首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Xue Y  Karaplis AC  Hendy GN  Goltzman D  Miao D 《Endocrinology》2006,147(10):4801-4810
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and PTH each modulate calcium and skeletal homeostasis. To identify 1,25(OH)(2)D(3)-mediated skeletal and mineral ion actions independent of PTH, double-knockout mice, which are homozygous for both the 1alpha-hydroxylase and PTH null alleles, were treated with 1,25(OH)(2)D(3), sc, from d 4 to 14 and compared with vehicle-treated animals. Serum calcium rose in 1,25(OH)(2)D(3)-treated double-knockout mice, and messenger RNA and protein levels of the renal calcium transporters TRPV5, calbindin-D(28K), calbindin-D(9K), and Na(+)/Ca(2+) exchanger 1 were up-regulated. Parameters of endochondral bone formation, including long bone length, epiphyseal volume, chondrocyte proliferation and differentiation, and cartilage matrix mineralization, were all increased by 1,25(OH)(2)D(3), Exogenous 1,25(OH)(2)D(3) also increased both trabecular and cortical bone; augmented both osteoblast number and type I collagen deposition in bone matrix; and up-regulated expression levels of the osteoblastic genes alkaline phosphatase, type I collagen, and osteocalcin. Furthermore, in 1,25(OH)(2)D(3)-treated double mutants, osteoclastic bone resorption appeared to decline. The results indicate that administered 1,25(OH)(2)D(3) used intestinal and renal but not skeletal mechanisms to elevate serum calcium and that this sterol can promote endochondral and appositional bone increases independent of endogenous PTH.  相似文献   

2.
To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D(9k) double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice ( approximately 10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.  相似文献   

3.
Bone remodeling involves the interplay of bone resorption and formation and is accurately controlled to maintain bone mass. Both processes require transcellular Ca(2+) transport, but the molecular mechanisms engaged remain largely elusive. The epithelial Ca(2+) channel TRPV5 is one of the most Ca(2+)-selective transient receptor potential (TRP) channels. In this study, the functional role of TRPV5 in bone was investigated. TRPV5 mRNA was expressed in human and murine bone samples and in osteoclasts along with other genes involved in transcellular Ca(2+) transport, including calbindin-D(9K) and calbindin-D(28K), Na(+)/Ca(2+) exchanger 1, and plasma membrane Ca(2+)-ATPase 1b. TRPV5 expression in murine osteoclasts was confirmed by immunostaining and showed predominant localization to the ruffled border membrane. However, TRPV5 was absent in osteoblasts. Analyses of femoral bone sections from TRPV5 knockout (TRPV5(-/-)) mice revealed increased osteoclast numbers and osteoclast area, whereas the urinary bone resorption marker deoxypyridinoline was reduced compared with WT (TRPV5(+/+)) mice. In an in vitro bone marrow culture system, the amount of osteoclasts and number of nuclei per osteoclast were significantly elevated in TRPV5(-/-) compared with TRPV5(+/+) mice. However, using a functional resorption pit assay, we found that bone resorption was nearly absent in osteoclast cultures from TRPV5(-/-) mice, supporting the impaired resorption observed in vivo. In conclusion, TRPV5 deficiency leads to an increase in osteoclast size and number, in which Ca(2+) resorption is nonfunctional. This report identifies TRPV5 as an epithelial Ca(2+) channel that is essential for osteoclastic bone resorption and demonstrates the significance of transcellular Ca(2+) transport in osteoclastic function.  相似文献   

4.
The effect of extracellular calcium ion (Ca2+) concentration on 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-induction of vitamin D-dependent calcium-binding protein (calbindin-D28K) and its mRNA levels was examined in primary chick kidney cells in vitro. When exposed to normal medium Ca2+ (1.0 mM), 1,25-(OH)2D3 increased calbindin-D28K mRNA, as measured by Northern analysis, by 4-10 fold over basal levels by 12 to 24 h after addition of hormone. In the presence of 0.5 mM Ca2+, 1,25-(OH)2D3 induced calbindin-D28K mRNA by only 2 fold, whereas, when cells were exposed to 2 mM Ca2+, the induction was 10-15 fold. This calcium modulation of 1,25-(OH)2D3 induction was also observed at the level of calbindin-D28K protein concentrations as measured by radioimmunoassay. The alterations in medium Ca2+ were not associated with any change in the rate of total RNA or protein synthesis. These studies suggest that both Ca2+ and 1,25-(OH)2D3 participate in the regulation of calbindin-D28K gene expression in the kidney.  相似文献   

5.
In vivo studies have indicated that renal calbindin-D28K protein and mRNA levels decrease in adult and old rats, and this decrease parallels the age-associated decline in serum 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] levels. However, diminished renal responsiveness to 1,25-(OH)2D3 with advancing age could also contribute to decreased calbindin-D28K expression. To study renal responsiveness with age, primary cell cultures were established from the kidney cortices of young (1 month old), adult (10-12 months old), and old (20-24 months old) rats. Cells were incubated in medium K-1 containing 2% fetal calf serum. Calbindin-D28K protein levels were determined by Western blot and enzyme-linked immunosorbent assay. In young animals, the levels of calbindin-D28K declined from 12.1 +/- 1.3 micrograms/mg protein in the intact kidney to 1.6 +/- 0.07 micrograms/mg protein in cells that had been cultured for 3 days in the absence of 1,25-(OH)2D3. This sharp decline in calbindin-D28K protein concentration moderated by days 6-8. The continuous presence of 10(-7) M 1,25-(OH)2D3 in the medium did not abolish the decline. The low levels of calbindin-D28K in the cells cultured in the absence of 1,25-(OH)2D3 provided an excellent experimental system in which to compare the response of the cells to 1,25-(OH)2D3 between age groups. In cultured cells treated with 1,25-(OH)2D3 for 72 h, calbindin-D28K induction was greater in cells from adult and old animals compared to cells from young animals. The ratios of calbindin-D28K content (with vitamin D/without vitamin D) were 2.2 +/- 0.2, 4.7 +/- 0.5, and 7.1 +/- 1.5 for young, adult, and old cells, respectively. These studies suggested that the observed in vivo decrease in renal calbindin-D28K with age is primarily due to the lowered circulating 1,25-(OH)2D3.  相似文献   

6.
We examined the expression of calcium transporter 1 (CaT1) and epithelial calcium channel (ECaC) mRNA in the duodenum and kidney of mice. Intestinal CaT1 mRNA level increased 30-fold at weaning, coincident with the induction of calbindin-D(9k) expression. In contrast, renal CaT1 and ECaC mRNA expression was equal until weaning when ECaC mRNA is induced and CaT1 mRNA levels fall 70%. Long- and short-term adaptation to changes in dietary calcium (Ca) level and 1,25 dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] injection strongly regulated duodenal calbindin D(9k) and CaT1 mRNA. Following a single dose of 1,25(OH)(2)D(3), induction of CaT1 mRNA occurred rapidly (within 3 h, peak at 6 h of 9.6 +/- 0.8-fold) and preceded the induction of intestinal Ca absorption (significantly increased at 6 h, peak at 9 h). Neither renal CaT1 nor ECaC mRNA were strongly regulated by dietary calcium level or 1,25(OH)(2)D(3) injection. Our data indicate that CaT1 and ECaC mRNA levels are differentially regulated by 1,25(OH)(2)D(3) in kidney and intestine and that there may be a specialized role for CaT1 in kidney in fetal and neonatal development. The rapid induction of intestinal CaT1 mRNA expression by 1,25(OH)(2)D(3), and the marked induction at weaning, suggest that CaT1 is critical for 1,25(OH)(2)D(3)-mediated intestinal Ca absorption.  相似文献   

7.
8.
M F Seifert  R W Gray  M E Bruns 《Endocrinology》1988,122(3):1067-1073
The osteosclerotic (oc) mouse is an osteopetrotic mutation that has recently been identified as having rickets associated with its osteopetrosis. The presence of this rachitic lesion, unexplainable from a nutritional standpoint, prompted an investigation into the vitamin D endocrine system in these animals. The developmental appearance of vitamin D-dependent calcium-binding protein (calbindin-D9k) and alkaline phosphatase was studied in oc mutant and normal mice from birth to weaning, as were serum concentrations of 25-hydroxyvitamin D3 (25OHD3), 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], calcium, and phosphorus. Intestinal and renal calbindin-D9k levels were markedly and precociously elevated (4- to 9-fold) in young suckling, but not newborn, mutant mice compared to values in normal controls. Serum 25OHD3 levels were very low to undetectable in 2-week-old mutant mice compared to normal values, while 1,25-(OH)2D3 levels were 6 times higher in mutants. The exact cause of this premature induction in mutants is unknown, but may be due to elevated circulating levels of 1,25-(OH)2D. Alkaline phosphatase activity was similar between phenotypes at all ages. These studies indicate that the rachitic lesion present in oc mutants may be the result of some inherited disorder in vitamin D metabolism in these animals. Alternatively, these data are also consistent with a normal appropriate response to hypocalcemia and hypophosphatemia resulting from decreased osteoclastic bone resorption.  相似文献   

9.
Offspring of rats with diabetes mellitus are at risk of reduced calcium and bone mineral content. Altered expression of the maternal calcium binding proteins, calbindin-D(9K) and calbindin-D(28K), which are involved in renal and placental calcium transport, may underlie these problems.We have investigated the effect of diabetes on circulating concentrations of regulatory hormones with respect to calbindin-D mRNA concentrations. Three rat groups were studied; control (CP), streptozotocin-induced diabetic (DP), and insulin-treated diabetic (DPI) pregnant rats. Calbindin-D(9K) and calbindin-D(28K) mRNA abundance in placenta and maternal kidney were measured at days 7, 15, 18 and 21 of gestation, together with serum or plasma concentrations of 1,25 dihydroxyvitamin D(3) (1, 25(OH)(2)D(3)), parathyroid hormone (PTH), PTH-related protein (PTHrP), calcitonin, oestradiol and IGF-I. An increase in placental calbindin-D(9K) mRNA abundance between days 18 and 21 in CP and DPI rats was severely blunted in the DP rats. In contrast, renal calbindin-D(28K) mRNA abundance was greater at days 7, 15 and 18 in DP compared with CP rats, as was calbindin-D(9K) at day 18. Calcitonin concentrations showed no differences between the groups, and both PTH and IGF-I were reduced over the first half of gestation, unlike the calbindins. In contrast, the concentrations of PTHrP and 1,25(OH)(2)D(3) were reduced at term in the DP group compared with the other two groups. Plasma oestradiol concentrations were lower in DP than in CP rats at days 7, 15 and 18, and most striking was the absence in DP rats of the peak of oestradiol seen at day 18 in CP rats. Despite the similarity between changes in placental calbindin mRNA and 1,25(OH)(2)D(3), previous work has shown placental calbindin-D(9K) regulation to be vitamin-D-independent. These studies produce suggestive evidence, therefore, that PTHrP and oestradiol may be involved in the altered calbindin-D expression by kidney and placenta in rat diabetic pregnancy.  相似文献   

10.
Song Y  Fleet JC 《Endocrinology》2007,148(3):1396-1402
We tested the hypothesis that low vitamin D receptor (VDR) level causes intestinal vitamin D resistance and intestinal calcium (Ca) malabsorption. To do so, we examined vitamin D regulated duodenal Ca absorption and gene expression [transient receptor potential channel, vallinoid subfamily member 6 (TRPV6), 24-hydroxylase, calbindin D(9k) (CaBP) mRNA, and CaBP protein] in wild-type mice and mice with reduced tissue VDR levels [i.e. heterozygotes for the VDR gene knockout (HT)]. Induction of 24-hydroxylase mRNA levels by 1,25 dihydroxyvitamin D(3) [1,25(OH)(2) D(3)] injection was significantly reduced in the duodenum and kidney of HT mice in both time-course and dose-response experiments. TRPV6 and CaBP mRNA levels in duodenum were significantly induced after 1,25(OH)(2) D(3) injection, but there was no difference in response between wild-type and HT mice. Feeding a low-calcium diet for 1 wk increased plasma PTH, renal 1alpha-hydroxylase (CYP27B1) mRNA level, and plasma 1,25(OH)(2) D(3), and this response was greater in HT mice (by 88, 55, and 37% higher, respectively). In contrast, duodenal TRPV6 and CaBP mRNA were not higher in HT mice fed the low-calcium diet. However, the response of duodenal Ca absorption and CaBP protein to increasing 1,25(OH)(2) D(3) levels was blunted by 40% in HT mice. Our data show that low VDR levels lead to resistance of intestinal Ca absorption to 1,25(OH)(2) D(3), and this resistance may be due to a role for the VDR (and VDR level) in the translation of CaBP.  相似文献   

11.
Vitamin D and its hormonally active metabolite 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] are known to alter several parameters associated with stimulated intestinal Ca2+ transport: levels of calbindin-D28K, tubulin, and endosomal-lysosomal organelles containing Ca2+, and calbindin-D28K. In the present study the as yet unexamined relationship among Ca2+ transport, calbindin-D28K, and microtubules was studied by immunofluorescence microscopy. In vitamin D3-treated or 1,25-(OH)2D3-treated chicks, in the absence of Ca2+ transport, immunofluorescence microscopy of intestinal tissue fixed at 25 C indicated a colocalization of calbindin-D28K and tubulin along epithelial cell brush border and basal-lateral membranes. Initiation of in situ Ca2+ absorption for 10, 20, or 30 min before tissue fixation resulted first in increased punctate calbindin-D28K staining and then in a progressive decrease in intestinal cell- and microtubule-associated calbindin-D28K, with a concomitant increase in calbindin-D28K labeling in the villus core. When intestinal tissue from 1,25-(OH)2D3-treated chicks was chilled to 4 C before fixation (a procedure shown by others to cause microtubule depolymerization), evaluation by immunofluorescence microscopy revealed diffuse cytoplasmic staining of both the immunoreactive tubulin and its associated calbindin-D28K. These results indicate the possible involvement of calbindin-D28K with tubulin during the process of Ca2+ transport and the secretion of the calbindin-D28K as a consequence of the overall transport process. Electron microscopy with immunogold labeling revealed intestinal epithelial calbindin-D28K to be localized inside of small vesicles and lysosome-like structures, with sparse cytoplasmic labeling. Subsequent electron microscopic analysis of intestinal epithelial microtubules prepared by polymerization and depolymerization revealed immunogold labeling in coprecipitated vesicular remnants, with consistently light staining of filaments traversing segments of the microtubules. In biochemical studies, isolation of intestinal microtubules or tubulin by three distinct procedures revealed increasing levels of associated calbindin-D28K as a function of time after 1,25-(OH)2D3 repletion of vitamin D-deficient chicks. Addition of calbindin-D28K to intestinal microtubules isolated from vitamin D-deficient chicks exhibited saturable binding when exogenous calbindin-D28K reached levels comparable to those present in vitamin D-replete chick intestine. Collectively, these results suggest that calbindin-D28K is predominantly located in membrane-delimited vesicles, with a very minor component associated with filamentous elements that can be isolated with tubulin and microtubules. Additionally, calbindin-D28K is dynamically involved in Ca2+ transport in the intestine.  相似文献   

12.
13.
Rickets and hyperparathyroidism caused by a defective vitamin D receptor (VDR) can be prevented in humans and animals by high calcium intake, suggesting that intestinal calcium absorption is critical for 1,25(OH)(2) vitamin D [1,25(OH)(2)D(3)] action on calcium homeostasis. We assessed the rate of serum (45)Ca accumulation within 10 min of oral gavage in two strains of VDR-knockout (KO) mice (Leuven and Tokyo KO) and observed a 3-fold lower area under the curve in both KO strains. Moreover, we evaluated the expression of intestinal candidate genes involved in transcellular calcium transport. The calcium transport protein1 (CaT1) was more abundantly expressed at mRNA level than the epithelial calcium channel (ECaC) in duodenum, but both were considerably reduced (CaT1>90%, ECaC>60%) in the two VDR-KO strains on a normal calcium diet. Calbindin-D(9K) expression was decreased only in the Tokyo KO, whereas plasma membrane calcium ATPase (PMCA(1b)) expression was normal in both VDR-KOs. In Leuven wild-type mice, a high calcium diet inhibited (>90%) and 1,25(OH)(2)D(3) injection or low calcium diet induced (6-fold) duodenal CaT1 expression and, to a lesser degree, ECaC and calbindin-D(9K) expression. In Leuven KO mice, however, high or low calcium intake decreased calbindin-D(9K) and PMCA(1b) expression, whereas CaT1 and ECaC expression remained consistently low on any diet. These results suggest that the expression of the novel duodenal epithelial calcium channels (in particular CaT1) is strongly vitamin D-dependent, and that calcium influx, probably interacting with calbindin-D(9K), should be considered as a rate-limiting step in the process of vitamin D-dependent active calcium absorption.  相似文献   

14.
Intestinal calcium-binding protein (calbindin-D9K) and renal calcium-binding protein (calbindin-D28K) levels were measured by enzyme-linked immunoadsorbent assays in rats with short bowel syndrome induced by resection of about 85% of the small intestine. Rats with short bowel syndrome had significantly lower mucosal concentrations of calbindin-D9K (P less than 0.001) and a parallel reduction of both intestinal calcium absorption (P less than 0.001) and p-1,25-dihydroxyvitamin D (P less than 0.01) in spite of a general hypertrophy of the duodenal mucosa. Interestingly, the renal concentration of calbindin-D28K was significantly elevated (P less than 0.05) in rats with short bowel syndrome, a change apparently related to factors independent of vitamin D.  相似文献   

15.
In order to further test the validity of the vesicular transport model of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-stimulated intestinal calcium absorption, dose-response studies were undertaken. Using previously established methodology for subcellular fractionation following 45Ca absorption from in situ ligated duodenal loops, radionuclide levels were found to increase gradually in endocytic vesicles prepared from 1,25(OH)2D3-treated (+D) chicks relative to controls (-D) achieving a plateau at greater than or equal to 260 pmol seco-steroid. By comparison, lysosomal 45Ca levels increased more readily, having +D/-D ratios of 1.88 +/- 0.35, 2.21 +/- 0.05, 2.17 +/- 0.88, 2.31 +/- 0.25, and 2.15 +/- 0.47 after 0.0104, 0.052, 0.26, 1.3, or 6.5 nmol of 1,25(OH)2D3, respectively. Net intestinal calcium absorption, as judged by appearance of 45Ca in the serum for the same range of doses, rose gradually to a plateau value at greater than or equal to 260 pmol. Since lysosomal 45Ca levels were maximally increased at 1,25(OH)2D3 doses lower than those required for fully stimulated transport, it was concluded that lysosomes are still candidates for cellular calcium carriers, but that other elements of the transport pathway are required. Analyses of gradient fractions for calbindin-D28K (the vitamin D-induced calcium binding protein), and potential 1,25(OH)2D3-mediated changes in vesicular ATPase (microtubule motive power for transcellular delivery of calcium) failed to identify the missing components.  相似文献   

16.
H Li  S Christakos 《Endocrinology》1991,128(6):2844-2852
The mouse kidney is a unique tissue since both vitamin D-dependent calcium binding proteins (calbindin-D9k and calbindin-D28k) are present in the same cells of the distal convoluted tubule. We have used specific complementary DNAs to mouse calbindin-D9k and mouse calbindin-D28k and Northern and slot blot analyses in order to obtain a better understanding of the regulation of two different molecular expressions of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action in the same cells. Both calbindins were found to be regulated developmentally in a similar manner (an increase in gene expression between birth and 1 week of age, coinciding with nephron differentiation, and a peak at 3 weeks of age). However, the time course of response of the messenger RNA of each calbindin to 1,25(OH)2D3 was markedly different. The peak of induction of renal calbindin-D28k mRNA was at 12 h after a single injection of 1,25(OH)2D3 (200 ng/100 g body wt) to vitamin D-deficient mice, and a decrease was observed at 24 h (similar to the time course of response of other steroid-regulated genes). Interestingly, unlike calbindin-D28k, a delayed response of renal calbindin-D9k mRNA to 1,25(OH)2D3 was observed (the peak of induction was at 24 h after 1,25(OH)2D3 administration). Both genes in mouse kidney did not respond to glucocorticoids, although a dose-dependent decrease (12-86%) of mouse intestinal calbindin-D9k mRNA was observed after dexamethasone treatment, suggesting tissue-specific multiple steroid interactions in the regulation of calbindin gene expression. The finding of a different time course of regulation of each calbindin by 1,25(OH)2D3 suggests that different factors may be regulating the expression of the two different calbindins in mouse kidney and that elucidation of these control mechanisms should provide new insight concerning 1,25(OH)2D3-regulated gene expression.  相似文献   

17.
Uptake of Ca2+ in cells isolated from rat duodenum declined in the senescent rats. This age-related change was not due to an alteration in the rate of Ca2+ efflux or in the size of the cell. The decrease appeared specific, as alpha-methyl glucoside uptake was not altered. Cell population, as monitored by sucrase activity for villus cells, was not different between duodenal cells isolated from 6- and 24-month-old rats. Kinetic analysis shows the Vmax, the apparent maximum uptake capacity, decreased in the cells from senescent rats whereas the Km, the apparent affinity to Ca2+, was unchanged. Serum levels of 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D [1,25-(OH)2D] were determined as a function of age; the levels of 25OHD were not significantly different in 3-, 6-, 12-, and 24-month-old rats. On the other hand, serum 1,25-(OH)2D decreased throughout the age range studied. Since duodenal Ca2+ uptake is closely regulated by 1,25-(OH)2D3, we tested the hypothesis that low serum 1,25-(OH)2D in the senescent rats may have contributed to the decline in duodenal Ca2+ uptake. In vivo administration of 1,25-(OH)2D3 to senescent rats significantly enhanced Ca2+ uptake activity in the isolated duodenal cells. After 1,25-(OH)2D3 treatment, Ca2+ uptake activity in cells isolated from senescent rats was only slightly less than that in cells from adult rats. We conclude that duodenal Ca2+ uptake declined in the senescent rats, and this age-related change was most likely due to the low serum level of 1,25-(OH)2D and not the result of a decrease in any duodenal response to 1,25-(OH)2D3.  相似文献   

18.
The aim of the study was to investigate the effect of aluminium on duodenal calcium absorption, the impairment of which can represent a pathogenic factor in the development of aluminium bone lesions. The authors investigated in the chick the effect of Al(OH)3 administered orally and of AlCl3 administered subcutaneously on the duodenal absorption of 47Ca, on serum concentration of calcium, phosphorous, aluminium and 1,25-dihydroxycholecalciferol and on bone morphology. Oral administration of Al(OH)3 for 8, 15, and 22 days was without any significant change. Subcutaneous administration of Al/Cl/3 for 8 day was associated with a significant increase in serum aluminium and 1,25-dihydroxycholecalciferol levels and with a significant decrease of the duodenal absorption of 47Ca. Decreased intestinal absorption of calcium may play a pathogenic role in the development of aluminium osteopathy. Increased serum 1,25-dihydroxycholecalciferol reflects presumably a compensatory mechanism of the lowered calcium absorption.  相似文献   

19.
We examined intact PTH and 1,25-dihydroxyvitamin D [1,25-(OH)2D] in both baseline and dynamic conditions (low calcium diet) in 14 patients with Turner's syndrome (mean age, 12.6 +/- 5.9 yr; range, 4.2-21.0 yr) and bone demineralization as well as in a control group of 15 healthy girls (mean age, 12.8 +/- 5.6 yr; range, 3.8-22.7 yr). In both groups we also measured osteocalcin serum levels in response to oral 1,25-(OH)2D3 administration (1.8 micrograms/m2/daily for 6 days) to assess osteoblast function. The low calcium diet decreased ionized calcium (Ca2+) levels and elevated PTH values to the same extent in both patients (Ca2+, -8.40 +/- 3.78%; intact PTH, +47.88 +/- 13.24%) and controls (Ca2+, -9.09 +/- 3.25%; intact PTH, +52.77 +/- 10.52%; P = NS vs. patients). While controls showed an increment in their serum 1,25-(OH)2D levels (+52.15 +/- 8.95%), patients did not (+10.93 +/- 4.71%; P = NS vs. baseline; P < 0.001 vs. controls). 1,25-(OH)2D3 administration caused a rise in the serum osteocalcin levels in a similar fashion in both groups (peak values: patients, +35.38 +/- 7.20%; controls, +34.09 +/- 7.98%; P = NS). We conclude that in patients with Turner's syndrome there is an altered renal vitamin D metabolism in response to physiological stimulus, while osteoblast function in response to 1,25-(OH)2D3 administration is not affected.  相似文献   

20.
To evaluate the role of insulin in 1,25-dihydroxyvitamin D [1,25(OH)2D] production in response to PTH, 25-hydroxyvitamin D-1 alpha-hydroxylase activity in kidney homogenates as well as serum 1,25(OH)2D concentration was measured both after dietary calcium (Ca) deprivation and after PTH infusion in control and streptozotocin-diabetic rats. Although serum Ca and phosphate (Pi) levels did not change significantly after dietary Ca deprivation for 1 week, urinary cAMP excretion increased significantly, indicating that dietary Ca deprivation caused secondary hyperparathyroidism without a significant change in serum Ca level. In control rats, renal 1 alpha-hydroxylase activity increased markedly from 0.11 +/- 0.05 to 1.70 +/- 0.46 ng/300 mg tissue/20 min in parallel with the change in serum 1,25(OH)2D level from 121 +/- 8 to 360 +/- 54 pg/ml in response to Ca deprivation. In contrast, serum 1,25(OH)2D level (82 +/- 3 pg/ml) and 1 alpha-hydroxylase activity (0.07 +/- 0.02 ng/300 mg tissue.20 min) were lower in the diabetic rats on a normal Ca diet than those in control rats, and the increase in both 1,25(OH)2D level and 1 alpha-hydroxylase activity in response to Ca deprivation was suppressed in diabetic rats (136 +/- 24 pg/ml and 0.38 +/- 0.12 ng/300 mg tissue.20 min, respectively, after Ca deprivation). Insulin treatment of the diabetic rats restored the baseline levels of serum 1,25(OH)2D (125 +/- 14 pg/ml) and renal 1 alpha-hydroxylase activity (0.21 +/- 0.02 ng/300 mg tissue.20 min) as well as those after Ca deprivation (340 +/- 52 pg/ml and 2.05 +/- 0.30 ng/300 mg tissue.20 min, respectively). Furthermore, when control and diabetic rats were thyroparathyroidectomized and infused with a maximal stimulatory dose of PTH, the increase in serum 1,25(OH)2D and renal 1 alpha-hydroxylase activity in response to PTH was markedly inhibited in diabetic rats. In addition, the baseline levels of serum 1,25(OH)2D and renal 1 alpha-hydroxylase activity in thyroparathyroidectomized diabetic rats were not different from those in control rats. These results are consistent with the conclusion that insulin plays an important role in the regulation of renal 1 alpha-hydroxylase activity and serum 1,25(OH)2D levels in response to PTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号