首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guan JL  Wang QP  Shioda S 《Brain research》2003,987(1):86-92
The ultrastructure and synaptic relationships of orexin A-like immunoreactive neuronal fibers in the dorsal horn of the rat cervical spinal cord were examined at both the light and electron microscopic levels. At the light microscopic level, many intensely immunostained orexin A-like fibers were found, while at the electron microscopic level, immunoreactivity in these fibers was mostly confined to axon terminals. Most of the axon terminals contained dense-cored vesicles. Immunoreactive and immunonegative dense-cored vesicles were occasionally found within the same orexin A-like immunoreactive axon terminals, which were often found making synapses with immunonegative dendrites. These synapses were both asymmetric and symmetric, with the asymmetric ones predominant. Orexin A-like immunoreactive processes that contained no synaptic vesicles were also found with less frequency. These processes were also observed receiving synaptic inputs from immunonegative axon terminals, but the synapses were mostly asymmetric. Sometimes, such processes were found to receive multiple synaptic inputs for which the presynaptic immunonegative axon terminals could make synapses on other immunonegative dendrites simultaneously. Occasionally, synapses between the orexin A-like immunoreactive axon terminals and orexin A-like immunoreactive processes containing no synaptic vesicles were also found. The present results provide solid morphological evidence that orexin A may be involved in pain-inhibition mechanisms in the spinal cord and suggest that this function may be complex and occur in conjunction with the regulatory effects of other neurotransmitters.  相似文献   

2.
Wang QP  Zadina JE  Guan JL  Kastin AJ  Shioda S 《Brain research》2003,969(1-2):126-134
Endomorphins are endogenous opioid peptides with high affinity and selectivity for the mu-opioid receptor. In the present study, we examined the morphology of the endomorphin 2-like immunoreactive (EM2-LI) neurons in the hypothalamus at the light and electron microscopic levels. At the light microscopic level, EM2-LI neurons were found mostly distributed in the regions between the dorsomedial and ventromedial hypothalamic nuclei and the region near the third ventricle. At the electron microscopic level, EM2-LI perikarya could be divided into two groups. Type I perikarya contained relatively undeveloped endoplasmic reticulum and Golgi apparatus while type II perikarya contained well-developed rough-surfaced endoplasmic reticulum and Golgi apparatus. Both type I and type II neurons contained numerous EM2-LI dense-cored vesicles. Type II perikarya and dendrites received synapses and showed immunoreactivity in the endoplasmic reticulum and Golgi apparatus. EM2-LI axon terminals formed synapses with both immunonegative and immunopositive dendrites. In some cases, the axon terminals contained both immunonegative and immunopositive dense-cored vesicles. EM2-LI neurons often had synaptic relationships with neurons containing immunonegative dense-cored vesicles. Myelinated axon shafts containing EM2-LI were also found. This first demonstration of the ultrastructure and synaptic relationships of EM2-LI neurons in the hypothalamus provides morphological evidence that suggests (1) endomorphin 2-containing neurons modulate physiological function through synaptic relationships; (2) endomorphin 2 may coexist with other neurotransmitters in the same neurons; and (3) endomorphin 2-containing neurons could modulate other endomorphin 2-containing neurons as well as those containing other neurotransmitters.  相似文献   

3.
A preembedding double immunostaining technique was used to study synaptic relationships between angiotensin-II-like immunoreactive and enkephalin-like immunoreactive neurons in the rat area postrema. The angiotensin-II-like immunoreactive neurons were detected by silver-gold intensification of the DAB reaction results while the enkephalin-like immunoreactive neurons were detected by simple ABC-DAB reaction. The synaptic relationships were reciprocal between the two neurons. Most of the synapses found between these two neurons were the presynaptic enkephalin-like immunoreactive axon terminals that made synapses on the angiotensin-II-like immunoreactive perikarya and dendrites. Both the axo-somatic and axo-dendritic synapses were symmetrical. However, although angiotensin-II-like immunoreactive axon terminals also made synapses on enkephalin-like perikarya and dendrites, the axo-somatic synapses were symmetrical, while the axo-dendritic synapses were asymmetrical. The present results confirm the presence of angiotensin-II-like immunoreactive neurons in the area postrema and suggest that these angiotensinergic neurons in the area postrema may play a role in the regulation of blood pressure via coordinated synaptic interactions with enkephalinergic neurons.  相似文献   

4.
The synaptic associations of neurons in the suprachiasmatic nucleus (SCN) of rats were examined by single immunolabeling for somatostatin (SRIH) and arginine vasopressin (AVP), and double immunolabeling for SRIH plus AVP and vasoactive intestinal polypeptide (VIP) plus AVP. Single immunolabeling showed that SRIH neurons, which displayed some somatic and dendritic spines, formed synaptic contacts with immunonegative and positive axon terminals. AVP neurons also formed synaptic contacts with both immunonegative and positive axon terminals. The immunonegative terminals contained small, spherical clear vesicles or flattened clear vesicles. A few immunopositive AVP fibers made synapses with immunonegative somatic or dendritic spines. Double immunolabeling showed synaptic associations between SRIH axons and AVP cell bodies or dendritic processes, and between AVP axons and the somata or dendrites of SRIH neurons. These findings suggest a reciprocal relation between the two types of neurons. Synaptic contacts between AVP neurons and VIP axon terminals were also demonstrated. Previously, we found synapses between SRIH axons and VIP neurons. Thus SRIH neurons appeared to regulate AVP and VIP neurons. On the basis of these findings, two possible oscillation systems of the SCN are proposed.  相似文献   

5.
A preembedding double immunostaining technique using antibodies against methionine-enkephalin and tyrosine hydroxylase was used to study synaptic relations between enkephalinergic and catecholaminergic neurons in the area postrema of the rat at the electron microscopic level. The large nuclei-containing cell bodies of the catecholaminergic neurons displayed well-developed Golgi apparatus. The catecholaminergic somata and dendrites received synapses from ankephalinergic axon terminals, and most of the synapses were symmetrical. Occasionally, the catecholaminergic axon terminals were also found to be presynaptic to the enkephalinergic dendrites. Because the enkephalinergic neurons have been reported to be involved in cardiovascular function and the catecholaminergic neurons involved in the vomiting behavior, the synapses observed in this study may provide morphological evidence of the relationship between the vomiting and cardiovascular functions that are triggered in the area postrema.  相似文献   

6.
Immunocytochemical and electrophysiological evidence supporting the presence of GABAergic interneurons in the turtle red nucleus is presented. Injections of HRP into the spinal cord produced labeling of large neurons in the contralateral red nucleus. The peroxidase-antiperoxidase (PAP) method revealed smaller cells immunoreactive to an antibody against glutamate decarboxylase (GAD), the synthetic enzyme for the inhibitory neurotransmitter GABA, that were interspersed among larger immunonegative neurons. Similar small neurons were densely immunostained by antibodies to GABA-glutaraldehyde conjugates obtained from different sources and applied according to pre-embedding and postembedding protocols. Rubrospinal neurons retrogradely labeled with HRP measured 16 and 27 microns in mean minor and major cell body diameters, while GABA-like immunopositive neurons situated within the red nucleus measured 7 and 13 microns. There was very little overlap in soma size between the two cell populations. Therefore, we suggest that the GAD- and GABA-positive neurons may be local inhibitory interneurons. This notion is further supported by observations of pre-embedding immunostaining for GAD and postembedding immunostaining for GABA showing that the turtle red nucleus is amply innervated by immunoreactive axon terminals. These puncta are closely apposed to cell bodies and dendrites of both immunonegative large neurons and immunopositive small neurons. Moreover, immunogold staining at the electron microscopic level demonstrated that GABA-like immunoreactive axon terminals with pleomorphic synaptic vesicles formed symmetric synapses with cell bodies and dendrites of the two types of red nucleus cells. These ultrastructural features are commonly assumed to indicate inhibitory synapses. A moderately labeled bouton with round vesicles and asymmetric synapses was also observed. In addition, the two types of red nucleus neurons received asymmetric axosomatic and axodendritic synapses with GABA-negative boutons provided with round vesicles, features usually associated with excitatory functions. To obtain electrophysiological evidence for inhibition, intracellular recordings from red nucleus neurons were conducted using an in vitro brainstem-cerebellum preparation from the turtle. Small, spontaneous IPSPs were recorded from 7 out of 14 red nucleus cells studied. These morphological and physiological results provide strong support for concluding that the turtle red nucleus, like its mammalian counterpart, contains GABAergic inhibitory interneurons. While we have not identified the main source of input to these interneurons, in view of the scarce development of the reptilian cerebral cortex, this input is unlikely to come from the motor cortex as it does in mammals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
It is hypothesized that terminals containing gamma-aminobutyric acid (GABA) participate in presynaptic inhibition of primary afferents. To date, few convincing GABA-immunoreactive (GABA-IR) axo-axonic synapses have been demonstrated in support of this theory. The goal of this study is to document the relationship between GABA-IR profiles and central terminals in glomerular complexes in lumbar cord of the monkey (Macaca fascicularis). In addition, the relationship between GABA-IR profiles and other neural elements are analyzed in order to better understand the processing of sensory input in the spinal cord. GABA-IR cell bodies were present in Lissauer's tract (LT) and in all laminae in the spinal gray matter except lamina IX. GABA-IR fibers and terminals were heavily concentrated in LT; laminae I, II, and III; and present in moderate concentration in the deeper laminae of the dorsal horn, ventral horn (especially in association with presumed motor neurons), and lamina X. Electron microscopic analysis confined to LT and laminae I, II, and III demonstrated GABA-IR cell bodies, dendrites, and myelinated and unmyelinated fibers. GABA-IR cell bodies received sparse synaptic input, some of which was immunoreactive for GABA. The majority of the synaptic input to GABA-IR neurons occurred at the dendritic level. Furthermore, the presence of numerous vesicle-containing GABA-IR dendrites making synaptic interactions indicated that GABA-IR dendrites also provided a major site of output. Two consistent arrangements were observed in laminae I-III concerning vesicle-containing GABA-IR dendrites: 1) they were often postsynaptic to central terminals and 2) they participated in reciprocal synapses. The majority of GABA-IR axon terminals observed contained round clear vesicles and varying numbers of dense core vesicles. Only on rare occasions were GABA-IR terminals with flattened vesicles observed. GABA-IR terminals were not observed as presynaptic elements in axo-axonic synapses; however, on some occasions, GABA-IR profiles presumed to be axon terminals were observed postsynaptic to large glomerular type terminals. Our findings suggest that a frequent synaptic arrangement exists in which primary afferent terminals relay sensory information into a GABAergic system for further processing. Furthermore, GABA-IR dendrites appear to be the major source of input and output for this inhibitory system. The implications of this GABAergic neurocircuitry are discussed in relation to the processing of sensory input in the superficial dorsal horn and in terms of mechanisms of primary afferent depolarization (PAD).  相似文献   

8.
The ultrastructural relationships between neurophysin (NP)- or vasopressin (VP)-containing neurons and catecholamine terminals in the paraventricular nucleus and supraoptic nucleus of the rat were observed by means of a technique combining immunocytochemistry using NP I/II or VP antiserum with autoradiography after [3H]noradrenaline (NA) injection or 5-hydroxydopamine (5-OHDA) uptake. NP- or VP-like immunoreactive nerve cell bodies and fibers received synaptic contacts from a large number of immunonegative axon terminals. The presynaptic elements that innervate the neurosecretory neurons were studied. Axon terminals labeled with [3H]NA or 5-OHDA made synaptic contacts with NP- or VP-like immunoreactive nerve cell bodies and fibers. Furthermore, axodendritic and/or axo/axonic and axosomatic synapses occurred between the same NP- or VP-like immunoreactive neurons. These findings suggest that at least NA- and 5-OHDA-containing neurons play some important role in the control of neurosecretion in the NP- or VP-producing neurons of the rat hypothalamus and that the axon collaterals of NP- and VP-containing neurons make synaptic contacts with the same kind of neurons to form a recurrent collateral circuit.  相似文献   

9.
A recent physiological report suggested that neurotensin could inhibit the vasopressin releasing from vasopressin-producing neurons in the hypothalamic paraventricular nucleus but not in the supraoptic nucleus. In the present study, the synaptic relationship between the neurotensin-like immunoreactive and vasopressin-like immunoreactive neurons has been examined using a pre-embedding double immunostaining technique in the rat hypothalamic paraventricular nucleus. At the light microscopic level, many neurotensin-like immunoreactive fibers were found near the vasopressin-like immunoreactive neurons. At the electron microscopic level, the neurotensin-like immunoreactive fibers were identified as axon terminals that made many synapses on the vasopressin-like immunoreactive perikarya and dendrites. The synapses were both asymmetrical and symmetrical. These findings of the present study suggest that the inhibitory effect of neurotensin on the vasopressin neurons in the hypothalamic paraventricular nucleus may be due to the direct synapses made by neurotensin-like immunoreactive axon terminals on the vasopressin-like immunoreactive neurons.  相似文献   

10.
By using immunocytochemistry with an antibody directed against the vesicular acetylcholine transporter, many cholinergic neuronal processes were found to be immunopositive in the dorsal raphe nucleus. At the electron microscopic level, most of these processes were found to be axons. The immunopositive axon terminals made synapses on immunonegative dendrites and their spines whereas rare synapses were found between the immunopositive axon terminals and the immunonegative neuronal perikarya. Occasionally, the dendrites postsynaptic to an immunopositive axon terminal also received a synapse from an immunonegative axon terminal. The synapses made by the immunopositive axon terminals were usually symmetric and had a short active zone. Fewer immunostained dendrites were found, and they usually received asymmetric synapses from nonimmunostained axon terminals. The existence of cholinergic axon terminals and the synapses made by these terminals support the physiological data indicating that acetylcholine plays a role in the pain inhibition system in the dorsal raphe nucleus.  相似文献   

11.
Previous light microscopic immunoperoxidase studies of glutamic acid decarboxylase (GAD)-immunoreactive neural elements in the rat basilar pontine nuclei revealed immunocytochemical reaction product in neuronal somata and axon terminals. In the present study, pre-embedding immunoperoxidase labeling of GAD or gamma-aminobutyric acid (GABA) and postembedding immunogold labeling of GABA allowed the ultrastructural visualization of these neural elements in the basilar pontine nuclei of colchicine-treated animals. At the electron microscopic level, immunolabeled neuronal somata exhibited smoothly contoured nuclei, whereas some dendrites also contained reaction product after immunocytochemical treatment and were postsynaptic to both immunoreactive and nonimmunoreactive axon terminals. Synaptic boutons immunoreactive for GAD or GABA exhibited cross-sectional areas that ranged from 0.1 to 3.8 microns 2 and generally appeared round or elongated in most sections. The majority (95%) of immunolabeled boutons contained pleomorphic synaptic vesicles and formed symmetric synapses at their postsynaptic loci; however, boutons exhibiting round vesicles and boutons forming asymmetric synapses (5%) were also immunopositive. Small (less than 1.5 microns 2) GAD- or GABA-labeled axon terminals formed synaptic contact mainly with small dendritic profiles, dendritic spines, and neuronal somata, whereas large labeled boutons (greater than 1.5 microns 2) formed synapses with all sizes of dendritic profiles. Occasionally, a single immunolabeled bouton formed synaptic contact with two separate postsynaptic dendrites. It is suggested that the immunolabeled neuronal somata and dendrites observed in the rat basilar pontine nuclei represent a population of pontine local circuit neurons; however, it is known that GABAergic cell groups extrinsic to the pontine gray provide afferent projections to the basilar pons, and therefore at least some immunoreactive axon terminals present in the pontine nuclei are derived from these extrinsic sources. The ultrastructural observation of GABAergic neural elements in the rat basilar pontine nuclei confirms previous light microscopic findings and provides an anatomical substrate through which GABAergic neurons, whether arising from an intrinsic or extrinsic source, might exert an inhibitory influence on target cells within the pontine nuclei.  相似文献   

12.
The distribution of GABA-like immunoreactivity (GABA-LI) was performed in the lamprey retinopetal system which was previously identified by either anterograde or retrograde axonal tracing methods. This study was carried out at the ultrastructural level for the retina and under both the light and electron microscope for the mesencephalic retinopetal centers (M5 and RMA). The GABA-LI was distributed in about 40% of anterogradely HRP-labeled axon terminals in the inner retina. These made synaptic contacts upon either HRP-labeled ganglion cell dendrites or mostly on GABA-LI or on immunonegative amacrine cell dendrites and somata. The other immunonegative HRP-labeled axon terminals also established synaptic contacts on amacrine cell dendrites and somata. The mesencephalic retinopetal neurons, retrogradely labeled with HRP or [3H]proline, were GABA-LI in 65% of M5 somata and only in 15% of RMA neurons. M5 and RMA retinopetal neurons and dendrites, either GABA-LI or immunonegative, were contacted: (1) asymmetrically by HRP-labeled or unlabeled axon terminals containing rounded synaptic vesicles, always immunonegative and (2) symmetrically by HRP-unlabeled axon terminals containing pleiomorphic synaptic vesicles, which were either GABA-LI or immunonegative. The role of GABA as a putative neurotransmitter in the centrifugal visual system is discussed.  相似文献   

13.
The distribution and ultrastructure of thyrotropin-releasing hormone-like immunoreactive (TRH-LI) neurons were examined in rabbit medulla oblongata. TRH-LI cell bodies were located in the ventral region of the medulla oblongata: in the paraolivary and parapyramidal regions, regions in and around the pyramidal tract, the dorsolateral region of the lateral reticular nucleus, and the raphe nuclei. The paraolivary and parapyramidal regions contained most of the TRH-LI cell bodies in the medulla oblongata. TRH-LI neurons processes were densely distributed in the dorsal vagal complex and the area postrema. Electron-microscopic immunocytochemical studies revealed TRH-LI neurons at the obex level in the paraolivary region of rabbits. TRH-like immunoreactivity was localized in larger granular vesicles. TRH-LI somata and dendrites received synaptic inputs from both TRH-LI and unlabeled axon terminals. More than half of the TRH-LI axon terminals made synapses with somata or processes of TRH-LI neurons. These observations, together with previous reports that TRH causes respiratory facilitation, suggest that TRH-LI neurons in the paraolivary region in rabbits may be involved in respiratory functions.  相似文献   

14.
A preembedding, double immunostaining technique was used to study synaptic relations between enkephalinergic and GABAergic neurons in the area postrema of the rat. As a main result, the enkephalinergic dendrites received many synapses from GABAergic axon terminals, and most of the synapses were symmetrical. Enkephalinergic neuronal perikarya received a few synapses from GABAergic axon terminals, and a few enkephalinergic axon terminals were found presynaptic to GABAergic neurons. Synapses between enkephalinergic profiles were frequent, but no axo-axonic synapses were seen. These findings suggest that GABAergic innervation of enkephalinergic neurons is the main relation between the two kinds of neurons in the area postrema. The synapses between the ankephalinergic axon terminals and GABAergic neurons might be explained as being part of the local servo system of the area postrema.  相似文献   

15.
After an intraventricular administration of colchicine, the arcuate nucleus of rat hypothalamus was examined light and electron microscopically by pre-embedding immunohistochemistry for somatostatin. The arcuate nucleus exhibited numerous immunoreactive cell bodies and dense networks of immunoreactive fibers. The fibers appeared to surround immunonegative cell bodies. The immunoreactive cell bodies were multipolar in shape and projected immunoreactive processes to some extent. The immunoreactive cell bodies and fibers received synaptic contacts by immunonegative fiber terminals containing a large number of synaptic clear vesicles. Similarly, immunoreactive somatostatin fibers appeared to terminate upon other immunonegative cell bodies and fibers. The immunoreactive presynaptic terminals contain several labeled granules and numerous synaptic vesicles. In close proximity to these immunolabeled terminals, non-labeled presynaptic fibers. This suggests that in the arcuate nucleus neurons regulated by somatostatin neurons are also under the control of other types of neurons.  相似文献   

16.
Cholinergic and gamma-aminobutyric acid (GABA) mechanisms in the dorsolateral pontomesencephalic tegmentum have been implicated in the control of active (REM) sleep and wakefulness. To determine the relationships between neurons that contain these neurotransmitters in this region of the brainstem in adult cats, combined light and electron microscopic immunocytochemical procedures were employed. Light microscopic analyses revealed that choline acetyltransferase (ChAT) and GABA immunoreactive neurons were distributed throughout the laterodorsal and pedunculopontine tegmental nuclei (LDT and PPT). Surprisingly, approximately 50% of the ChAT immunoreactive neurons in these nuclei also contained GABA. Using electron microscopic pre-embedding immunocytochemistry, GABA immunoreactivity was observed in somas, dendrites and axon terminals in both the LDT and PPT. Most of the GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites. Electron microscopic double-immunolabeling techniques revealed that ChAT and GABA were colocalized in axon terminals in the LDT/PPT. Approximately 30% of the ChAT immunoreactive terminals were also GABA immunoreactive, whereas only 6-8% of the GABA immunoreactive terminals were ChAT immunoreactive. Most of the ChAT/GABA immunoreactive terminals formed symmetrical synapses with non-immunolabeled dendrites; however, ChAT/GABA immunoreactive terminals were also observed that contacted ChAT immunoreactive dendrites. With respect to ChAT immunoreactive postsynaptic profiles, approximately 40% of the somas and 50% of the dendrites received synaptic contact from GABA immunoreactive terminals in both the LDT and PPT. These findings (a) indicate that there are fundamental interactions between cholinergic and GABAergic neurons within the LDT/PPT that play an important role in the control of active sleep and wakefulness and (b) provide an anatomical basis for the intriguing possibility that a mechanism of acetylcholine and GABA co-release from the terminals of LDT/PPT neurons is involved in the regulation of behavioral states.  相似文献   

17.
The neuropeptide substance P is a transmitter candidate for certain primary afferent fibers which terminate in the substantia gelatinosa. In this study the light and electron microscopic localization of substance P in the substantia gelatinosa of the spinal trigeminal nucleus of the rat has been studied using immunocytochemical procedures. Substance P immunoreactive fibers were observed mainly in lamina I and outer lamina II. Ultrastructural analysis revealed immunoreactivity in unmyelinated fibers and in axon terminals which contained agranular spherical vesicles and large dense-cored vesicles and which made predominantly simple asymmetric axodendritic synaptic contacts. Immunoreactive terminals only rarely formed the central terminal of synaptic glomeruli and in only one example was a stained terminal possibly postsynaptic to an unstained terminal. The majority of synapses were onto small dendrites in outer lamina II and in some cases these dendrites were themselves presynaptic to other dendrites. Immunoreactive terminals also synapsed with the soma and proximal dendrites of large neurons on the border of laminae I and II. The results show that there are at least two distinct targets for substance P immunoreactive terminals in the substantia gelatinosa, namely the large lamina I neurons and lamina II probable intemeurons. Some of the former may be projection neurons while some of the latter may correspond to the inhibitory islet cells described by Gobel and colleagues in the cat. In addition the results indicate that few substance P immunoreactive terminals receive axoaxonic synapses and emphasize instead the role of postsynaptic interactions. In particular the results suggest several sites at which substance P might interact postsynaptically with the neuropeptide enkephalin.  相似文献   

18.
Synaptic organization of GABAergic neurons in the mouse SmI cortex   总被引:2,自引:0,他引:2  
Immunocytochemical methods were used to examine GABAergic neurons in the barrel region of the mouse primary somatosensory cortex. GABAergic neurons occur in all layers of the barrel cortex but are more concentrated in the upper portion of layers II/III and in layers IV and VI. Nine cells in layer IV were examined with the electron microscope, and portions of their dendrites were reconstructed from serial thin sections. These cells are of the nonspiny, multipolar or bitufted varieties, and some of them have beaded dendrites. The labeled cell bodies and their reconstructed dendrites were postsynaptic at asymmetrical synapses with thalamocortical axon terminals labeled by lesion-induced degeneration and with unlabeled axon terminals. Each cell also received symmetrical synapses from GABAergic axon terminals and from unlabeled axon terminals. Our results indicate that GABAergic cell bodies and processes receive synapses from thalamocortical axon terminals but that different cells display marked differences in the proportion of thalamocortical and other synapses they receive. These results indicate that GABAergic cells form a heterogeneous population with respect to their morphologies and patterns of synaptic inputs. The synaptic sequences revealed here for GABAergic neurons represent an anatomical substrate for various inhibitory processes known to occur within the cerebral cortex.  相似文献   

19.
The hypoglossal nucleus of the macaque monkey Macaca fuscata was investigated with light and electron microscopic immunocytochemistry with an antibody directed against gamma-aminobutyric acid (GABA). At the light microscopic level, GABA immunoreactivity was present in small neurons, punctate structures, and thin, fiberlike structures. These GABA-positive elements were distributed throughout the hypoglossal nucleus at rostrocaudal levels. There was no immunoreactivity in the hypoglossal motoneurons. The GABA-positive small neurons were fusiform or ovoid (15 X 9 micron) and extended a few proximal dendrites from both poles. At the ultrastructural level, these small neurons were characterized by a markedly invaginated nucleus and a scanty cytoplasm in which cisternae of rough endoplasmic reticulum were not organized into extensive lamellar arrays as seen in the motorneurons. The GABA-positive punctate structures at the light microscopic level were identified as vesicle-containing axon boutons at the electron microscopic level. These GABA-positive axon terminals made synaptic contacts mainly with the dendrites of the motoneurons and infrequently with the somata. The majority of them made symmetric synapses and they contained pleomorphic synaptic vesicles. However, a small number of GABA-positive terminals (7%) formed asymmetric synapses with the dendrites of motoneurons, and these contacts exhibited postsynaptic dense bars or Taxi bodies lying beneath the postsynaptic membranes. There were no GABA-positive boutons that contacted the cell bodies of the small neurons. Although GABA-positive myelinated and unmyelinated axons were seen as thin, fiberlike structures, these myelinated and unmyelinated axons rarely gave rise to boutons on the motoneurons. The present study suggests that GABAergic inhibition in the monkey hypoglossal nucleus occurs mainly on the dendrites of the motoneurons and to some extent on the somata.  相似文献   

20.
Glutamate has been shown to be a neurotransmitter in the central nervous system of vertebrates, and it has been hypothesized that glutamate is functional as a neurotransmitter in the spinal cord dorsal horn. A monoclonal antibody to fixative-modified glutamate was used in this study to examine the light microscopic and ultrastructural profiles of glutamate-like immunoreactivity in the superficial dorsal horn of the rat spinal cord. Glutamate-like immunoreactivity was observed in neurons, fibers, and terminals of both laminae I and II. Marginal zone immunoreactive neurons ranged from 10 to 30 micron in diameter and received many nonimmunoreactive somatic synapses. In substantia gelatinosa, immunoreactive neurons were observed in both inner and outer layers, ranged 5 to 10 micron in diameter, and received few nonimmunoreactive somatic synapses. Glutamate-like immunoreactive dendrites were observed in both laminae and were contacted primarily by nonimmunoreactive synaptic terminals that generally contained small clear vesicles. Both myelinated and unmyelinated immunoreactive axons were observed in Lissauer's tract. Immunoreactive terminals contained small (40 nm) clear vesicles and generally formed simple synaptic contacts with nonimmunoreactive dendrites in laminae I and II. The results of this study corroborate the importance of glutamate as a neurotransmitter in spinal sensory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号