首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-resolved (TR) fluorescence resonance energy transfer (FRET) is a widely accepted technology for high throughput screening (HTS), being able to detect and quantify the interactions of specific biomolecules in a homogeneous format. TR-FRET has several advantages for HTS applications that reduce assay artifacts such as compound interference. However, in some cases artifacts due to compound autofluorescence, color quenching, or signal stability are still observed. This report presents strategies addressing these issues by several means. One recommendation is the recording and visualization of differences in the donor/acceptor fluorescence, which allows the identification of compound artifacts. Another suggestion is to adjust the time delay, between excitation and recording of the fluorescence, in order to reduce compound interference. Furthermore, configuring the assay to allow the TR-FRET measurement to be taken at different time points, creating a reaction time course, allows background correction for each sample. Finally, the optimization of the FRET pair, to ensure assay signal stability under screening conditions, can improve the assay quality. This report presents examples of how these simple steps can be applied to enhance the quality of TR-FRET screening campaigns.  相似文献   

2.
Guanosine triphosphate binding protein (G protein)-coupled receptors (GPCRs) are a large class of pharmaceutical drug targets. With the increasing popularity of functional assays for high throughput screening, there arises an increasing need for robust second messenger assays that reflect GPCR activation and are readily amenable for miniaturization. GPCRs that upon agonist stimulation modulate adenylyl cyclase activity, and, consequently, cellular cyclic adenosine monophosphate (cAMP) levels, via the G protein Gs or Gi, form a subset of therapeutic targets. While there are several cAMP assays currently available, most are not scalable for miniaturization into the 1536-well format employed for automated high throughput screening of large chemical libraries. Here, we describe a cAMP assay based on the enzyme fragmentation complementation (EFC) of beta-galactosidase. In this assay, recombinant cells expressing Gs- or Gi-coupled receptors exhibit robust and reproducible pharmacology for agonists and antagonists, as measured by cAMP levels. Furthermore, the EFC cAMP assay offers sufficient sensitivity to be used with cells expressing endogenous GPCRs. We demonstrate the miniaturization of this assay into a 1536-well format with comparable sensitivity and plate statistics to those of the 384-well assay for both Gs- and Gi-coupled receptors, and its suitability for miniaturized high throughput screening.  相似文献   

3.
F?rster (fluorescence) resonance energy transfer (FRET) and fluorescence polarization (FP) are widely used technologies for monitoring bimolecular interactions and have been extensively used in high-throughput screening (HTS) for probe and drug discovery. Despite their popularity in HTS, it has been recognized that different assay technologies may generate different hit lists for the same biochemical interaction. Due to the high cost of large-scale HTS campaigns, one has to make a critical choice to employee one assay platform for a particular HTS. Here we report the design and development of a dual-readout HTS assay that combines two assay technologies into one system using the Mcl-1 and Noxa BH3 peptide interaction as a model system. In this system, both FP and FRET signals were simultaneously monitored from one reaction, which is termed "Dual-Readout F(2) assay" with F(2) for FP and FRET. This dual-readout technology has been optimized in a 1,536-well ultra-HTS format for the discovery of Mcl-1 protein inhibitors and achieved a robust performance. This F(2) assay was further validated by screening a library of 102,255 compounds. As two assay platforms are utilized for the same target simultaneously, hit information is enriched without increasing the screening cost. This strategy can be generally extended to other FP-based assays and is expected to enrich primary HTS information and enhance the hit quality of HTS campaigns.  相似文献   

4.
Abstract: Fluorescence resonance energy transfer (FRET) has emerged as a powerful tool to the study of protein-protein interactions, such as receptor-ligand binding. However, the application of FRET to the study of G protein-coupled receptors (GPCRs) has been limited by the method of labeling receptor with fluorescence probes. Here we described a novel time-resolved (TR)-FRET method to study GPCR-ligand binding by using human complement 5a (C5a) receptor (C5aR) as a model system. Human C5aR was expressed in human embryonic kidney 293 cells with a hemagglutinin (HA) epitope at the N-terminus. Purified human C5a was labeled with terbium chelate and used as the fluorescence donor. Monoclonal anti-HA antibody conjugated with Alexa Fluor 488 was used as the fluorescence acceptor. Robust FRET signal was observed when the labeled ligand and C5aR membrane were mixed in the presence of the conjugated anti-HA antibody. This FRET signal was specific and saturable. C5a binding affinity to C5aR measured by the FRET assay was consistent with the data as determined by competition binding analysis using radiolabeled C5a. The FRET assay was also used to determine affinity of C5aR antagonists by competition binding analysis, and the data are similar to those from radioligand binding studies. Compared to the commonly used radioligand binding assay, this TR-FRET-based assay provides a nonradioactive, faster, and sensitive homogeneous assay format that could be easily adapted to high-throughput screening. The principle of this assay should also be applicable to other GPCRs, especially to those receptors with peptide or protein ligands.  相似文献   

5.
The discovery of novel therapeutic agents that act on voltage-gated sodium channels requires the establishment of high-capacity screening assays that can reliably measure the activity of these proteins. Fluorescence resonance energy transfer (FRET) technology using membrane potential-sensitive dyes has been shown to provide a readout of voltage-gated sodium channel activity in stably transfected cell lines. Due to the inherent rapid inactivation of sodium channels, these assays require the presence of a channel activator to prolong channel opening. Because sodium channel activators and test compounds may share related binding sites on the protein, the assay protocol is critical for the proper identification of channel inhibitors. In this study, high throughput, functional assays for the voltage-gated sodium channels, hNa(V)1.5 and hNa(V)1.7, are described. In these assays, channels stably expressed in HEK cells are preincubated with test compound in physiological medium and then exposed to a sodium channel activator that slows channel inactivation. Sodium ion movement through open channels causes membrane depolarization that can be measured with a FRET dye membrane potential-sensing system, providing a large and reproducible signal. Unlike previous assays, the signal obtained in the agonist initiation assay is sensitive to all sodium channel modulators that were tested and can be used in high throughput mode, as well as in support of Medicinal Chemistry efforts for lead optimization.  相似文献   

6.
Adenine phosphoribosyltransferase plays a role in purine salvage by catalyzing the direct conversion of adenine to adenosine monophosphate. The involvement of the purine salvage pathway in tumor proliferation and angiogenesis makes adenine phosphoribosyltransferase a potential target for oncology drug discovery. We have expressed and characterized recombinant, N-terminally His-tagged human adenine phosphoribosyltransferase. Two assay formats were assessed for use in a high throughput screen: a spectrophotometric-based enzyme-coupled assay system and a radiometric ionic capture scintillation proximity bead assay format. Ultimately, the scintillation proximity assay format was chosen because of automated screening compatibility limitations of the coupled assay. We describe here the biochemical characterization of adenine phosphoribosyltransferase and the development of a robust, homogeneous, 384-well assay suitable for high throughput screening.  相似文献   

7.
A serious limitation of the conventional comet assay (single cell gel electrophoresis) is the restriction on the number of samples that can be processed in one experiment, imposed by the size of the electrophoresis platform. One approach to increasing throughput is to reduce the size of gels. We here compare the conventional system of two large gels on a microscope slide, with two recent developments, namely 12 minigels per slide, and a format with 96 minigels on GelBond® film. We used cells treated with X-rays or methylmethanesulphonate (MMS). The level of damage detected (% tail DNA) in X-irradiated or MMS-treated cells was not affected by the format used. Parallel experiments, using all three formats, were performed with MMS-treated cells in two independent laboratories; the difference in results between the two laboratories was of borderline significance. The potential problem of anomalous comets seen at the border of the gel, the so-called ‘edge effects’, has been addressed. A reliable, high throughput comet assay has applications in genotoxicity testing (particularly for in vivo studies with samples from different organs) as well as ecogenotoxicology and human biomonitoring, where the numbers of samples collected can be considerable.  相似文献   

8.

Purpose

The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® – a commercially available fluorescent rotor dye – for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.g. SYPRO? Orange) interact with surfactants, complicating DSF measurements.

Methods

CRM197 formulations were prepared and analyzed in standard 96-well plate rT-PCR system, using SYPRO? Orange and PROTEOSTAT® dyes. Orthogonal techniques (DLS and IPF) are employed to confirm unfolding/aggregation in selected formulations. Selected formulations are subjected to non-thermal stresses (stirring and shaking) in plate based format to characterize aggregation with PROTEOSTAT®.

Results

Agreement is observed between SYPRO? Orange (unfolding) and PROTEOSTAT® (aggregation) DSF melt temperatures across wide range of non-surfactant formulations. PROTEOSTAT® can clearly detect temperature induced aggregation in low concentration (0.2 mg/mL) CRM197 formulations containing surfactant. PROTEOSTAT® can be used to explore aggregation due to non-thermal stresses in plate based format amenable to high throughput screening.

Conclusions

DSF measurements with complementary extrinsic dyes (PROTEOSTAT®, SYPRO? Orange) are suitable for high throughput screening of antigen thermal stability, across a wide range of relevant formulation conditions – including surfactants –with standard, plate based rT-PCR instrumentation.
  相似文献   

9.
Several European Union legislations request the use of in vitro methods for toxicological evaluations, including sensitization, in order to increase consumer safety but also to reduce the use of animals. The EU project SENS-IT-IV addresses the need of developing predictive in vitro tests to assess contact and respiratory hypersensitivity reactions. In this context, we have recently reported the possibility to use IL-18 production in the human keratinocyte cell line NCTC 2544 to discriminate contact sensitizer from irritants and low molecular weight respiratory allergens. The aims of the present study were to further develop this assay in order to optimize experimental conditions; to develop a 96-well plate format to establish a high throughput assay; to test the performance of other available keratinocyte cell lines, and to understand the signal transduction pathway involved in p-phenylenediamine (PPD)-induced IL-18 production.If cells reach confluence at the moment of treatment, the ability to identify contact allergens is lost; therefore a careful check for the optimal cell density using PPD as reference contact allergen is critical. In our hands, a cell density of 1-2.5 × 105 cells/ml gave optimal stimulation. In order to develop a high throughput test, cells seeded in 96-well plate were exposed to contact allergens (2,4-dinitrochlorobenzene, p-phenylenediamine, isoeugenol, cinnamaldehyde, tetramethylthiuram disulfite, resorcinol, cinnamic alcohol and eugenol), irritants (phenol, sodium laurel sulphate, lactic acid and salicylic acid) and respiratory allergens (hexachloroplatinate, diphenylmethane diisocyanate, trimellitic anhydride). A selective increase in total (intracellular plus released) IL-18 was observed 24 h later in cells treated with contact allergens, whereas no changes were observed following treatment with respiratory allergens and irritants, confirming previous results obtained in a 24-well format assay. A selective induction of IL-18 was also obtained testing with PPD other keratinocyte cell lines, namely HPKII and HaCaT, with the HPKII showing the highest stimulation index. Regarding the signal transduction pathway, we could demonstrate using selective inhibitors a role for oxidative stress, NF-κB and p38 MAPK activation in PPD-induced IL-18 production.In conclusion, results obtained suggest that the production of IL-18 represents a promising endpoint for the screening of potential contact allergens. The assay can be performed in a 96-well plate format, different keratinocyte cell lines can be used, and a role for oxidative stress in contact allergen-induced IL-18 was demonstrated.  相似文献   

10.
Cystic fibrosis is an inherited, life-threatening disease associated with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, F508del CFTR, is found in 90% of CF patients. The loss of a single amino acid (phenylalanine at position 508) results in malformed CFTR with defective trafficking to the plasma membrane and impaired channel function. A functional assay with cells expressing F508del CFTR has been previously described by others using genetically engineered halide-sensitive yellow fluorescent protein to screen for CFTR modulators. We adapted this yellow fluorescent protein assay to 384-well plate format with a high-throughput screening plate reader, and optimized the assay in terms of data quality, resolution, and throughput, with target-specific protocols. The optimized assay was validated with reference compounds from cystic fibrosis foundation therapeutics. On the basis of the Z-factor range (≥0.5) and the potential productivity, this assay is well suited for high-throughput screening. It was successfully used to screen for active single agent and synergistic combinations of single agent modulators of F508del CFTR from a library collection of current active pharmaceutical ingredients (supported by Cystic Fibrosis Foundation Therapeutics).  相似文献   

11.
NAD synthetase is responsible for the conversion of nicotinic acid adenine dinucleotide to nicotinamide adenine dinucleotide. This reaction provides a biosynthetic route of the coenzyme and, thus, a source of cellular reducing equivalents. Alterations in the oxidative reductive potential of the cell have been implicated as a contributing factor in many disease states. Thus, this enzyme represents a new class of potential drug targets, and, hence, our efforts were focused upon developing a robust assay for utilization in a high throughput screen. Toward that end, we describe a coupled enzyme assay format for the measurement of recombinant human NAD synthetase by employing lactate dehydrogenase in a cycling/amplification reaction linked ultimately to the fluorescence generation of resorufin from resazurin via diaphorase. We present kinetics of the reaction of NAD synthetase in the coupled assay format, optimization conditions, and inhibition of the reaction by gossypol [1,1',6,6',7,7'-hexahydroxy-3,3'-dimethyl-5,5'-bis(1-methylethyl)-[2,2'- binaphthalene]-8,8'-dicarboxaldehyde] and illustrate the robustness of the assay by demonstrating 384-well microtiter plate uniformity statistics. Collectively, our results show that the assay method is both robust and well suited for this class of enzymes involved in the NAD+ biosynthetic pathway.  相似文献   

12.
The serotonin (5-hydroxytryptamine) 5-HT2 receptor subfamily consists of three members, 5-HT2A, 5-HT2B, and 5-HT2C. These receptors share high homology in their amino acid sequence, have similar signaling pathways, and have been indicated to play important roles in feeding, anxiety, aggression, sexual behavior, mood, and pain. Subtype-selective agonists and antagonists have been explored as drugs for hypertension, Parkinson's disease, sleep disorders, anxiety, depression, schizophrenia, and obesity. In this study, we report the development of homogeneous agonist binding assays in a scintillation proximity assay (SPA) format to determine the high-affinity binding state of agonist compounds for the human 5-HT2C, 5-HT2A, and 5-HT2B receptors. The 5-HT2 agonist 1-(4- [125I]iodo-2,5-dimethoxyphenyl)-2-aminopropane ([125I]DOI) was used to label the high-affinity sites for the 5-HT2A and 5-HT2C receptors. The high-affinity sites for the 5-HT2B receptor were labeled with [3H]lysergic acid diethylamide. Total receptor expression was determined with the 5-HT2 antagonist [3H]mesulergine for the 5-HT2B and 5-HT2C receptors, and [3H]ketanserin for the 5-HT2A receptor. The agonist high-affinity binding sites accounted for 2.3% (5-HT(2C) receptor), 4.0% (5-HT2A receptor), and 22% (5-HT2B receptor) of the total receptor population. Competition binding studies using known agonists indicated high Z' values of the agonist binding assays in SPA format (Z' > 0.70). The Ki values of 5-HT, (R)(-)DOI, and VER-3323 for the 5-HT2A, 5-HT2B, and 5-HT2C receptors by SPA format were equivalent to published data determined by filtration binding assays. These results indicate that agonist binding assays in SPA format can be easily adapted to a high throughput assay to screen for selective 5-HT2C receptor agonists, as well as for selectivity profiling of the compounds.  相似文献   

13.
M-channels (M-current), encoded by KCNQ2/3 K(+) channel genes, have emerged as novel drug targets for a number of neurological disorders. The lack of direct high throughput assays combined with the low throughput of conventional electrophysiology (EP) has impeded rapid screening and evaluation of K(+)-channel modulators. Development of a sensitive and efficient assay for the direct measurement of M-current activity is critical for identifying novel M-channel modulators and subsequent investigation of their therapeutic potential. Using a stable CHO cell line expressing rat KCNQ2/3 K(+) channels confirmed by EP, we have developed and validated a nonradioactive rubidium (Rb(+)) efflux assay in a 96-well plate format. The Rb(+) efflux assay directly measures the activity of functional channels by atomic absorption spectroscopy using the automated Ion Channel Reader (ICR) 8000. The stimulated Rb(+) efflux from KCNQ2/3-expressing cells was blocked by the channel blockers XE991 and linopirdine with IC(50) values of 0.15 microM and 1.3 microM, respectively. Twelve compounds identified as KCNQ2/3 openers were further assessed in this assay, and their EC(50) values were compared with those obtained with EP. A higher positive correlation coefficient between these two assays (r = 0.60) was observed than that between FlexStation membrane potential and EP assays (r = 0.23). To simplify the assay and increase the throughput, we demonstrate that EC(50) values obtained by measuring Rb(+) levels in the supernatant are as robust and consistent as those obtained from the ratio of Rb(+) in supernatant/lysate. By measuring the supernatant only, the throughput of ICR8000 in an eight-point titration is estimated to be 40 compounds per day, which is suitable for a secondary confirmation assay.  相似文献   

14.
An atomic absorption spectroscopy-based detection system was employed to develop a new non-radioactive flux assay for chloride (Cl-) channels in a high throughput format. Cl- flux is assayed by measuring the extent to which Cl- precipitates an excess amount of silver ions (Ag+). A linear correlation was observed between theoretical and determined Cl- concentration with an r2 value of 0.996. The assay was found to be free from interference from various ions and proteins. The assay was used to study the physiology of endogenously expressed Cl- channels in a Chinese hamster ovary-K1 cell line. Cl- efflux was activated in response to an increased concentration of K+ (100 mM), Ca2+ (4 mM), and ionomycin (10 microM) as calcium ionophore. The efflux was also sensitive to pH as slightly higher efflux of Cl- was observed at an acidic pH of 3.2 in comparison to the neutral pH of 7.4. The Cl- efflux was inhibited by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 500 microM 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) but not by tolbutamide, niflumic acid, or glybenclamide, indicating that the channel current is not sensitive to other cystic fibrosis transmembrane conductance regulator inhibitors. The 50% inhibitory concentration (IC50) values of DIDS at pH 7.4 and pH 3.2 were 17 microM and 19 microM, respectively. An IC50 of 26 microM was observed for NPPB. The assay had a Z' factor of 0.678.  相似文献   

15.
The current study focused on the development of an automated IC(50) cocktail assay in a miniaturized 384 well assay format. This was developed in combination with a significantly shorter high pressure liquid chromatography (HPLC) separation and liquid chromatography-mass spectrometry (LC-MS/MS) run-time; than those currently reported in the literature. The 384-well assay used human liver microsomes in conjunction with a cocktail of probe substrates metabolized by the five major CYPs (tacrine for CYP1A2, diclofenac for CYP2C9, (S)-mephenytoin for CYP2C19, dextromethorphan for CYP2D6 and midazolam for CYP3A4). To validate the usefulness of the automated and analytical methodologies, IC(50) determinations were performed for a series of test compounds known to exhibit inhibition across these five major P450s. Eight compounds (sertraline, disulfuram, ticlopidine fluconazole, fluvoxamine, ketoconazole, miconazole, paroxetine, flunitrazepam) were studied as part of a cocktail assay, and against each CYPs individually. The data showed that the IC(50)s generated with cocktail incubations did not differ to a great extent from those obtained in the single probe experiments and hence unlikely to significantly influence the predicted clinical DDI risk. In addition the present method offered a significant advantage over some of the existing cocktail analytical methodology in that separation can be achieved with run times as short as 1min without compromising data integrity. Although numerous studies have been reported to measure CYP inhibition in a cocktail format the need to support growing discovery libraries not only relies on higher throughput assays but quicker analytical run times. The current study reports a miniaturized high-throughput cocktail IC(50) assay, in conjunction with a robust, rapid resolution LC-MS/MS end-point offered increased sample throughput without compromising analytical sensitivity or analyte resolution.  相似文献   

16.
The identification of large numbers of biologically active chemical entities during high throughput screening (HTS) necessitates the incorporation of new strategies to identify compounds with drug-like properties early during the lead prioritization and development processes. One of the major steps in lead prioritization is an assessment of compound binding to plasma proteins, because it affects both the pharmacokinetics and pharmacodynamics of the compound in vivo. Equilibrium dialysis is the preferred method to determine the free drug fraction, because it is less susceptible to experimental artifacts. However, even low-volume standard equilibrium dialysis is currently not amenable to the HTS format. Those considerations dictate the development of a high throughput equilibrium dialysis device, without compromising the analytical quality of the data. The present paper demonstrates successful development of a 96-well format equilibrium dialysis plate. Plasma protein binding of three drugs, propranolol, paroxetine, and losartan, with low, intermediate, and high binding properties, respectively, were chosen for assay validation. The data indicate that the apparent free fraction obtained by this method correlates with the published values determined by the traditional equilibrium dialysis techniques.  相似文献   

17.
INTRODUCTION: Activation of ATP-sensitive K+ channels (K(ATP)) has been shown to induce ischemic preconditioning that serves as a protective mechanism in the heart. A high throughput assay for identifying K(ATP) channel openers would therefore be desirable. METHODS: We describe a cell-based 96-well format fluorescence assay using bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) to evaluate membrane potential changes evoked by K(ATP) channel openers and blockers in cultured neonatal rat ventricular myocytes. RESULTS: Pinacidil and its analog P1075 (N-cyano-N'-(1,1-dimethylpropyl)-N"-3-pyridylguanidine), ZD6169 (N-(4-benzoylphenyl)-3,3,3,-trifluoro-2-hydroxy-2-methyl propionamide), and the enantiomers of cromakalim evoked concentration-dependent decreases in DiBAC4(3) fluorescence responses. Pretreatment with the K(ATP) channel blocker, glyburide attenuated opener-evoked decreases in fluorescence responses in a concentration-dependent manner. The rank order potency of openers in cardiac myocytes correlated well, but showed 6-10-fold higher potency in activating vascular smooth muscle K(ATP) channels in A10 cells. DISCUSSION: Our studies demonstrate that the pharmacological modulation of sarcolemmal K(ATP) channels can be readily assessed in a high throughput manner by measuring glyburide-sensitive fluorescence changes in cardiac ventricular myocytes.  相似文献   

18.
Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.  相似文献   

19.
钾通道调节剂的高通量筛选模型   总被引:7,自引:0,他引:7  
目的建立钾通道调节剂高通量筛选的细胞模型。方法96孔板上细胞负载荧光染料DiBAC4(3),测定不同化合物对荧光强度的影响,反映细胞膜电位的变化,间接反映化合物对钾通道的作用。结果高钾去极化和钾通道阻断剂4-AP,TEA,E-4031,glibenclamide,quinidine和nifedipine均能增强细胞的荧光强度,钾通道开放剂cromakalim能减弱细胞的荧光强度,上述化合物在一定剂量范围内均有剂量效应关系。利用该模型筛选76个化合物,发现9个化合物的荧光强度变化值有较好的剂量效应关系,有待膜片钳技术的进一步验证和筛选。结论此方法简单,易于操作,重现性好,适用于钾通道调节剂的高通量筛选。  相似文献   

20.
F?rster resonance energy transfer (FRET) is a powerful tool in biological research and has been widely used in the study of biomolecular interactions. SUMOylation is an important post-translational modification that is involved in many key biological processes. As a multi-step cascade reaction, SUMOylation involves multiple enzymes and protein-protein interactions. Here, we report the development of an in vitro FRET-based high-throughput screening (HTS) assay in SUMOylation. This assay is based on steady state and high efficiency of the fluorescent energy transfer between CyPet and YPet fused to SUMO1 and Ubc9, respectively. We optimized the assay and performed a small-scale pilot study to validate the screening platform. Carried out in 384-well plate format, our FRET-based HTS provides a powerful tool for large-scale and high-throughput applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号