首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Respiratory motion in PET and PET/CT blurs the images and can cause attenuation-related errors in quantitative parameters such as standard uptake values. In rare instances, this problem even causes localization errors and the disappearance of tumors that should be detectable. Attenuation errors are severe near the diaphragm and can be enhanced when the attenuation correction is based on a CT series acquired during a breath-hold. To quantify the errors and identify the parameters associated with them, the authors performed a simulated PET scan based on respiratory-gated CT studies of five lung cancer patients. Diaphragmatic motion ranged from 8 to 25 mm in the five patients. The CT series were converted to 511-keV attenuation maps which were forward-projected and exponentiated to form sinograms of PET attenuation factors at each phase of respiration. The CT images were also segmented to form a PET object, moving with the same motion as the CT series. In the moving PET object, spherical 20 mm mobile tumors were created in the vicinity of the dome of the liver and immobile 20 mm tumors in the midchest region. The moving PET objects were forward-projected and attenuated, then reconstructed in several ways: phase-matched PET and CT, gated PET with ungated CT, ungated PET with gated CT, and conventional PET. Spatial resolution and statistical noise were not modeled. In each case, tumor uptake recovery factor was defined by comparing the maximum reconstructed pixel value with the known correct value. Mobile 10 and 30 mm tumors were also simulated in the case of a patient with 11 mm of breathing motion. Phase-matched gated PET and CT gave essentially perfect PET reconstructions in the simulation. Gated PET with ungated CT gave tumors of the correct shape, but recovery was too large by an amount that depended on the extent of the motion, as much as 90% for mobile tumors and 60% for immobile tumors. Gated CT with ungated PET resulted in blurred tumors and caused recovery errors between -50% and +75%. Recovery in clinical scans would be 0%-20% lower than stated because spatial resolution was not included in the simulation. Mobile tumors near the dome of the liver were subject to the largest errors in either case. Conventional PET for 20 mm tumors was quantitative in cases of motion less than 15 mm because of canceling errors in blurring and attenuation, but the recovery factors were too low by as much as 30% in cases of motion greater than 15 mm. The 10 mm tumors were blurred by motion to a greater extent, causing a greater SUV underestimation than in the case of 20 mm tumors, and the 30 mm tumors were blurred less. Quantitative PET imaging near the diaphragm requires proper matching of attenuation information to the emission information. The problem of missed tumors near the diaphragm can be reduced by acquiring attenuation-correction information near end expiration. A simple PET/CT protocol requiring no gating equipment also addresses this problem.  相似文献   

3.
A constrained least-squares technique to correct diagnostic x-ray tube energy spectra for inherent blurring by scintillation detectors was developed. The measured detector response function to monoenergetic sources was used to construct a matrix that modeled the energy broadening in the crystal. This blurring operator, along with an estimate of statistical noise in the count data, comprised the a priori system knowledge required for application of the method. Tungsten anode spectra up to 90 kVp were acquired with a Nal-photomultiplier detector system at a source-to-detector distance of 30 cm. X-ray tube output was collimated at the detector by a 0.5 mm diameter pinhole collimator. Measured Nal spectra were compared to both published reference data and to spectra acquired in our laboratory with a Ge detector system. Application of the constrained least-squares technique involved first defining a criterion function that combined an assessment of the goodness of fit with a weighted measure of the smoothness of the solution. Minimization of this function resulted in the corrected spectrum. While it is not possible to recover the characteristic tungsten peaks, the success of our method in deconvolving the measured spectra was demonstrated by a significant improvement in agreement with reference data. To provide a measure of this agreement, a histogram of the differences between the two curves was generated. The full width at half maximum (FWHM) of the Gaussian distribution fit to the histogram was used to quantify the similarity between the spectra and the reference data, both before and after correction. As spectral agreement improves, the FWHM becomes smaller. We show that application of the constrained least-squares technique improved spectral matching by 20%-60%.  相似文献   

4.
Respiratory motion results in significant motion blur in thoracic positron emission tomography (PET) imaging. Existing approaches to correct the blurring artifact involve acquiring the images in gated mode and using complicated reconstruction algorithms. In this paper, we propose a post-reconstruction framework to estimate respiratory motion and reduce the motion blur of PET images acquired in ungated mode. Our method includes two steps: one is to use minmax directional derivative analysis and local auto-correlation analysis to identify the two parameters blur direction and blur extent, respectively, and another is to employ WRL, à trous wavelet-denoising modified Richardson-Lucy (RL) deconvolution, to reduce the motion blur based on identified parameters. The mobile phantom data were first used to test the method before it was applied to 32 cases of clinical lung tumor PET data. Results showed that the blur extent of phantom images in different directions was accurately identified, and WRL can remove the majority of motion blur within ten iterations. The blur extent of clinical images was estimated to be 12.1 ± 3.7 mm in the direction of 74 ± 3° relative to the image horizontal axis. The quality of clinical images was significantly improved, both from visual inspection and quantitative evaluation after deconvolution. It was demonstrated that WRL outperforms RL and a Wiener filter in reducing the motion blur with one to two more iterations. The proposed method is easy to implement and thus could be a useful tool to reduce the effect of respiration in ungated thoracic PET imaging.  相似文献   

5.
Positron emission tomography (PET) has shown an increase in both sensitivity and specificity over computed tomography (CT) in lung cancer. However, motion artifacts in the 18F fluorodioxydoglucose (FDG) PET images caused by respiration persists to be an important factor in degrading PET image quality and quantification. Motion artifacts lead to two major effects: First, it affects the accuracy of quantitation, producing a reduction of the measured standard uptake value (SUV). Second, the apparent lesion volume is overestimated. Both impact upon the usage of PET images for radiation treatment planning. The first affects the visibility, or contrast, of the lesion. The second results in an increase in the planning target volume, and consequently a greater radiation dose to the normal tissues. One way to compensate for this effect is by applying a multiple-frame capture technique. The PET data are then acquired in synchronization with the respiratory motion. Reduction in smearing due to gating was investigated in both phantoms and patient studies. Phantom studies showed a dependence of the reduction in smearing on the lesion size, the motion amplitude, and the number of bins used for data acquisition. These studies also showed an improvement in the target-to-background ratio, and a more accurate measurement of the SUV. When applied to one patient, respiratory gating showed a 28% reduction in the total lesion volume, and a 56.5% increase in the SUV. This study was conducted as a proof of principle that a gating technique can effectively reduce motion artifacts in PET image acquisition.  相似文献   

6.
This short paper investigates highly constrained organ-motion deconvolution in the context of the delivery of radiotherapy. Whereas unconstrained and unphysical deconvolution of regular intrafraction motion can generate a dose distribution exactly matching the plan (made on a supposedly static object), the addition of fluence-positivity, fluence-smoothing and fluence-capping constraints to create constrained, physically valid, deconvolution reduces the goodness of fit. However, the generated modulations are physically acceptable and essentially are 'for free', no added delivery technology being needed and they improve on the 'do nothing about motion' strategy. This technique cannot ever rival gating, breath-hold or tracking and is not intended to.  相似文献   

7.
Error-free reconstruction of PET data with a registered CT attenuation map is essential for accurate quantification and interpretation of cardiac perfusion. Misalignment of the CT and PET data can produce an erroneous attenuation map that projects lung attenuation parameters onto the heart wall, thereby underestimating the attenuation and creating artifactual areas of hypoperfusion that can be misinterpreted as myocardial ischemia or infarction. The major causes of misregistration between CT and PET images are the respiratory motion, cardiac motion and gross physical motion of the patient. The misalignment artifact problem is overcome with automated cardiac registration software that minimizes the alignment error between the two modalities. Results show that the automated registration process works equally well for any respiratory phase in which the CT scan is acquired. Further evaluation of this procedure on 50 patients demonstrates that the automated registration software consistently aligns the two modalities, eliminating artifactual hypoperfusion in reconstructed PET images due to PET/CT misregistration. With this registration software, only one CT scan is required for PET/CT imaging, which reduces the radiation dose required for CT-based attenuation correction and improves the clinical workflow for PET/CT.  相似文献   

8.
CT beam hardening artifacts near metal hip implants may erroneously enhance or diminish radiotracer uptake following CT attenuation correction (AC) of PET images. An artifact reduction algorithm (ARA) was developed to reduce metal artifacts in CT-based AC-PET. The algorithm employed a Bayes classifier to identify beam-hardening artifacts, followed by a partial correction of the attenuation map. ARA was implemented on phantom and patient 18F-FDG studies using a clinical PET/CT scanner. In phantom studies ARA successfully removed two artifacts of erroneously elevated uptake near a stainless steel hip prosthesis which were depicted in the standard CT-AC PET. ARA has also identified two targets absent on the scanner PET images. Target-to-background ratios were 1.5-3 times higher for ARA-PET than scanner images. In a patient study, metal artifacts were of lower intensity in ARA-PET as compared to standard images. Potentially, ARA may improve detectability of small lesions located near metal hip implants.  相似文献   

9.
Nye JA  Esteves F  Votaw JR 《Medical physics》2007,34(6):1901-1906
The introduction of positron emission/computed tomography (PET/CT) systems coupled with multidetector CT arrays has greatly increased the amount of clinical information in myocardial perfusion studies. The CT acquisition serves the dual role of providing high spatial anatomical detail and attenuation correction for PET. However, the differences between the interaction of respiratory and cardiac cycles in the CT and PET acquisitions presents a challenge when using the CT to determine PET attenuation correction. Three CT attenuation correction protocols were tested for their ability to produce accurate emission images: gated, a step mode acquisition covering the diastolic heart phase; normal, a high-pitch helical CT; and slow, a low-pitch, low-temporal-resolution helical CT. The amount of cardiac tissue in the emission image that overlaid lung tissue in the transmission image was used as the measure of mismatch between acquisitions. Phantom studies simulating misalignment of the heart between the transmission and emission sequences were used to correlate the amount of mismatch with the artificial defect changes in the emission image. Consecutive patients were studied prospectively with either paired gated (diastolic phase, 120 kVp, 280 mA, 2.6 s) and slow CT (0.562:1 pitch, 120 kVp, Auto-mA, 16 s) or paired normal (0.938:1 pitch, 120 kVp, Auto-mA, 4.8 s) and slow CT protocols, prior to a Rb-82 perfusion study. To determine the amount of mismatch, the transmission and emission images were converted to binary representations of attenuating tissue and cardiac tissue and overlaid using their native registration. The number of cardiac tissue pixels from the emission image present in the CT lung field yielded the magnitude of misalignment represented in terms of volume, of where a small volume indicates better registration. Acquiring a slow CT improved registration between the transmission and emission acquisitions compared to the gated and normal CT protocols. The volume of PET cardiac tissue in the CT lung field was significantly lower (p < 0.03) for the slow CT protocol in both the rest and stress emission studies. Phantom studies showed that an overlaying volume greater than 2.6 mL would produce significant artificial defects as determined by a quantitative software package that employs a normal database. The percentage of patient studies with overlaying volume greater than 2.6 mL was reduced from 71% with the normal CT protocol to 28% with the slow CT protocol. The remaining 28% exhibited artifacts consistent with heart drift and patient motion that could not be corrected by adjusting the CT acquisition protocol. The low pitch of the slow CT protocol provided the best match to the emission study and is recommended for attenuation correction in cardiac PET/CT studies. Further reduction in artifacts arising from cardiac drift is required and warrants an image registration solution.  相似文献   

10.
To reduce positron emission tomography (PET) and computed tomography (CT) misalignments and standardized uptake value (SUV) errors, cine average CT (CACT) has been proposed to replace helical CT (HCT) for attenuation correction (AC). A new method using interpolated average CT (IACT) for AC is introduced to further reduce radiation dose with similar image quality. Six patients were recruited in this study. The end-inspiration and -expiration phases from cine CT were used as the two original phases. Deformable image registration was used to generate the interpolated phases. The IACT was calculated by averaging the original and interpolated phases. The PET images were then reconstructed with AC using CACT, HCT and IACT, respectively. Their misalignments were compared by visual assessment, mutual information, correlation coefficient and SUV. The doses from different CT maps were analyzed. The misalignments were reduced for CACT and IACT as compared to HCT. The maximum SUV difference between the use of IACT and CACT was ~3%, and it was ~20% between the use of HCT and CACT. The estimated dose for IACT was 0.38 mSv. The radiation dose using IACT could be reduced by 85% compared to the use of CACT. IACT is a good low-dose approximation of CACT for AC.  相似文献   

11.
Our purpose in this study is to describe an algorithm for the automatic detection of linear artifacts in medical images. Linear artifacts arise as a result of many different forms of tissues and tissue boundaries within the imaging volume. Additionally, linear artifacts can arise for artificial structures such as radioactive seeds and radioactive linear sources. It is the purpose of the described algorithm to automatically detect linear artifacts of a certain length and diameter. The algorithm was written and compiled on a Pentium-4 based computer in the Microsoft Visual C/C++ language. Inert coils supplied by Radiomed Inc. were implanted into a standard prostate ultrasound phantom. Transaxial ultrasound images of the implanted phantom were obtained at 2 mm increments. The coded algorithm was then applied to the ultrasound imaging volume to automatically segment out the implanted coils. Thirteen coils were implanted in the prostate phantom. Thirteen coils were automatically identified in the imaging volume. An algorithm was developed to automatically determine the position and orientation of radioactive coils within an imaging volume. The algorithm successfully identified thirteen coils implanted in an ultrasound prostate phantom.  相似文献   

12.
Suppression of respiratory motion artifacts in magnetic resonance imaging   总被引:1,自引:0,他引:1  
Anatomical structures that are displaced periodically during respiration are repeated as ghosts in magnetic resonance (MR) images. These ghosts can be suppressed in many ways: the averaging of multiple sets of data, respiratory gating, deliberate positioning of ghosts, and respiratory ordering of phase encoding. Each method has a unique mechanism, which is described in detail. A theoretical investigation has been conducted into the effects that the methods have on the point spread function of a moving point. Data acquired in Fourier imaging are actually in the spatial frequency domain, so that respiratory motion can be regarded as a function of spatial frequency. The four methods above modify this functional dependence in different ways, allowing a unified comparison. Motion artifact suppression imposes additional constraints on image acquisition, which can prolong the imaging time. A technique has been developed that keeps the imaging time short by using the configuration of the subject to regulate the timing of image acquisition.  相似文献   

13.
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.  相似文献   

14.
目的 为了降低荧光显微图像的噪声和离焦平面的信息,提高图像清晰度,并评价去卷积成像方法的性能,本文进行显微荧光去卷积成像评价方法的研究.方法 首先,将测得的系统点扩散函数作用于共聚焦显微镜采集的endoG-GFP标记的人乳腺癌细胞MCF-7图像,得到模糊图像,然后采用Richardson-Lucy(R-L)算法对模糊的荧光图像进行去卷积运算,并对去卷积成像方法的性能进行了分析和评估.结果 显微荧光去卷积成像方法可有效去除焦平面外荧光信息,显著提高荧光图像的清晰度.结论 显微荧光去卷积算法结合有效的评价方法在未来有望用于微流控细胞培养的成像,对活体细胞和组织的三维结构的研究有一定的参考价值.  相似文献   

15.
16.
In this paper, a recursive principal component analysis (RPCA)-based algorithm is applied for detecting and quantifying the motion artifact episodes encountered in an ECG signal. The motion artifact signal is synthesized by low-pass filtering a random noise signal with different spectral ranges of LPF (low pass filter): 0–5 Hz, 0–10 Hz, 0–15 Hz and 0–20 Hz. Further, the analysis of the algorithm is carried out for different values of SNR levels and forgetting factors (α) of an RPCA algorithm. The algorithm derives an error signal, wherever a motion artifact episode (noise) is present in the entire ECG signal with 100% accuracy. The RPCA error magnitude is almost zero for the clean signal portion and considerably high wherever the motion artifacts (noisy episodes) are encountered in the ECG signals. Further, the general trend of the algorithm is to produce a smaller magnitude of error for higher SNR (i.e. low level of noise) and vice versa. The quantification of the RPCA algorithm has been made by applying it over 25 ECG data-sets of different morphologies and genres with three different values of SNRs for each forgetting factor and for each of four spectral ranges.  相似文献   

17.
Respiratory motion is known to affect the quantitation of 18FDG uptake in lung lesions. The aim of the study was to investigate the magnitude of errors in tracer activity determination due to motion, and its dependence upon CT attenuation at different phases of the motion cycle. To estimate these errors we have compared maximum activity concentrations determined from PET/CT images of a lung phantom at rest and under simulated respiratory motion. The NEMA 2001 IEC body phantom, containing six hollow spheres with diameters 37, 28, 22, 17, 13, and 10 mm, was used in this study. To mimic lung tissue density, the phantom (excluding spheres) was filled with low density polystyrene beads and water. The phantom spheres were filled with 18FDG solution setting the target-to-background activity concentration ratio at 8:1. PET/CT data were acquired with the phantom at rest, and while it was undergoing periodic motion along the longitudinal axis of the scanner with a range of displacement being 2 cm, and a period of 5 s. The phantom at rest and in motion was scanned using manufacturer provided standard helical/clinical protocol, a helical CT scan followed by a PET emission scan. The moving phantom was also scanned using a 4D-CT protocol that provides volume image sets at different phases of the motion cycle. To estimate the effect of motion on quantitation of activities in six spheres, we have examined the activity concentration data for (a) the stationary phantom, (b) the phantom undergoing simulated respiratory motion, and (c) a moving phantom acquired with PET/4D-CT protocol in which attenuation correction was performed with CT images acquired at different phases of motion cycle. The data for the phantom at rest and in motion acquired with the standard helical/clinical protocol showed that the activity concentration in the spheres can be underestimated by as much as 75%, depending on the sphere diameter. We have also demonstrated that fluctuations in sphere's activity concentration from one PET/CT scan to another acquired with standard helical/clinical protocol can arise as a consequence of spatial mismatch between the sphere's location in PET emission and the CT data.  相似文献   

18.
A three-dimensional (3D) image reconstruction method, which was originally developed for a positron emission tomography (PET) system consisting of two rotating scintillation cameras, has now been implemented for a multi-ring PET scanner with retractable septa. The method is called 'single-slice rebinning with axial deconvolution' (SSAD), and can be described as follows. The projection data are sorted into transaxial 2D sinograms. Correction for the axial blurring is made by deconvolution in the sinograms. To obtain the axial spread functions, which depend on the activity distribution, 2D reconstruction is first made using a limited axial acceptance angle. The final 3D image is obtained by 2D reconstruction of transaxial planes. The method is simple but not approximate, has a modest memory requirement, and can be combined with different 2D techniques. Evaluations by Monte Carlo simulations and phantom studies have been made.  相似文献   

19.
Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.  相似文献   

20.
The present study examined whether implicit motion information from static images influences perceived duration of image presentation. In Experiments 1 and 2, we presented observers with images of a human and an animal character in running and standing postures. The results revealed that the perceived presentation duration of running images was longer than that of standing images. In Experiments 3 and 4, we used abstract block-like images that imitated the human figures used in Experiment 1, presented with different instructions to change the observers’ interpretations of the stimuli. We found that the perceived duration of the block image presented as a man running was longer than that of the image presented as a man standing still. However, this effect diminished when the participants were told the images were green onions (objects with no implied motion), suggesting that the effect of implied motion cannot be attributed to low-level visual differences. These results suggest that implied motion increases the perceived duration of image presentation. The potential involvement of higher-order motion processing and the mirror neuron system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号