首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bone morphogenetic protein (BMP) signaling regulates embryonic development of many organ systems and defective BMP signaling has been implicated in adult disorders of many of these systems. However, its relevance in cardiac disease has not been reported. Here we demonstrate for the first time that Bmp4 activity promotes cellular apoptosis following ischemia-reperfusion (I/R) injury induced myocardial infarction (MI). Bmp4 heterozygous null mice (Bmp4+/) demonstrated reduced infarct size, less myocardial apoptosis and down-regulation of pro-apoptotic proteins relative to wild-type mice following I/R injury. This was associated with reduction in I/R induced BMP4 levels in the left ventricular infarcted region. Furthermore, treatment of neonatal cardiomyocytes with BMP4 resulted in time and dose-dependent increase in cellular apoptosis and activation of the JNK MAP kinase pathway. In contrast, while JNK activation was significantly attenuated in Bmp4+/ mice and following Smad1 inhibition in myocytes, inhibition of JNK with a specific inhibitory peptide, TAT-JBD20, blocked BMP4 induced apoptosis. In vivo treatment of mice with Noggin, an endogenous extracellular BMP antagonist, or dorsomorphin, a small molecule inhibitor of BMP signaling, reduced infarct size, and inhibited pro-apoptotic signaling accompanied by an inhibition of Smad1 phosphorylation and JNK activation. These studies identify a novel role for Bmp4 in the pathogenesis of myocardial infarction and illustrate the use of a small molecule inhibitor of BMP signaling for treatment of acute I/R injury.  相似文献   

2.
3.
Inflammatory neovascularization, such as choroidal neovascularization (CNV), occur in the presence of Notch expressing macrophages. DLL4s anti-angiogenic effect on endothelial cells (EC) has been widely recognized, but its influence on Notch signaling on macrophages and its overall effect in inflammatory neovascularization is not well understood. We identified macrophages and ECs as the main Notch 1 and Notch 4 expressing cells in CNV. A soluble fraction spanning Ser28-Pro525 of the murine extracellular DLL4 domain (sDLL4/28-525) activated the Notch pathway, as it induces Notch target genes in macrophages and ECs and inhibited EC proliferation and vascular sprouting in aortic rings. In contrast, sDLL4/28-525 increased pro-angiogenic VEGF, and IL-1β expression in macrophages responsible for increased vascular sprouting observed in aortic rings incubated in conditioned media from sDLL4/28-525 stimulated macrophages. In vivo, Dll4+/? mice developed significantly more CNV and sDLL4/28-525 injections inhibited CNV in Dll4+/? CD1 mice. Similarly, sDLL4/28-525 inhibited CNV in C57Bl6 and its effect was reversed by a γ-secretase inhibitor that blocks Notch signaling. The inhibition occurred despite increased VEGF, IL-1β expression in infiltrating inflammatory macrophages in sDLL4/28-525 treated mice and might be due to direct inhibition of EC proliferation in laser-induced CNV as demonstrated by EdU labelling in vivo. In conclusion, Notch activation on macrophages and ECs leads to opposing effects in inflammatory neovascularization in situations such as CNV.  相似文献   

4.
5.
Many important signaling pathways rely on multiple ligands. It is unclear if this is a mechanism of safeguard via redundancy or if it serves other functional purposes. In this study, we report unique insight into this question by studying the activin receptor-like kinase 1 (ALK1) pathway. Despite its functional importance in vascular development, the physiological ligand or ligands for ALK1 remain to be determined. Using conventional knockout and specific antibodies against bone morphogenetic protein 9 (BMP9) or BMP10, we showed that BMP9 and BMP10 are the physiological, functionally equivalent ligands of ALK1 in vascular development. Timing of expression dictates the in vivo requisite role of each ligand, and concurrent expression results in redundancy. We generated mice (Bmp109/9) in which the coding sequence of Bmp9 replaces that of Bmp10. Surprisingly, analysis of Bmp109/9 mice demonstrated that BMP10 has an exclusive function in cardiac development, which cannot be substituted by BMP9. Our study reveals context-dependent significance in having multiple ligands in a signaling pathway.  相似文献   

6.
7.
Schuch G  Kisker O  Atala A  Soker S 《Angiogenesis》2002,5(3):181-190
There is increasing evidence for the implication of tumor-derived angiogenic and anti-angiogenic factors in controlling tumor growth in vivo. In this study, we documented the production of inhibitors of angiogenesis by pancreatic cancer cells and examined how changes in the balance between pro- and anti-angiogenic factors regulate tumor growth in vivo. The human pancreatic cancer cell line Hs-776T (HS-W) produces slow-growing tumors in SCID mice. Cells of a variant form (HS-R) of Hs-776T produced faster-growing tumors compared to HS-W. Characterization of HS-W and HS-R cells in vitro showed similar proliferation rates and production of the angiogenic factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Analyzes of anti-angiogenic factors showed comparable levels of angiostatin and thrombospondin 1 and 2, but endostatin was only detected in conditioned media of HS-W cells and was absent in HS-R. Cell proliferation was similar in both tumor types in vivo, whereas HS-W tumors demonstrated increased apoptosis with a high percentage of apoptotic endothelial cells (EC). Subsequently, VEGF was over-expressed in Hs-776T cells (HS-VF), resulting in rapidly growing tumors and lowering tumor and EC apoptosis. Collectively, our study confirms that tumor growth is dependent on its ability to increase the angiogenic stimulus or to reduce the amounts of endogenous anti-angiogenic factors.  相似文献   

8.
Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbbth1/th1 (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.  相似文献   

9.
10.
BackgroundAltered expression of matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) accompanies the development of heart failure (HF). However, changes in MMP and TIMP protein levels or activity during the progression from compensated to decompensated failure remains incompletely examined.Methods and ResultsTransgenic mice (Tg) with cardiac-specific overexpression of tumor necrosis factor-α (TNF1.6) develop a sex-related, progressive cardiac dilation and HF. Echocardiographic measures were used to categorize HF severity in male (M) and female (F) Tg and wild-type (WT) mice between 4 and 50 weeks of age. Cardiac TIMPs-1, TIMPs-2, and MMP-3 (enzyme-linked immunosorbent assay), and potential (APMA-activated) MMP-9 activity were measured at similar ages. In situ zymography assessed tissue gelatinase activity. Systolic function, ventricular dimensions, and presence of pleural effusions identified severe HF in younger M Tg mice (by 18 weeks) and older F Tg (>34 weeks). Regardless of age, sex, or HF severity, Tg mice expressed significantly more TIMP-1 (Tg 119–193 pg/mg vs. WT 13–24 pg/mg, P < .001) and potential MMP-9 activity (Tg 0.41–0.58 ng/mg vs. WT 0.015–0.028 ng/mg, P < .002). M Tg expressed elevated MMP-3 (4 weeks, 0.16 ± 0.1 ng/mg protein vs. WT 0.04 ± 0.01 ng/mg, P < .003), which increased with age and HF severity (18 weeks, 0.51 ± 0.3 ng/mg P < .01). F Tg showed no increase in MMP-3 at 4 weeks but a progressive increase with age and HF severity (18 weeks 0.09 ± 0.04 ng/mg, P < .02 vs. Tg M or WT; 34 weeks 0.13 ± 0.02 ng/mg, P < .001 vs. WT). To test the hypothesis that increased MMP-3 may differentially activate MMP-9 in M Tg, in situ zymography was performed and revealed a significant increase in gelatinase activity in M Tg mice relative to both WT and F Tg.ConclusionMMP-3 may regulate activation of MMP-9/gelatinase, the progression of cardiac remodeling, and development of decompensated heart failure.  相似文献   

11.

Background  

Vascular endothelial growth factor (VEGF) that is secreted by tumor cells plays a key role in angiogenesis. Matrix metalloproteinase 9 (MMP-9) is produced by inflammatory cells, such as stromal granulocytes (PMN), remodels the extracellular matrix and is known to promote angiogenesis indirectly by interacting with VEGF. The aim of this study was to determine the role of PMN-derived MMP-9, its interaction with VEGF, and the efficacy of anti-angiogenic therapy targeting MMP-9 with oral Doxycycline and VEGF with Bevacizumab in pancreatic cancer (PDAC).  相似文献   

12.
BMP9 and BMP10 are critical for postnatal retinal vascular remodeling   总被引:1,自引:0,他引:1  
Ricard N  Ciais D  Levet S  Subileau M  Mallet C  Zimmers TA  Lee SJ  Bidart M  Feige JJ  Bailly S 《Blood》2012,119(25):6162-6171
ALK1 is a type I receptor of the TGF-β family that is involved in angiogenesis. Circulating BMP9 was identified as a specific ligand for ALK1 inducing vascular quiescence. In this work, we found that blocking BMP9 with a neutralizing antibody in newborn mice significantly increased retinal vascular density. Surprisingly, Bmp9-KO mice did not show any defect in retinal vascularization. However, injection of the extracellular domain of ALK1 impaired retinal vascularization in Bmp9-KO mice, implicating another ligand for ALK1. Interestingly, we detected a high level of circulating BMP10 in WT and Bmp9-KO pups. Further, we found that injection of a neutralizing anti-BMP10 antibody to Bmp9-KO pups reduced retinal vascular expansion and increased vascular density, whereas injection of this antibody to WT pups did not affect the retinal vasculature. These data suggested that BMP9 and BMP10 are important in postnatal vascular remodeling of the retina and that BMP10 can substitute for BMP9. In vitro stimulation of endothelial cells by BMP9 and BMP10 increased the expression of genes involved in the Notch signaling pathway (Jagged1, Dll4, Hey1, Hey2, Hes1) and decreased apelin expression, suggesting a possible cross-talk between these pathways and the BMP pathway.  相似文献   

13.
The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is a central regulator of hepcidin expression and systemic iron balance. However, the molecular mechanisms by which iron is sensed to regulate BMP6-SMAD signaling and hepcidin expression are unknown. Here we examined the effects of circulating and tissue iron on Bmp6-Smad pathway activation and hepcidin expression in vivo after acute and chronic enteral iron administration in mice. We demonstrated that both transferrin saturation and liver iron content independently influence hepcidin expression. Although liver iron content is independently positively correlated with hepatic Bmp6 messenger RNA (mRNA) expression and overall activation of the Smad1/5/8 signaling pathway, transferrin saturation activates the downstream Smad1/5/8 signaling cascade, but does not induce Bmp6 mRNA expression in the liver. Hepatic inhibitory Smad7 mRNA expression is increased by both acute and chronic iron administration and mirrors overall activation of the Smad1/5/8 signaling cascade. In contrast to the Smad pathway, the extracellular signal-regulated kinase 1 and 2 (Erk1/2) mitogen-activated protein kinase (Mapk) signaling pathway in the liver is not activated by acute or chronic iron administration in mice. CONCLUSION: Our data demonstrate that the hepatic Bmp6-Smad signaling pathway is differentially activated by circulating and tissue iron to induce hepcidin expression, whereas the hepatic Erk1/2 signaling pathway is not activated by iron in vivo.  相似文献   

14.
Finberg KE  Whittlesey RL  Andrews NC 《Blood》2011,117(17):4590-4599
The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe(-/-) mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6(-/-) mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe(-/-) mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder.  相似文献   

15.
Iron overload induces BMP6 expression in the liver but not in the duodenum   总被引:2,自引:0,他引:2  

Background

The bone morphogenetic protein BMP6 regulates hepcidin production by the liver. However, it is not yet known whether BMP6 derives from the liver itself or from other sources such as the small intestine, as has been recently suggested. This study was aimed at investigating the source of BMP6 further.

Design and Methods

We used three different strains of mice (C57BL/6, DBA/2, and 129/Sv) with iron overload induced either by an iron-enriched diet or by inactivation of the Hfe gene. We examined Bmp6 expression at both the mRNA (by quantitative PCR) and protein (by immunohistochemistry and Western blotting analyses) levels.

Results

We showed that iron overload induces Bmp6 mRNA expression in the liver but not in the duodenum of these mice. Bmp6 is also detected by immunohistochemistry in liver tissue sections of mice with iron overload induced either by an iron-enriched diet or by inactivation of the Hfe gene, but not in liver tissue sections from iron-loaded Bmp6-deficient mice. Bmp6 in the duodenum was below immunodetection threshold, thus confirming quantitative PCR data. Lack of specificity of available antibodies together with slight heterogeneity between 129 substrains may account for the differences with previously published data.

Conclusions

Our data strongly support the importance of liver BMP6 for regulation of iron metabolism. Indeed, they demonstrate that intestinal Bmp6 expression is modulated by iron neither at the mRNA nor at the protein level.  相似文献   

16.
We show that 1 of the type II bone morphogenetic protein (BMP) receptor ligands, BMP4, is widely expressed in the adult mouse lung and is upregulated in hypoxia-induced pulmonary hypertension (PH). Furthermore, heterozygous null Bmp4(lacZ/+) mice are protected from the development of hypoxia-induced PH, vascular smooth muscle cell proliferation, and vascular remodeling. This is associated with a reduction in hypoxia-induced Smad1/5/8 phosphorylation and Id1 expression in the pulmonary vasculature. In addition, pulmonary microvascular endothelial cells secrete BMP4 in response to hypoxia and promote proliferation and migration of vascular smooth muscle cells in a BMP4-dependent fashion. These findings indicate that BMP4 plays a dominant role in regulating BMP signaling in the hypoxic pulmonary vasculature and suggest that endothelium-derived BMP4 plays a direct, paracrine role in promoting smooth muscle proliferation and remodeling in hypoxic PH.  相似文献   

17.
The balance between anabolic and catabolic signaling pathways is critical in maintaining cartilage homeostasis and its disturbance contributes to joint diseases such as osteoarthritis (OA). A unique mechanism that modulates the activity of cell signaling pathways is controlled by extracellular heparan endosulfatases Sulf-1 and Sulf-2 (Sulfs) that are overexpressed in OA cartilage. This study addressed the role of Sulfs in cartilage homeostasis and in regulating bone morphogenetic protein (BMP)/Smad and fibroblast growth factor (FGF)/Erk signaling in articular cartilage. Spontaneous cartilage degeneration and surgically induced OA were significantly more severe in Sulf-1−/− and Sulf-2−/− mice compared with wild-type mice. MMP-13, ADAMTS-5, and the BMP antagonist noggin were elevated whereas col2a1 and aggrecan were reduced in cartilage and chondrocytes from Sulf−/− mice. Articular cartilage and cultured chondrocytes from Sulf−/− mice showed reduced Smad1 protein expression and Smad1/5 phosphorylation, whereas Erk1/2 phosphorylation was increased. In human chondrocytes, Sulfs siRNA reduced Smad phosphorylation but enhanced FGF-2-induced Erk1/2 signaling. These findings suggest that Sulfs simultaneously enhance BMP but inhibit FGF signaling in chondrocytes and maintain cartilage homeostasis. Approaches to correct abnormal Sulf expression have the potential to protect against cartilage degradation and promote cartilage repair in OA.  相似文献   

18.
Purpose Whereas some studies have indicated that the prognosis of hepatocellular carcinoma (HCC) was correlated to some apoptosis and angiogenesis factors: p53, survivin, matrix metalloproteinases (MMPs, including MMP-2 and MMP-9) and vascular endothelial growth factor (VEGF), other studies have failed to confirm this. The aim of the present study is to investigate the expression of p53, survivin, MMPs and VEGF in HCC and the relationship between these factors and the prognosis of HCC patients.Methods The expression of p53, survivin, MMP-2, MMP-9 and VEGF was measured by immunohistochemical assays in the liver resection specimens of 90 patients with HCC.Results The positive rate of p53, survivin, MMP-2, MMP-9 and VEGF was 33.3, 51.1, 60.0, 37.8 and 76.7%, respectively. The expression of MMP-2, MMP-9 and VEGF was correlated to the recurrence of HCC patients, respectively (P < 0.01). No correlation was found between the expression of apoptosis factors (p53 and survivin) and the recurrence of HCC patients, respectively (P > 0.05). The positive correlations were found between MMP-2 and VEGF (r = 0.32, P < 0.01), MMP-9 and VEGF (r = 0.24, P < 0.05). Significant differences of disease-free survival rates occurred among subgroups according to the expression of MMP-2, MMP-9 and VEGF (P < 0.01). Multivariate analysis revealed that macroscopically disseminated nodules, tumor micrometastasis, high serum alpha-fetoprotein level, positive expression of MMP-9 and VEGF were independent recurrence risk factors.Conclusions Our investigation revealed that p53 and survivin could not estimate the prognosis of HCC patients. Angiogenesis factors (MMPs and VEGF) positively correlated to the prognosis of HCC patients. The expression of MMPs and VEGF in HCC tissues could be regarded as a valuable indicator in estimating the prognosis of HCC patients.  相似文献   

19.
The bone morphogenetic protein 15 (Bmp15) and growth differentiation factor 9 (Gdf9) genes are two members of the transforming growth factor-beta superfamily. In mammals, these genes are known to be specifically expressed in oocytes and to be essential for female fertility. However, potential ovarian roles of BMPs remain unexplored in birds. The aim of the present work was to study for the first time the expression of Bmp15 in the hen ovary, to compare its expression pattern with that of Gdf9, and then to investigate the effects of BMP15 on granulosa cell (GC) proliferation and steroidogenesis. We found that chicken Bmp15 and Gdf9 genes were preferentially expressed in the ovary. We showed using in situ hybridization that Bmp15 and Gdf9 mRNAs were specifically localized in oocytes of all ovarian follicles examined. We also demonstrated using real-time quantitative RT-PCR that Bmp15 and Gdf9 expression was maintained during hierarchical follicular maturation in the gerrminal disc region and then progressively declined after ovulation. BMP15 was able to activate Smad1 (mothers against decapentaplegichomolog1) signaling pathway in hen GCs. Moreover, we showed a strong inhibitory effect of BMP15 on gonadotropin-induced progesterone production in hen GCs. This inhibitory effect was associated with a decrease in steroidogenic acute regulatory protein (STAR) level. Taken together, our results suggest that BMP15 may have a key role in the female fertility of birds.  相似文献   

20.
Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia associated with dysregulated angiogenesis and arteriovascular malformations. The disease is caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase 1 (ALK1; HHT2) genes, coding for transforming growth factor β (TGF-β) superfamily receptors. Vascular endothelial growth factor (VEGF) has been implicated in HHT and beneficial effects of anti-VEGF treatment were recently reported in HHT patients. To investigate the systemic angiogenic phenotype of Endoglin and Alk1 mutant mice and their response to anti-VEGF therapy, we assessed microvessel density (MVD) in multiple organs after treatment with an antibody to mouse VEGF or vehicle. Lungs were the only organ showing an angiogenic defect, with reduced peripheral MVD and secondary right ventricular hypertrophy (RVH), yet distinctly associated with a fourfold increase in thrombospondin-1 (TSP-1) in Eng +/? versus a rise in angiopoietin-2 (Ang-2) in Alk1 +/? mice. Anti-VEGF treatment did reduce lung VEGF levels but interestingly, led to an increase in peripheral pulmonary MVD and attenuation of RVH; it also normalized TSP-1 and Ang-2 expression. Hepatic MVD, unaffected in mutant mice, was reduced by anti-VEGF therapy in heterozygous and wild type mice, indicating a liver-specific effect of treatment. Contrast-enhanced micro-ultrasound demonstrated a reduction in hepatic microvascular perfusion after anti-VEGF treatment only in Eng +/? mice. Our findings indicate that the mechanisms responsible for the angiogenic imbalance and the response to anti-VEGF therapy differ between Eng and Alk1 heterozygous mice and raise the need for systemic monitoring of anti-angiogenic therapy effects in HHT patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号