首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
Major depressive disorder (MDD) is a widespread, severe, debilitating disorder that markedly diminishes quality of life. Medication is commonly effective, but 20–30 % of patients are refractory to medical therapy. The surgical treatment of psychiatric disorders has a negative stigma associated with it owing to historical abuses. Various ablative surgeries for MDD have been attempted with marginal success, but these studies lacked standardized outcome measures. The recent development of neuromodulation therapy, especially deep brain stimulation (DBS), has enabled controlled studies with sham stimulation and presents a potential therapeutic option that is both reversible and adjustable. We performed a systematic review of the literature pertaining to DBS for treatment-resistant depression to evaluate the safety and efficacy of this procedure. We included only studies using validated outcome measures. Our review identified 22 clinical research papers with 5 unique DBS approaches using different targets, including nucleus accumbens, ventral striatum/ventral capsule, subgenual cingulate cortex, lateral habenula, inferior thalamic nucleus, and medial forebrain bundle. Among the 22 published studies, only 3 were controlled trials, and 2, as yet unpublished, multicenter, randomized, controlled trials evaluating the efficacy of subgenual cingulate cortex and ventral striatum/ventral capsule DBS were recently discontinued owing to inefficacy based on futility analyses. Overall, the published response rate to DBS therapy, defined as the percentage of patients with?>?50 % improvement on the Hamilton Depression Rating Scale, is reported to be 40–70 %, and outcomes were comparable across studies. We conclude that DBS for MDD shows promise, but remains experimental and further accumulation of data is warranted.  相似文献   

2.
Purpose of this commentary is to discuss the relation of the nucleus accumbens (NA) with the medial forebrain bundle (MFB) and compare them as deep brain stimulation (DBS) targets in psychiatric disorders. Could a “bundle” be a more effective target than a “nucleus”? Or, more correctly, could an important “modulator” be a more effective target than a highly significant “pleasure center”? The answer hides in the fact that NA is a key component of the MFB. Thus NA dysfunction is synonym to MFB dysfunction. The NA is a “hot-spot” in the neurocircuitry of psychiatric disorders and further experimental investigation is needed for the MFB as a target for neuromodulation in depression, as well as to optimize benefit of psychiatric patients from neuromodulation treatment efforts. Are the NA and MFB two branches of the same tree? They definitely could be, particularly if the “tree” is the brain's “motivation super-system”.  相似文献   

3.
Modulating neuronal activity by electrical stimulation has expanded from the realm of motor indications into the field of psychiatric disorders in the past 10 years. The medial forebrain bundle (MFB), with a seminal role in motor, reward orientated and affect regulation behaviors, and its afferent and efferent loci, have been targeted in several DBS trials in patients with psychiatric disorders. However, little is known about the consequences of modulating the MFB in affective disorders. The paper reviews the relevant pre-clinical literature investigating electrical stimulation of regions associated with the MFB in the context of several models of psychiatric disorders, in particular depression. The clinical data is promising but limited, and pre-clinical studies are essential for improved understanding of the anatomy, the connectivity, and the consequences of stimulation of the MFB and regions associated with the neurocircuitry of psychiatric disorders. Current data suggests that the MFB is at a “privileged” position on this circuitry and its stimulation can simultaneously modulate activity at other key sites, such as the nucleus accumbens, the ventromedial prefrontal cortex or the ventral tegmental area. Future experimental work will need to shed light on the anti-depressive mechanisms of MFB stimulation in order to optimize clinical interventions.  相似文献   

4.
Chang JY  Shi LH  Luo F  Woodward DJ 《Brain research》2003,983(1-2):174-184
This study investigated the influence of electrical stimulation of the subthalamic nucleus (STN) on motor impairment induced by unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle. Rats were trained to walk on a treadmill and then implanted with microelectrode arrays in and near the STN. The neurotoxin 6-OHDA was injected into the medial forebrain bundle (MFB) unilaterally to produce a targeted lesion of the dopaminergic system. Successful lesions produced impaired treadmill walking behavior. High frequency stimulation (HFS) of the STN improved treadmill walking immediately and restored normal walking patterns. The same HFS failed to evoke visible side effects such as stepping, turning, raising of the head or facial muscle contraction in the absence of treadmill movement, or to change rotational behaviors elicited by the dopamine (DA) agonist apomorphine in unilateral lesioned rats. This suggests that the stimulation did not cause movement by an activation of brainstem locomotor regions or an increase attention leading to movement. Apomorphine-induced rotation may represent an imbalance of dopaminergic activation which remains during HFS. This work may provide a rodent model for deep brain stimulation (DBS) in patients with Parkinson's disease, and be suitable for further investigation of the neural mechanisms underlying the therapeutic effects of DBS.  相似文献   

5.
《Brain stimulation》2020,13(6):1668-1677
BackgroundEndovascular delivery of current using ‘stentrodes’ – electrode bearing stents – constitutes a potential alternative to conventional deep brain stimulation (DBS). The precise neuroanatomical relationships between DBS targets and the vascular system, however, are poorly characterized to date.ObjectiveTo establish the relationships between cerebrovascular system and DBS targets and investigate the feasibility of endovascular stimulation as an alternative to DBS.MethodsNeuroanatomical targets as employed during deep brain stimulation (anterior limb of the internal capsule, dentatorubrothalamic tract, fornix, globus pallidus pars interna, medial forebrain bundle, nucleus accumbens, pedunculopontine nucleus, subcallosal cingulate cortex, subthalamic nucleus, and ventral intermediate nucleus) were superimposed onto probabilistic vascular atlases obtained from 42 healthy individuals. Euclidian distances between targets and associated vessels were measured. To determine the electrical currents necessary to encapsulate the predefined neurosurgical targets and identify potentially side-effect inducing substrates, a preliminary volume of tissue activated (VTA) analysis was performed.ResultsSix out of ten DBS targets were deemed suitable for endovascular stimulation: medial forebrain bundle (vascular site: P1 segment of posterior cerebral artery), nucleus accumbens (vascular site: A1 segment of anterior cerebral artery), dentatorubrothalamic tract (vascular site: s2 segment of superior cerebellar artery), fornix (vascular site: internal cerebral vein), pedunculopontine nucleus (vascular site: lateral mesencephalic vein), and subcallosal cingulate cortex (vascular site: A2 segment of anterior cerebral artery). While VTAs effectively encapsulated mfb and NA at current thresholds of 3.5 V and 4.5 V respectively, incremental amplitude increases were required to effectively cover fornix, PPN and SCC target (mean voltage: 8.2 ± 4.8 V, range: 3.0–17.0 V). The side-effect profile associated with endovascular stimulation seems to be comparable to conventional lead implantation. Tailoring of targets towards vascular sites, however, may allow to reduce adverse effects, while maintaining the efficacy of neural entrainment within the target tissue.ConclusionsWhile several challenges remain at present, endovascular stimulation of select DBS targets seems feasible offering novel and exciting opportunities in the neuromodulation armamentarium.  相似文献   

6.
The boundaries and relative fiber density of the brain stimulation reward systems of the anterior hypothalamic area were mapped at the level of the stria medullaris using a dorsal-ventral moveable electrode. Three clusters of reward sites were observed. One cluster was just medial to the stria medullaris, a second larger cluster was within the boundaries of the myelinated fibers of the stria, and a third cluster was observed just lateral to the stria in the medial forebrain bundle. These data are consistent with the view that there exist at least two anatomically distinct brain stimulation reward pathways connecting the midbrain and forebrain: one in the medial forebrain bundle and a second in the dorsal diencephalic bundle.  相似文献   

7.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease (PD). In spite of proven therapeutic success, the mechanism underlying the benefits of DBS has not been resolved. A multiple-channel single-unit recording technique was used in the present study to investigate basal ganglia (BG) neural responses during behaviorally effective DBS of the STN in a rat model of PD. Rats underwent unilateral dopamine (DA) depletion by injection of 6-hydroxyDA (6-OHDA) into one side of the medial forebrain bundle and subsequently developed a partial akinesia, which was assessed during the treadmill locomotion task. High frequency stimulation (HFS) of the STN restored normal treadmill locomotion behavior. Simultaneous recording of single unit activity in the striatum (STR), globus pallidus (GP), substantia nigra pars reticulata (SNr), and STN revealed a variety of neural responses during behaviorally effective HFS of the STN. Predominant inhibitory responses appeared in the STN stimulation site. Nearly equal numbers of excitatory and inhibitory responses were found in the GP and SNr, whereas more rebound excitatory responses were found in the STR. Mean firing rate did not change significantly in the STR, GP, and SNr, but significantly decreased in both sides of STN during DBS. A decrease in firing rate in the contralateral side of STN provides neural substrate for the clinical observation that unilateral DBS produces bilateral benefits in patients with PD. In addition to the firing rate changes, a decrease in burst firing was observed in the GP and STN. The present study indicates that DBS induces complex modulations of the BG circuit and further suggests that BG network reorganization, rather than a simple excitation or inhibition, may underlie the therapeutic effects of DBS in patients with PD.  相似文献   

8.
Deep brain stimulation (DBS) is a medical treatment that aims to obtain therapeutic effects by applying chronic electrical impulses in specific brain structures and neurological circuits. Over the years, DBS has been studied for the treatment of many psychiatric disorders. Scientific research on the use of DBS in people with autism has focused this interest mainly on treatment-resistant obsessive-compulsive disorder, drug-resistant epilepsy, self-injurious behaviors (SIB), and aggressive behaviors toward the self. Autism spectrum disorder (ASD) includes a group of developmental disabilities characterized by patterns of delay and deviance in the development of social, communicative, and cognitive skills and the presence of repetitive and stereotyped behaviors as well as restricted interests. People with autism often have numerous medical and psychiatric comorbidities that worsen the quality of life of patients and their caregivers. Obsessive-compulsive symptoms can be found in up to 81.3% of people with autism. They are often severe, refractory to treatment, and particularly difficult to treat. SIB has a high prevalence in severely retarded individuals and is often associated with autism. Drug treatment of both autism and SIB presents a therapeutic challenge. To describe the current state of the art regarding the efficacy of DBS in people with ASD, a literature search was conducted for relevant studies using the PubMed database. Thirteen studies have been considered in this paper. Up to date, DBS has been used for the stimulation of the nucleus accumbens, globus pallidus internus, anterior limb of the internal capsule, ventral anterior limb of the internal capsule, basolateral amygdala, ventral capsule and ventral striatum, medial forebrain bundle, and posterior hypothalamus. In the total sample of 16 patients, 4 were adolescents, and 12 were adults. All patients had symptoms resistant to multiple drug therapy. Many patients taken into consideration by the studies showed clinical improvements as evidenced by the scores of the psychopathological scales used. In some cases, clinical improvements have varied over time, which may require further investigation. Among the new therapeutic perspectives, DBS could be a valid option. However, further, and more in-depth research is needed in this field.  相似文献   

9.

Objective:

The underlying hypothesis of our work is that specific clinical neuropsychiatric benefits can be achieved by selective activation of specific axonal pathways during deep brain stimulation (DBS). As such, the goal of this study was to develop a method for identifying axonal pathways whose activation is most likely necessary for achieving therapeutic benefits during DBS.

Experimental design:

Our approach combined clinical data, diffusion tensor tractography, and computer models of patient‐specific neurostimulation to identify particular axonal pathways activated by DBS and determine their correlations with individual clinical outcome measures. We used this method to evaluate a cohort of seven treatment‐resistant depression patients treated with DBS of the ventral anterior internal capsule and ventral striatum (VC/VS).

Principal observations:

Clinical responders exhibited five axonal pathways that were consistently activated by DBS. All five pathways coursed lateral and medial to the VS or dorsal and lateral to the nucleus accumbens; however, details of their specific trajectories differed. Similarly, one common pathway was identified across nonresponders.

Conclusions:

Our method and preliminary results provide important background for studies aiming to expand scientific characterization of neural circuitry associated with specific psychiatric outcomes from DBS. Furthermore, identification of pathways linked to therapeutic benefit provides opportunities to improve clinical selection of surgical targets and stimulation settings for DBS devices. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
  相似文献   

10.
The effects of systemic injections of the dopamine receptor antagonist, cis-flupenthixol were tested on intracranial self-stimulation at electrode sites in the medial forebrain bundle and the medial prefrontal cortex. Changes in the reward effectiveness of the brain stimulation were assessed using a curve-shift paradigm. Low to moderate doses of cis-flupenthixol (0.05, 0.1 and 0.15 mg/kg) consistently produced larger upward shifts in the rate-frequency function for medial forebrain bundle than for medial prefrontal self-stimulation. At the highest doses of cis-flupenthixol (0.15 and 0.2 mg/kg), some of the medial forebrain bundle rats failed to respond, whereas all medial prefrontal rats responded at these doses. These results demonstrate that medial forebrain bundle self-stimulation is much more dependent on dopamine systems than is prefrontal cortex self-stimulation.  相似文献   

11.
Rates of responding for intracranial self-stimulation from the medial forebrain bundle, nucleus accumbens and substantia nigra were evaluated in mice that had been exposed to either escapable shock, yoked inescapable shock or no shock treatment. Whereas performance was unaffected by escapable shock, marked reductions of responding from the medial forebrain bundle and nucleus accumbens were evident following the uncontrollable shock treatment. Responding from the substantia nigra was unaffected by the stress treatment. Uncontrollable shock is thought to reduce the rewarding value of responding for electrical brain stimulation from those brain regions in which stressors are known to influence dopamine activity.  相似文献   

12.
An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain central gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.  相似文献   

13.
《Neuromodulation》2021,24(2):171-186
ObjectivesTreatments for Alzheimer’s disease are urgently needed given its enormous human and economic costs and disappointing results of clinical trials targeting the primary amyloid and tau pathology. On the other hand, deep brain stimulation (DBS) has demonstrated success in other neurological and psychiatric disorders leading to great interest in DBS as a treatment for Alzheimer’s disease.Materials and MethodsWe review the literature on 1) circuit dysfunction in Alzheimer’s disease and 2) DBS for Alzheimer’s disease. Human and animal studies are reviewed individually.ResultsThere is accumulating evidence of neural circuit dysfunction at the structural, functional, electrophysiological, and neurotransmitter level. Recent evidence from humans and animals indicate that DBS has the potential to restore circuit dysfunction in Alzheimer’s disease, similarly to other movement and psychiatric disorders, and may even slow or reverse the underlying disease pathophysiology.ConclusionsDBS is an intriguing potential treatment for Alzheimer’s disease, targeting circuit dysfunction as a novel therapeutic target. However, further exploration of the basic disease pathology and underlying mechanisms of DBS is necessary to better understand how circuit dysfunction can be restored. Additionally, robust clinical data in the form of ongoing phase III clinical trials are needed to validate the efficacy of DBS as a viable treatment.  相似文献   

14.
Unilateral lesions of various medial forebrain bundle components were assessed for their effects on lateral hypothalamic self-stimulation. Damage of areas containig nigrostriatal dopaminergic or ascending noradrenergic neurons had negligible effects on bar pressing, tail moving and alley running for hypothalamic stimulation. Lesions which appeared to destroy most or all of the catecholaminergic fibers in the posterior medial forebrain bundle virtually eliminated reinforced bar pressing and tail moving, but only partially suppressed alley running. The results suggest that brain stimulation reinforcement of the bar press and tail movement tasks depends upon the integrity of neural tissue in the area of the catecholaminergic pathways of the medial forebrain bundle, but not upon specific dopaminergic or noradrenergic systems. The data further suggest that the reinforcement of alley running is at least partially mediated by different neural tissue (possibly non-catecholaminergic) at the level of the posterior medial forebrain bundle lesions.  相似文献   

15.
Self-stimulation of the medial prefrontal cortex and medial forebrain bundle appears to be mediated by different directly activated fibers. However, reward signals from the medial prefrontal cortex do summate with signals from the medial forebrain bundle, suggesting some overlap in the underlying neural circuitry. We have previously used Fos immunohistochemistry to visualize neurons activated by rewarding stimulation of the medial forebrain bundle. In this study, we assessed Fos immunolabeling after self-stimulation of the medial prefrontal cortex. Among the structures showing a greater density of labeled neurons in the stimulated hemisphere were the prelimbic and cingulate cortex, nucleus accumbens, lateral preoptic area, substantia innominata, lateral hypothalamus, anterior ventral tegmental area, and pontine nuclei. Surprisingly, little or no labeling was seen in the mediodorsal thalamic nucleus or the locus coeruleus. Double immunohistochemistry for tyrosine hydroxylase and Fos showed that within the ventral tegmental area, a substantial proportion of dopaminergic neurons did not express Fos. Despite previous suggestions to the contrary, comparison of the present findings with those of our previous Fos studies reveals a number of structures activated by rewarding stimulation of both the medial prefrontal cortex and the medial forebrain bundle. Some subset of activated cells in the common regions showing Fos-like immunoreactivity may contribute to the rewarding effect produced by stimulating either site.  相似文献   

16.
M.E. Olds 《Brain research》1974,80(3):479-495
The effects of different intensities of stimulation were studied on self-stimulation behavior and on the neural responses in the medial forebrain bundle correlated with it. Of the two neural responses observed, an excitatory type was more diffusely distributed throughout this pathway than an inhibitory type, and its properties varied more as a function of the rate of self-stimulation at the various intensities tested than the properties of the inhibitory responses did. The latter were more localized to the caudal portion of the medial forebrain bundle studied, and their threshold was generally lower than the threshold of self-stimulation behavior. Also, the inhibitory responses appeared to be more sensitive indicators of stimulation applied to the medial forebrain bundle, whereas the excitatory responses were more sensitive indicators of variations in the rate of responding for brain reward. The neural responses in the MFB to rewarding stimulation are evaluated in terms of the possibility that they are specific to the positive reinforcement mechanism in the diencephalon.  相似文献   

17.
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is an emerging experimental therapy for treatment‐resistant depression. New developments in SCC DBS surgical targeting are focused on identifying specific axonal pathways for stimulation that are estimated from patient‐specific computational models. This connectomic‐based biophysical modeling strategy has proven successful in improving the clinical response to SCC DBS therapy, but the DBS models used to date have been relatively simplistic, limiting the precision of the pathway activation estimates. Therefore, we used the most detailed patient‐specific foundation for DBS modeling currently available (i.e., field‐cable modeling) to evaluate SCC DBS in our most recent cohort of six subjects, all of which were responders to the therapy. We quantified activation of four major pathways in the SCC region: forceps minor (FM), cingulum bundle (CB), uncinate fasciculus (UF), and subcortical connections between the frontal pole and the thalamus or ventral striatum (FP). We then used the percentage of activated axons in each pathway as regressors in a linear model to predict the time it took patients to reach a stable response, or TSR. Our analysis suggests that stimulation of the left and right CBs, as well as FM are the most likely therapeutic targets for SCC DBS. In addition, the right CB alone predicted 84% of the variation in the TSR, and the correlation was positive, suggesting that activation of the right CB beyond a critical percentage may actually protract the recovery process.  相似文献   

18.
An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain cental gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.  相似文献   

19.
ObjectivesDespite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered “treatment resistant.” Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems.Materials and MethodsA systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria.ResultsOutcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models.ConclusionsOverall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.  相似文献   

20.
脑深部电刺激(DBS)是近20年来神经外科领域发展最迅猛的技术。DBS是通过刺激发生器发出的高频电脉冲信号刺激脑神经核团或神经传导束来调节异常的神经环路。DBS已经成为治疗特发性震颤、帕金森病、肌张力障碍等运动障碍病的常规手术方法。自1997年深部脑刺激通过美国FDA认证用于治疗特发性震颤以来,已有超过数万名运动障碍患者接受该疗法,而国内脑深部电刺激最早在1999年应用于帕金森病临床治疗,迄今也有数千例患者接受了植入手术。近年,脑起搏器的临床适应症不断扩大,从最初的运动障碍病逐渐发展到治疗其他神经和精神疾病,如抽动秽语综合征、强迫症、抑郁症、神经性厌食症、难治性疼痛、癫痫、植物状态和阿尔茨海默病等。虽然DBS的治疗机理还不很清楚,但可以预见未来DBS将成为众多神经和精神疾病的重要治疗方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号