首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype.  相似文献   

2.
Molecular changes that take place during the evolution of heart failure (HF), especially the well characterized beta-adrenergic receptor (betaAR) signaling abnormalities, represent attractive targets for myocardial gene therapy. The beta-adrenergic receptor kinase (betaARK1 or GRK2) is a cytosolic enzyme that phosphorylates only agonist-occupied betaARs as well as other G protein-coupled receptors (GPCRs), leading to desensitization and functional uncoupling. betaARK1 levels and activity are elevated in the failing heart and therefore, it has recently been evaluated as a potential target for novel HF treatment. This review summarizes recent results obtained in transgenic mouse models as well as in animals where a betaARK1 inhibitor peptide (betaARKct) was delivered via the coronary arteries by exogenous gene transfer. These results strongly suggest that betaARK1 inhibition may represent a significant improvement in HF therapy.  相似文献   

3.
Regulation of G protein-coupled receptor kinases   总被引:4,自引:0,他引:4  
G protein-coupled receptor kinases (GRKs) specifically interact with the agonist-activated form of G protein-coupled receptors (GPCRs) to effect receptor phosphorylation and desensitization. Recent studies demonstrate that GRK function is a highly regulated process, and it is perhaps in this manner that a handful of GRKs (7 have been identified to date) are able to regulate the responsiveness of numerous GPCRs in a given cell type in a coordinated manner. The mechanisms by which GRK activity is regulated can be divided into 3 categories: 1) subcellular localization; 2) alterations in intrinsic kinase activity; and 3) alterations in GRK expression levels. This review will summarize our current understanding of each of these regulatory processes, and offer explanations as to how such mechanisms influence GPCR regulation under various physiologic conditions.  相似文献   

4.
G蛋白偶联受体激酶(G protein-coupled receptor kinases, GRK)2是一种能够脱敏多种G蛋白偶联受体(G protein-coupled receptor, GPCR)的激酶,心肌GRK2能够抑制GPCRs成员之一—β肾上腺素能受体(β-adrenergic receptor, β-ARs)的功能,即通过环磷酸腺苷(cAMP)终止其G蛋白介导的信号传导,减弱心肌细胞的收缩能力和肾上腺素能储备。阻断GRK2可以恢复βARs的敏感性,进而改善和逆转心肌梗死后心力衰竭。近年来,GRK2在心血管疾病中的非经典作用也已被阐述,包括胰岛素信号的负调节、线粒体调节作用以及心肌细胞存活和凋亡信号的修饰,这些新作用表明GRK2可能不依赖于其典型GPCR脱敏作用而影响心脏收缩功能、细胞代谢和生存,并促进心力衰竭。本文旨在对GRK2与心肌纤维化关系的研究进展进行回顾与总结,将国内外最新研究成果作统一阐述。  相似文献   

5.
Most of the TSH effects on the proliferation and differentiation of thyroid cells are mediated by cAMP via an adenylyl cyclase-activating Gs protein. TSH receptor responsiveness in cell cultures, is regulated by G protein-coupled receptor kinase (GRK) 2 and 5. To determine whether an alteration in activity and expression of GRKs might be associated with variable levels of TSH receptor desensitization in vivo, we studied human thyroid tissues including 21 normal tissues and 18 differentiated carcinomas. GRK activity was assayed by rhodopsin phosphorylation, and GRK protein and mRNA expressions assessed by immunoblotting and real-time quantitative RT-PCR, respectively. GRK2 and GRK5 were found as the predominant isoforms in the human thyroid. GRK5 protein expression was significantly decreased in differentiated thyroid carcinoma (P < 0.02) and paralleled a decrease in GRK mRNA expression (P < 0.02). In contrast, no difference in protein and mRNA levels of GRK2 were observed between normal and cancerous thyroid tissues. Although GRK2 protein levels correlated with GRK activities, we demonstrated a significant increase in GRK activity in differentiated thyroid carcinoma (P < 0.02). Less TSH receptor desensitization occurred in differentiated carcinoma than in normal thyroid tissue, as judged by TSH-stimulated cAMP response in human thyroid cells in primary culture. In conclusion, this study indicates that GRK2 activity and GRK5 expression have opposite regulations in cancer cells. Furthermore, the decrease in GRK5 expression may underlie the reduction in homologous desensitization of the TSH receptor in differentiated thyroid carcinoma, contributing to explain the increased cAMP levels in these tumors.  相似文献   

6.
A feature shared between Drosophila rhodopsin and nearly all other G protein-coupled receptors is agonist-dependent protein phosphorylation. Despite extensive analyses of Drosophila phototransduction, the identity and function of the rhodopsin kinase (RK) have been elusive. Here, we provide evidence that G protein-coupled receptor kinase 1 (GPRK1), which is most similar to the beta-adrenergic receptor kinases, G protein-coupled receptor kinase 2 (GRK2) and GRK3, is the fly RK. We show that GPRK1 is enriched in photoreceptor cells, associates with the major Drosophila rhodopsin, Rh1, and phosphorylates the receptor. As is the case with mammalian GRK2 and GRK3, Drosophila GPRK1 includes a C-terminal pleckstrin homology domain, which binds to phosphoinositides and the Gbetagamma subunit. To address the role of GPRK1, we generated transgenic flies that expressed higher and lower levels of RK activity. Those flies with depressed levels of RK activity displayed a light response with a much larger amplitude than WT. Conversely, the amplitude of the light response was greatly suppressed in transgenic flies expressing abnormally high levels of RK activity. These data point to an evolutionarily conserved role for GPRK1 in modulating the amplitude of the visual response.  相似文献   

7.
The myometrial beta-adrenergic receptor (beta-AR)-adenylyl cyclase pathway is markedly desensitized at the end of pregnancy in the rat. We have investigated whether changes in the amount and/or the activity of G protein-coupled receptor kinase (GRK) occurred at the same period of pregnancy. Using Northern and Western blotting, we have identified GRK2, GRK5, GRK6, and a small amount of GRK3 in late pregnant rat myometrium. GRK activity, as measured by in vitro phosphorylation of rhodopsin, was detected in both cytosolic and plasma membrane fractions. Interestingly, in the 6-10 h preceding parturition, there was a substantial increase (+190%) of myometrial membrane-associated GRK activity. This was associated with an increase in membrane GRK2 immunoreactivity. Such alterations occurred concomitantly with uncoupling of beta-AR, as assessed by quantification of high-affinity binding receptors. These data suggest that GRK activity increase may be one of the mechanisms underlying alterations in the coupling between beta-AR and adenylyl cyclase and may thus contribute to the initiation of myometrial contractions at term.  相似文献   

8.
Homologous desensitization of G protein-coupled receptors is thought to occur in several steps: binding of G protein-coupled receptor kinases (GRKs) to receptors, receptor phosphorylation, kinase dissociation, and finally binding of beta-arrestins to phosphorylated receptors. It generally is assumed that only the last step inhibits receptor signaling. Investigating the parathyroid hormone (PTH) receptor --> inositol phosphate pathway, we report here that GRKs can inhibit receptor signaling already under nonphosphorylating conditions. GRKs phosphorylated the PTH receptor in membranes and in intact cells; the order of efficacy was GRK2>GRK3>GRK5. Transient transfection of GRKs with the PTH receptor into COS-1 cells inhibited PTH-stimulated inositol phosphate generation. Such an inhibition also was seen with the kinase-negative mutant GRK2-K220R and also for a C-terminal truncation mutant of the PTH receptor that could not be phosphorylated. Several lines of evidence indicated that this phosphorylation-independent inhibition was exerted by an interaction between GRKs and receptors: (a) this inhibition was not mimicked by proteins binding to G proteins, phosducin, and GRK2 C terminus, (b) GRKs caused an agonist-dependent inhibition (= desensitization) of receptor-stimulated G protein GTPase-activity (this effect also was seen with the kinase-inactive GRK2-mutant and the phosphorylation-deficient receptor mutant), and (c) GRKs bound directly to the PTH receptor. These data suggest that signaling by the PTH receptor already is inhibited by the first step of homologous desensitization, the binding of GRKs to the receptors.  相似文献   

9.
10.
Hypothalamic CRF stimulates synthesis and secretion of ACTH via CRF receptor type 1 (CRFR1) in the anterior pituitary gland. After agonist-activated stimulation of receptor signaling, CRFR1 is down-regulated and desensitized. Generally, it is thought that G protein-coupled receptors may be desensitized by G protein-coupled receptor kinases (GRKs). However, the role of GRKs in corticotropic cells has not been determined. In this study we focused on involvement of GRKs in desensitization of CRFR1 by CRF in corticotropic cells. We found that GRK2 (but not GRK3) mRNA and protein were expressed in rat anterior pituitary cells and AtT-20 cells (a line of mouse corticotroph tumor cells). To determine the role of GRK2 in CRF-induced desensitization of CRFR1 in mouse corticotrophs, AtT-20 cells were transfected with a dominant-negative mutant GRK2 construct. CRF desensitized the cAMP-dependent response by CRFR1. Desensitization of CRFR1 by CRF was significantly less in AtT-20 cells transfected with the dominant-negative mutant GRK2 construct compared with desensitization in control (an empty vector-transfected) AtT-20 cells. Furthermore, pretreatment with a protein kinase A inhibitor also partially blocked desensitization of CRFR1 by CRF. These results suggest that GRK2 is involved in CRF-induced desensitization of CRFR1 in AtT-20 cells, and the protein kinase A pathway may also have an important role in desensitization of CRFR1 by CRF seen in corticotropic cells.  相似文献   

11.
We previously reported that G protein-coupled receptor kinase (GRK) may contribute to beta-adrenergic receptor (beta-AR) uncoupling occurring just before parturition in rat uterine muscle (myometrium). To identify the GRK involved, we set up in this study a primary cell culture retaining the morphological and functional characteristics of myometrial tissue as well as the in vivo pattern of GRK expression (GRK2, GRK5, and GRK6). In this model, homologous beta-AR desensitization was assessed by an approximately 60% decrease in cAMP production to a subsequent challenge with the beta-agonist, isoproterenol. Desensitization was reduced by 36% with a GRK inhibitor, heparin, and by 31% with a protein kinase A in-hibitor, H89. Using antibodies known to specifically inhibit either GRK2/3 or GRK4-6 families, we demonstrated that only the GRK4-6 family mediated beta-AR desensitization. To discriminate between endogenous GRK5 and GRK6, we attempted to inhibit their action by introducing, into myometrial cells, kinase-dead dominant-negative mutants ((K215R)GRK5 and (K215R)GRK6). Expression of (K215R)GRK6 increased by approximately 70% the cAMP response to isoproterenol without effect on forskolin stimulation. Conversely, expression of (K215R)GRK5 or (K220R)GRK2 had no effect on beta-adrenergic signaling. These results strongly suggest that endogenous GRK6 mediate homologous beta-AR desensitization in myometrial cells.  相似文献   

12.
Tseng CC  Zhang XY 《Endocrinology》2000,141(3):947-952
The glucose-dependent insulinotropic polypeptide receptor (GIPR) is a member of class II G protein-coupled receptors. Recent studies have suggested that desensitization of the GIPR might contribute to impaired insulin secretion in type II diabetic patients, but the molecular mechanisms of GIPR signal termination are unknown. Using HEK L293 cells stably transfected with GIPR complementary DNA (L293-GIPR), the mechanisms of GIPR desensitization were investigated. GIP dose dependently increased intracellular cAMP levels in L293-GIPR cells, but this response was abolished (65%) by cotransfection with G protein-coupled receptor kinase 2 (GRK2), but not with GRK5 or GRK6. Beta-arrestin-1 transfection also induced a significantly decrease in GIP-stimulated cAMP production, and this effect was greater with cotransfection of both GRK2 and beta-arrestin-1 than with either alone. In betaTC3 cells, expression of GRK2 or beta-arrestin-1 attenuated GIP-induced insulin release and cAMP production, whereas glucose-stimulated insulin secretion was not affected. GRK2 and beta-arrestin-1 messenger RNAs were identified by Northern blot analysis to be expressed endogenously in betaTC3 and L293 cells. Overexpression of GRK2 enhanced agonist-induced GIPR phosphorylation, but receptor endocytosis was not affected by cotransfection with GRKs or beta-arrestin-1. These results suggest a potential role for GRK2/beta-arrestin-1 system in modulating GIP-mediated insulin secretion in pancreatic islet cells. Furthermore, GRK-mediated receptor phosphorylation is not required for endocytosis of the GIPR.  相似文献   

13.
One of the most powerful regulators of cardiovascular function is catecholamine-stimulated adrenergic receptor (AR) signaling. The failing heart is characterized by desensitization and impaired β-AR responsiveness as a result of upregulated G protein-coupled receptor kinase-2 (GRK2) present in injured myocardium. Deterioration of cardiac function is progressively enhanced by chronic adrenergic over-stimulation due to increased levels of circulating catecholamines. Increased GRK2 activity contributes to this pathological cycle of over-stimulation but lowered responsiveness. Over the past two decades the GRK2 inhibitory peptide βARKct has been identified as a potential therapy that is able to break this vicious cycle of self-perpetuating deregulation of the β-AR system and subsequent myocardial malfunction, thus halting development of cardiac failure. The βARKct has been shown to interfere with GRK2 binding to the βγ subunits of the heterotrimeric G protein, therefore inhibiting its recruitment to the plasma membrane that normally leads to phosphory-lation and internalization of the receptor. In this article we summarize the current data on the therapeutic effects of βARKct in cardiovascular disease and report on recent and ongoing studies that may pave the way for this peptide towards therapeutic application in heart failure and other states of cardiovascular disease.  相似文献   

14.
G-protein-coupled receptor kinase (GRK) 2 regulates a plethora of cellular processes, including cardiac expression and function of key seven-transmembrane receptors (7TM receptors) such as the beta-adrenergic and angiotensin receptors (Penela P, Murga C, Ribas C, et al.: 2006. Mechanisms of regulation of G-protein-coupled receptor kinases [GRKs] and cardiovascular disease. Cardiovasc Res 69:46-56, Rockman HA, Koch WJ, Lefkowitz RJ: 2002. Seven-transmembrane-spanning receptors and heart function. Nature 415:206-212). Interestingly, these two G-protein-coupled receptor systems are targeted by modern heart failure treatment including beta-adrenergic blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers. Although GRK2 is ubiquitously expressed, its particular importance in the heart has been demonstrated by interesting phenotypes of genetically altered mice that suggest GRK2 inhibition can ameliorate heart failure. In essence, this work suggests GRK2 could be an endogenous receptor blocker targeting both the beta-adrenergic and angiotensin receptors in the heart. This notion immediately suggests it is important to understand the molecular mechanisms that regulate GRK2 activity in the heart. In this review, we provide a detailed presentation of the tight regulation of GRK2 expression levels and protein activity, and we discuss the cardiovascular GRK2 functions and possible therapeutic perspectives.  相似文献   

15.
AIMS: The G protein-coupled receptor kinase-2 (GRK2 or beta-ARK1) regulates beta-adrenergic receptors (beta-ARs) in the heart, and its cardiac expression is elevated in human heart failure (HF). We sought to determine whether myocardial levels and activity of GRK2 could be monitored using white blood cells, which have been used to study cardiac beta-ARs. Moreover, we were interested in determining whether GRK2 levels in myocardium and lymphocytes may be associated with beta-AR dysfunction and HF severity. METHODS AND RESULTS: In myocardial biopsies from explanted failing human hearts, GRK activity was inversely correlated with beta-AR-mediated cAMP production (R(2)=-0.215, P<0.05, n=24). Multiple regression analysis confirmed that GRK activity participates with beta-AR density to regulate catecholamine-sensitive cAMP responses. Importantly, there was a direct correlation between myocardial and lymphocytes GRK2 activity (R(2)=0.5686, P<0.05, n=10). Lymphocyte GRK activity was assessed in HF patients with various ejection fractions (EFs) (n=33), and kinase activity was significantly higher in patients with lower EFs and was higher with increasing NYHA class (P<0.001). CONCLUSION: Myocardial GRK2 expression and activity are mirrored by lymphocyte levels of this kinase, and its elevation in HF is associated with the loss of beta-AR responsiveness and appears to increase with disease severity. Therefore, lymphocytes may provide a surrogate for monitoring cardiac GRK2 in human HF.  相似文献   

16.
Wallukat G 《Herz》2002,27(7):683-690
BACKGROUND: The beta-adrenergic receptors of the myocardium play an important role in the regulation of heart function. The beta-adrenergic receptors belong to the family of G-protein coupled receptors. Three subtypes have been distinguished (beta1-, beta2-, and beta3-adrenoceptors). The receptors consist of seven membrane-spanning domains, three intra- and three extracellular loops, one extracellular N-terminal domain, and one intracellular C-terminal tail. PATHOPHYSIOLOGY: Stimulation of beta-adrenergic receptors by catecholamines is realized via the beta-adrenoceptor-adenylylcyclase-protein kinase A cascade. The second messenger is the cyclic AMP (cAMP). Stimulation of the cascade caused an accumulation of the second messenger cAMP and activated via the cAMP the cAMP dependent protein kinase A (PKA) The PKA phosphorylated, beside other cell proteins, the beta-adrenergic receptors. A phosphorylation of the beta-adrenergic receptors caused - with exception of the beta3-adrenoceptor - an uncoupling and desensitisation of the receptors. Phosphorylation via the G-protein receptor kinase (GRK or betaARK) also caused uncoupling and reduced the beta-adrenergic responsiveness. The uncoupling of the receptor is the prerequisite for receptor internalisation. In the process of internalisation the receptor shifted from the sarcolemma membrane into cytosolic compartments. Chronic beta-adrenergic stimulation caused a down-regulation of the receptors. During this process of desensitisation the expression of the receptor on mRNA and protein level is reduced. CHANGING OF THE RECEPTORS IN THE FAILING HEART: In patients with dilated cardiomyopathy the beta-adrenergic responsiveness of the myocardium is diminished. It was shown that in these patients the expression of the beta1-adrenergic receptor is reduced on the mRNA and protein level. In these patients the expression of the inhibitory G-protein G(i) is increased. Furthermore, the expression of the G-protein receptor kinase is elevated. This kinase induces the uncoupling of the beta-adrenergic receptors. These alterations of the beta-adrenoceptor signal cascade may be induced by an elevated catecholamine release or by agonist-like autoantibodies directed against the beta1-adrenergic receptor found in patients with dilated cardiomyopathy. Both, permanent stimulation with catecholamines and chronic treatment with agonistic anti-beta1-adrenoceptor autoantibodies cause a reduction of the expression of the beta1-adrenoceptor on mRNA and protein level in "in vitro" experiments. Moreover, an over-expression of the beta1-adrenoceptor, the stimulatory G(s) protein, and the protein kinase A induce detrimental alterations of the cardiac function and morphology in transgenic animals. These animals developed heart failure accompanied by an increased mortality rate.  相似文献   

17.
Signaling through beta-arrestins is a recently appreciated mechanism used by seven-transmembrane receptors. Because G protein-coupled receptor kinase (GRK) phosphorylation of such receptors is generally a prerequisite for beta-arrestin binding, we studied the roles of different GRKs in promoting beta-arrestin-mediated extracellular signal-regulated kinase (ERK) activation by a typical seven-transmembrane receptor, the Gs-coupled V2 vasopressin receptor. Gs- and beta-arrestin-mediated pathways to ERK activation could be distinguished with H89, an inhibitor of protein kinase A, and beta-arrestin 2 small interfering RNA, respectively. The roles of GRK2, -3, -5, and -6 were assessed by suppressing their expression with specific small interfering RNA sequences. By using this approach, we demonstrated that GRK2 and -3 are responsible for most of the agonist-dependent receptor phosphorylation, desensitization, and recruitment of beta-arrestins. In contrast, GRK5 and -6 mediated much less receptor phosphorylation and beta-arrestin recruitment, but yet appeared exclusively to support beta-arrestin 2-mediated ERK activation. GRK2 suppression actually increased beta-arrestin-stimulated ERK activation. These results suggest that beta-arrestin recruited in response to receptor phosphorylation by different GRKs has distinct functional potentials.  相似文献   

18.
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has been limited. Therefore, we generated hybrid transgenic mice with myocardium-targeted overexpression of 1 of 3 GRKs expressed in the heart (GRK2 [commonly known as the beta-AR kinase 1], GRK3, or GRK5) with concomitant cardiac expression of a constitutively activated mutant (CAM) or wild-type alpha(1B)AR. Transgenic mice with cardiac CAMalpha(1B)AR overexpression had enhanced myocardial alpha(1)AR signaling and elevated heart-to-body weight ratios with ventricular atrial natriuretic factor expression denoting myocardial hypertrophy. Transgenic mouse hearts overexpressing only GRK2, GRK3, or GRK5 had no hypertrophy. In hybrid transgenic mice, enhanced in vivo signaling through CAMalpha(1B)ARs, as measured by myocardial diacylglycerol content, was attenuated by concomitant overexpression of GRK3 but not GRK2 or GRK5. CAMalpha(1B)AR-induced hypertrophy and ventricular atrial natriuretic factor expression were significantly attenuated with either concurrent GRK3 or GRK5 overexpression. Similar GRK selectivity was seen in hybrid transgenic mice with wild-type alpha(1B)AR overexpression concurrently with a GRK. GRK2 overexpression was without effect on any in vivo CAM or wild-type alpha(1B)AR cardiac phenotype, which is in contrast to previously reported in vitro findings. Furthermore, endogenous myocardial alpha(1)AR mitogen-activated protein kinase signaling in single-GRK transgenic mice also exhibited selectivity, as GRK3 and GRK5 desensitized in vivo alpha(1)AR mitogen-activated protein kinase responses that were unaffected by GRK2 overexpression. Thus, these results demonstrate that GRKs differentially interact with alpha(1B)ARs in vivo such that GRK3 desensitizes all alpha(1B)AR signaling, whereas GRK5 has partial effects and, most interestingly, GRK2 has no effect on in vivo alpha(1B)AR signaling in the heart.  相似文献   

19.
Hardy AR  Conley PB  Luo J  Benovic JL  Poole AW  Mundell SJ 《Blood》2005,105(9):3552-3560
Adenosine 5'-diphosphate (ADP) plays a central role in regulating platelet function by the activation of the G protein-coupled receptors P2Y(1) and P2Y(12). Although it is well established that aggregation responses of platelets to ADP desensitize, the underlying mechanisms involved remain unclear. In this study we demonstrate that P2Y(1)- and P2Y(12)-mediated platelet responses desensitize rapidly. Furthermore, we have established that these receptors desensitize by different kinase-dependent mechanisms. G protein-coupled receptor kinase (GRK) 2 and GRK6 are both endogenously expressed in platelets. Transient overexpression of dominant-negative mutants of these kinases or reductions in endogenous GRK expression by the use of specific siRNAs in 1321N1 cells showed that P2Y(12), but not P2Y(1), desensitization is mediated by GRKs. In contrast, desensitization of P2Y(1), but not P2Y(12), is largely dependent on protein kinase C activity. This study is the first to show that both P2Y(1) and P2Y(12) desensitize in human platelets, and it reveals ways in which their sensitivity to ADP may be differentially and independently altered.  相似文献   

20.
Guanine nucleotide binding protein (G-protein)-coupled receptor kinases (GRKs) specifically phosphorylate the agonist-occupied form of G-protein-coupled receptors such as the beta 2-adrenergic receptor and rhodopsin. The best characterized members of this family include the beta-adrenergic receptor kinase (beta ARK) and rhodopsin kinase. To identify additional members of the GRK family, the polymerase chain reaction was used to amplify human heart cDNA using degenerate oligonucleotide primers from highly conserved regions unique to the GRK family. Here we report the isolation of a cDNA that encodes a 590-amino acid protein kinase, termed GRK5, which has 34.8% and 47.2% amino acid identities with beta ARK and rhodopsin kinase, respectively. Interestingly, GRK5 has an even higher homology with Drosophila GPRK-2 (71.0% identity) and the recently identified human IT11 (69.1% identity). Northern blot analysis of GRK5 with selected human tissues reveals a message of approximately 3 kilobases with highest levels in heart, placenta, lung > skeletal muscle > brain, liver, pancreas > kidney. GRK5, overexpressed in Sf9 insect cells using the baculovirus system, was able to phosphorylate rhodopsin in a light-dependent manner. In addition, GRK5 neither contains a consensus sequence for isoprenylation like rhodopsin kinase nor is activated by G-protein beta gamma subunits like beta ARK1. Thus, GRK5 represents a member of the GRK family that likely has a unique physiological role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号