be clinically relevant in the noxious cascade contributing to the sensation of pain.  相似文献   

18.
Summary Dorsal root ganglion neurons supplying peroneus longus, soleus and gastrocnemius medius muscles and the sural nerve of the rat were labelled with horseradish peroxidase and analysed for their carbonic anhydrase content. Staining of the sections was done either on the same or on alternate slides. Both methods led to the same results, despite a slight fading of the carbonic anhydrase reaction in double-stained sections. The data indicated that the musles under study were supplied by approximately the same number of horseradish peroxidase-labelled cells, irrespective of their differences in size. 74.9% of these labelled neurons had diameters exceeding 30 m and 52.4% of them also stained for carbonic anhydrase. The double-labelled cells represented 66.9% of the population of large neurons (>30 m) and comprised most of those measuring over 47.5 m. Richness in carbonic anhydrase of the large muscle afferent neurons may be linked to their innervation of the stretch receptors, as components of an active apparatus which includes the gamma motor axons which also stain positively for carbonic anhydrase. in contrast, the ganglion cells supplying the sural nerve were almost totally devoid of carbonic anhydrase, as only 6.4% showed double labelling. This contingent possibly represents the muscle afferents of the small motoneural population which supplies, through this nerve, part of the foot musculature of the rat.  相似文献   

19.
After peripheral nerve injury, the number of sensory neurons in the adult dorsal root ganglia (DRG) is initially reduced but recovers to a normal level several months later. The mechanisms underlying the neuronal recovery after injury are not clear. Here, we showed that in the DRG explant culture, a subpopulation of cells that emigrated out from adult rat DRG expressed nestin and p75 neurotrophin receptor and formed clusters and spheres. They differentiated into neurons, glia, and smooth muscle cells in the presence or absence of serum and formed secondary and tertiary neurospheres in cloning assays. Molecular expression analysis demonstrated the characteristics of neural crest progenitors and their potential for neuronal differentiation by expressing a set of well-defined genes related to adult stem cells niches and neuronal fate decision. Under the influence of neurotrophic factors, some of these progenitors gave rise to neuropeptide-expressing cells and protein zero-expressing Schwann cells. In a 5-bromo-2'-deoxyuridine chasing study, we showed that these progenitors likely originate from satellite glial cells. Our study suggests that a subpopulation of glia in adult DRG is likely to be progenitors for neurons and glia and may play a role in neurogenesis after nerve injury. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

20.
Everill B  Kocsis JD 《Neuroscience》2000,100(2):417-422
Whole-cell patch-clamp techniques were used to study the effects of nerve growth factor on voltage-dependent potassium conductance in normal and axotomized identified large cutaneous afferent dorsal root ganglion neurons (48-50 micrometer diameter) many of which probably give rise to myelinated Abeta fibers. K-currents were isolated by blocking Na- and Ca-currents with appropriate ion replacement and channel blockers. Separation of current components was achieved on the basis of response to variation in conditioning voltage. Cutaneous afferents were labeled by the retrograde marker hydroxy-stilbamide (FluoroGold) which was injected into the skin of the foot. The sciatic nerve was either ligated or crushed with fine forceps five to seven days later. Neurons were dissociated 14-17 days after injury. The cut ends of the sciatic nerves were positioned into polyethylene tubes, which were connected to mini-osmotic pumps filled with either nerve growth factor or sterile saline. Control neurons displayed a prominent sustained K-current and the transient potassium currents "A" and "D". Nerve ligation, which blocks target reconnection resulted in near 50% reduction of total outward current; isolated sustained K-current and transient A-current were reduced by a comparable amount. Nerve crush, which allows regeneration to peripheral targets and exposure of the regenerating nerve to the distal nerve segment, resulted in a small reduction in sustained K-current but no reduction in transient A-current compared to controls. Levels of transient A-current and sustained K-current were maintained at control levels after nerve growth factor treatment.These results indicate that the large reduction in transient A-current, and in sustained K-current, observed in cutaneous afferent cell bodies after nerve ligation is prevented by application of nerve growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号