首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Certain populations of the mosquitofish (Gambusia affinis) are highly resistant to cyclodiene and cyclodiene-type insecticides that competitively interact with the picrotoxinin binding site of the -aminobutyric acid (GABA) receptor-ionophore complex in the central nervous system. Resistance involves a reduction in affinity of the picrotoxinin binding site. The present study reports that GABA receptor binding is increased in resistant brain membranes compared to membranes from susceptible fish at concentrations of free radioligand above 0.2 M. The increase appears to be due to a greater number of binding sites (Bmax) in the resistant population. Diazepam binding affinity (Kd) and Bmax were not different in membranes from resistant fish compared to those from susceptible fish. Up-regulation of GABA binding sites in the resistant fish population may compensate for a possible reduction of GABAergic transmission caused by chronic environmental exposure to cyclodiene insecticides. However, a lack of cross-resistance to bicuculline (a competitive GABA antagonist) indicates that an increase in GABA sites is not a mechanism of cyclodiene resistance.This work was supported by National Institute of Environmental Health Sciences (NIEHS) Grant ES03069  相似文献   

3.
Rationale: The mesolimbic dopamine system has been implicated in the reinforcing effects of nicotine, a drug which appears to act at least in part through the ventral tegmental area (VTA). Other neuronal elements in the VTA are important in drug reward. In particular, mu opioid receptors in the VTA have been shown to influence cocaine reinforcement. Objective: The aim of this study was to test whether the mu opioid receptors in the VTA also regulate the intake of nicotine. Methods: This research was carried out with animals trained to self-administer nicotine or cocaine, or to respond for food. Mu receptors were targeted with the selective agonist [D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin (DAMGO) and γ-aminobutyric acid (GABA) receptors with the selective agonists baclofen and muscimol; each of these compounds was delivered by microinfusion into the VTA. Results: The mu-selective agonist DAMGO, tested over a dose range of 0.005–0.05 μg, had an effect at the highest dose only, where it produced a reduction in self-administration maintained by doses of either 10 μg/kg or 30 μg/kg per infusion of nicotine. Intra-VTA microinfusions of DAMGO did not reinstate extinguished responding previously established for nicotine, nor did they have prominent effects on operant behavior maintained by food. In contrast to the overall limited effects of DAMGO on nicotine self-administration, the GABA agonists muscimol and baclofen each reduced nicotine self-administration substantially when delivered into the VTA, whereas they were less effective against cocaine self-administration. Conclusions: The lesser effect of DAMGO microinfusions in the VTA on nicotine than cocaine self-administration is associated with the opposite efficacy of GABA agonists. These findings suggest that nicotine and cocaine differentially activate circuitry in which mu receptors are situated, especially GABAergic elements. Received: 20 October 1998 / Final version: 24 November 1999  相似文献   

4.
RATIONALE: Several studies have shown that dopamine D1 agonists act on forebrain dopamine terminal regions to exert many of their behavioral effects. Yet, there is also a large number of D1 receptors in the substantia nigra pars reticulata (SNr), and these receptors are located mainly on terminals of gamma-aminobutyric acid (GABA)-ergic striatonigral neurons. OBJECTIVE: The present studies were undertaken to determine the behavioral and neurochemical effects of local administration of the D1 agonist SKF 82958 and to study the interactions between D1 and GABA mechanisms in SNr. METHODS: Microdialysis methods were used to characterize the effect of SKF 82958 on extracellular GABA, and several experiments studied the effects of nigral D1 stimulation on motor activity and investigated the behavioral significance of D1/GABA interactions in SNr. RESULTS: Local infusion of 10(-6) M SKF 82958 increased extracellular levels of SNr GABA, and this effect was blocked by co-infusion of the D1 antagonist SCH 23390. Bilateral SNr injections of SKF 82958 increased locomotor activity, and this effect was blocked by the GABA-A antagonist bicuculline. Intranigral bicuculline reduced motor activity, while the GABA-A agonist muscimol increased various motor activities in a manner similar to SKF 82958. CONCLUSIONS: The present results suggest that the D1 agonist SKF 82958 acts on D1 receptors in SNr to increase extracellular levels of GABA, and the increase in motor activity produced by nigral D1 stimulation is dependent on stimulation of GABA-A receptors. D1/GABA interactions in SNr are important for the modulation of basal ganglia output, which may have important implications for Parkinson's disease.  相似文献   

5.
Summary The effect of -aminobutyric acid (GABA) on catecholamine (CA) release from adrenal medulla was investigated. GABA and GABA agonists, 3-amino-1-propanesulfonic acid and imidazole-4-acetic acid caused CA release from isolated perfused dog adrenals in a dose-dependent manner, and no tachyphylaxis to GABA was observed. CA release elicited by GABA was antagonized by bicuculline and picrotoxin. This antagonism was specific for GABA-and GABA agonist-induced responses, response to acetylcholine being unaffected. Pretreatment with atropine plus hexamethonium did not affect the response to GABA. GABA-induced CA release was abolished by the removal of Ca2+ from perfusion medium, but not by the removal of Na+ or Cl. Verapamil, CoCl2 and dibucaine blocked the effect of GABA. A Na+ channel blocker, tetrodotoxin did not reduce GABA-evoked CA release. These results suggest that GABA may interact with its receptor to evoke CA release from adrenal medulla in a fashion of Ca2+-dependence and independence on external Na+ or Cl.  相似文献   

6.
In this paper, the analgesic, antioedematous, motor-impairing and antioxidant properties of four γ-butyrolactone derivatives (BM113, BM113A, BM138 and BM138A) are described. Pain was induced by thermal (hot-plate test), chemical (writhing test) or mechanical (Randall-Selitto model) stimulation. All in-vivo assays were carried out in mice pretreated intraperitoneally with the test compounds, except for the evaluation of anti-inflammatory and analgesic activities in the carrageenan-induced paw oedema model, in which rats were pretreated orally with these compounds. In the hot-plate assay, BM113A and BM138A dose dependently prolonged the latency of the nociceptive reaction. Their analgesic activity, measured as a median effective dose (ED(50)=4.7 mg/kg), was similar to that of morphine (2.4 mg/kg). In the writhing test, all four compounds, in particular BM113A and BM138A, showed higher potency than the reference drug acetylsalicylic acid (the ED(50) values were 3.7, 2.3 and 46.1 mg/kg, respectively). BM138 caused a dose-dependent diminution of paw oedema (up to 49%) in the carrageenan model and BM138A at 200 mg/kg reduced mechanical hyperalgesia in the Randall-Selitto test (~30% when compared with the control). None of the γ-butyrolactone derivatives tested at the ED(50) obtained in the hot-plate test influenced the locomotor activity of mice, although in the rotarod test at 24 rpm, BM113A and BM138 at 100 mg/kg showed some motor-impairing properties. In vitro, a concentration-dependent ABTS radical cation-scavenging activity of BM138 and BM138A (up to 80% inhibition of the radical absorbance) was observed. The results of the present study suggest that BM138 and BM138A could be of interest for future investigations as antinociceptive and antioedematous agents with potential free radical-scavenging properties.  相似文献   

7.
Context: Compounds to treat hypothyroidism in the absence of cardiac side effects are urgently required. In this regard, γ-aminobutyric acid (GABA) has gained interest due to its anti-anxiolytic, antihypertensive and antioxidant properties, and reported benefits to the thyroid system.

Objective: We investigated the ability of GABA to ameliorate fluoride-induced thyroid injury in mice, and investigated the mechanism(s) associated with GABA-induced protection.

Materials and methods: Adult male Kumning mice (N?=?90) were exposed to NaF (50?mg/kg) for 30?days as a model of hypothyroidism. To evaluate the effects of GABA administration, fluoride-exposed mice received either thyroid tablets, or low (25?mg/kg), medium (50?mg/kg) or high (75?mg/kg) concentrations of pure GABA orally for 14?days groups (N?=?10 each). The effects of low (50?mg/kg); medium (75?mg/kg) and high (100?mg/kg) concentrations of laboratory-separated GABA were assessed for comparison. Effects on thyroid hormone production, oxidative stress, thyroid function-associated genes, and side-effects during therapy were measured.

Results: GABA supplementation in fluoride-exposed mice significantly increased the expression of thyroid TG, TPO, and NIS (P?P?Discussion and conclusion: Our findings support the assertion that GABA exerts therapeutic potential in hypothyroidism. The design and use of human GABA trials to improve therapeutic outcomes in hypothyroidism are now warranted.  相似文献   

8.
Summary Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion.4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged.In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride.It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane.  相似文献   

9.
γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500 mg/kg body weight to groups of 10 male and 10 female Sprague–Dawley rats for 13 weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient.  相似文献   

10.
In this study, new derivatives of phenylcarbamoylbenzoic acid were synthesized and evaluated for their in?vitro antioxidant activity. The target compounds were prepared by bonding pharmacophoric moieties possessing antioxidant activity, including hydrazones, acid hydrazides, imino, Schiff’s bases, and phthalimides with phenylcarbamoylbenzoic acid via simple and efficient synthetic strategies. The structures of the newly synthesized compounds were confirmed by physical and spectral data. The in?vitro antioxidant activity was carried out using ABTS antioxidant assay. All the tested compounds showed low antioxidant activity except compound 7, which showed moderate antioxidant activity compared with ascorbic acid.  相似文献   

11.
《General pharmacology》1982,13(6):499-504
1. The effects of 5 days treatment with baclofen (20 mg/kg, i.p.) or high doses of haloperidol (10 mg/kg, i.p.) were studied on dopamine and γ-aminobutyric acid levels of corpus striatum, frontal cortex and mid-brain of normal rats as well as those withdrawn for 4 days after 30 days of daily treatment with haloperidol (1 mg/kg).2. Baclofen treatment slightly but significantly increased (by 13%) GABA levels in the corpus striatum of normal rats. This, by inhibitory effects, probably depleted dopamine level in corpus striatum.3. In the mid-brain, no change in GABA level was observed after baclofen treatment. The frontal cortex, which receives dopaminergic nerve endings from cell bodies lying in the ventral tegmental area, showed high levels of dopamine.4. Administration of baclofen to haloperidol-withdrawn rats tended to further increase GABA levels in striatum; however, the change was not statistically significant. In contrast, mid-brain GABA levels were decreased by 21% when compared with haloperidol-withdrawn values taken as 100%.5. Baclofen treatment increased DA level by 66% in the frontal cortex and decreased it by 35% in striatum of rats.6. In normal rats, administration of high doses of haloperidol (10 mg/kg) increased GABA levels of the corpus striatum and the frontal cortex by 48 and 16%, respectively.7. In mid-brain, a slight increase (11%) was reported in GABA level.8. Haloperidol treatment decreased DA in striatum, but increased it in the mid-brain and the frontal cortex. High doses of haloperidol for 5 days to rats previously treated with haloperidol (1 mg/kg) daily for 30 days and subsequently withdrawn for 4 days produced no further change in GABA levels of various brain areas examined. In mid-brain, a slight decrease was seen in GABA level.9. Haloperidol treatment in high doses of haloperidol-withdrawn rats decreased DA level in corpus striatum by 43%, but increased it in the frontal cortex and mid-brain as was seen in normal animals.10. Our data demonstrated that high doses of haloperidol, like baclofen, enhanced the functioning of GABAergic neurons in striatum, which in turn, influenced the DAergic system in this brain area.  相似文献   

12.
  1. The GABA modulating and GABA-mimetic actions of the general anaesthetic etomidate were examined in voltage-clamp recordings performed on Xenopus laevis oocytes induced, by cRNA injection, to express human recombinant γ-aminobutyric acidA (GABAA) receptor subunits.
  2. Currents mediated by recombinant receptors with the ternary subunit composition αxβyγ2L (where x=1,2,3 or 6 and y=1 or 2), in response to GABA applied at the appropriate EC10, were enhanced by etomidate in a manner that was dependent upon the identity of both the α and β subunit isoforms.
  3. For the β2-subunit containing receptors tested, the EC50 for the potentiation of GABA-evoked currents by etomidate (range 0.6 to 1.2 μM) was little affected by the nature of the α subunit present within the hetero-oligomeric complex. However, replacement of the β2 by the β1 subunit produced a 9–12 fold increase in the etomidate EC50 (6 to 11 μM) for all α-isoforms tested.
  4. For α1, α2 and α6, but not α3-subunit containing receptors, the maximal potentiation of GABA-evoked currents by etomidate was greater for β2- than for β1-subunit containing receptors. This was most clearly exemplified by receptors composed of α6β1γ2L compared to α6β2γ2L subunits, where a maximally effective concentration of etomidate potentiated currents evoked by GABA at EC10 to 28±2% and 169±4% of the maximal GABA response, respectively.
  5. For α1 subunit-containing receptors, the potency and maximal potentiating effect of either pentobarbitone or propofol was essentially unaffected by the β subunit isoform contained within the receptor complex. The potency of the anaesthetic neurosteroid 5α-pregnan-3α-ol-20-one was marginally higher for β1 rather than the β2 subunit-containing receptor, although its maximal effect was similar at the two receptor isoforms.
  6. The GABA-mimetic action of etomidate was supported by β2- but not β1-subunit containing receptors, whereas that of pentobarbitone or propofol was evident with either β isoform. For β2-subunit containing receptors, both the agonist EC50 and the maximal current produced by etomidate were additionally influenced by the α isoform.
  7. It is concluded that the subtype of β-subunit influences the potency with which etomidate potentiates GABA-evoked currents and that the β isoform is a crucial determinant of the GABA-mimetic activity of this compound. The nature of the α-subunit also impacts upon the maximal potentiation and activation that the compound may elicit. Such pronounced influences may aid the identification of the site that recognises etomidate. More generally, these results provide a clear example of structural specificity in anaesthetic action.
  相似文献   

13.
Summary The effects of angiotensin II and neuro-aminoacids administered through the right subclavian artery (i. a.) to the cardiac sympathetic ganglia were investigated in spinal dogs. Angiotensin II (1–8 g) elicited a dose-dependent positive chronotropic effect which was reduced after i. a. injection of saralasin (100g). The effect of angiotensin II was not reduced after combined treatment with either hexamethonium (10 mg/kg) plus atropine (0.1 mg/kg) or hemicholinium-3 (5 mg/kg) plus preganglionic stimulation. The dosedependent response to angiotensin II of heart rate was inhibited by GABA (50, 500g), GABOB (500g) and muscimol (50, 100g). The inhibition of the response to angiotensin II by a small dose of GABA (50g), but not by a high one (500g), was antagonized by i. a. injection of picrotoxin (2 mg). The positive chronotropism induced by bethanechol (25, 50g) and a small dose of acetylcholine (25g) were significantly inhibited by a high dose (500g) but not by a low dose (50g) of GABA. These results confirm that angiotensin II stimulates cardiac chronotropism by acting on the angiotensin II receptor located at the cardiac ganglia and show that this stimulant effect is antagonized by GABA.  相似文献   

14.
  1. γ-Aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) have been shown to activate GABAC receptors. In this study, a range of C2, C3, C4 and N-substituted GABA and TACA analogues were examined for activity at GABAC receptors.
  2. The effects of these compounds were examined by use of electrophysiological recording from Xenopus oocytes expressing the human ρ1 subunit of GABAC receptors with the two-electrode voltage-clamp method.
  3. trans-4-Amino-2-fluorobut-2-enoic acid was found to be a potent agonist (KD=2.43 μM). In contrast, trans-4-amino-2-methylbut-2-enoic acid was found to be a moderately potent antagonist (IC50=31.0 μM and KB=45.5 μM). These observations highlight the possibility that subtle structural substitutions may change an agonist into an antagonist.
  4. 4-Amino-2-methylbutanoic acid (KD=189 μM), 4-amino-2-methylenebutanoic acid (KD=182 μM) and 4-amino-2-chlorobutanoic acid (KD=285 μM) were weak partial agonists. The intrinsic activities of these compounds were 12.1%, 4.4% and 5.2% of the maximal response of GABA, respectively. These compounds more effectively blocked the effects of the agonist, GABA, giving rise to KB values of 53 μM and 101 μM, respectively.
  5. The sulphinic acid analogue of GABA, homohypotaurine, was found to be a potent partial agonist (KD=4.59 μM, intrinsic activity 69%).
  6. It was concluded that substitution of a methyl or a halo group in the C2 position of GABA or TACA is tolerated at GABAC receptors. However, there was dramatic loss of activity when these groups were substituted at the C3, C4 and nitrogen positions of GABA and TACA.
  7. Molecular modelling studies on a range of active and inactive compounds indicated that the agonist/competitive antagonist binding site of the GABAC receptor may be smaller than that of the GABAA and GABAB receptors. It is suggested that only compounds that can attain relatively flat conformations may bind to the GABAC receptor agonist/competitive antagonist binding site.
  相似文献   

15.
In this study we have evaluated the changes in arterial blood pressure in spontaneously hypertensive rats (SHR) caused by the short-term intake of Bacillus subtilis B060-fermented beans with significant γ-aminobutyric acid (GABA) and nattokinase activity. After being weaned, 7-week-old male SHR and 7-week-old male Wistar–Kyoto (WKY) rats were randomized into seven groups. Until the 8th week of life, the rats in each group were given one of the following: Group 1, high dose of GABA and nattokinase in the SHR (SHD); Group 2, medium dose of GABA and nattokinase in the SHR (SMD); Group 3, low dose of GABA and nattokinase in the SHR (SLD); Group 4, negative control in the SHR (SD); Group 5, positive control in the SHR (SM); Group 6, high dose of GABA and nattokinase in the WKY (WHD); and Group 7, negative control in the WKY (WD). Distilled water served as the negative control, and captopril (50 mg/kg), a known ACE inhibitor, served as the positive control. Systolic blood pressure and diastolic blood pressure values were measured weekly from the 8th week to the 16th week of life using the tail-cuff method. A definite decrease in systolic and diastolic blood pressure values could be observed in the rats treated with captopril and in the rats that received GABA and nattokinase. The greatest antihypertensive effect was observed when the pharmacological treatment was administered. The effect of the daily intake of fermented beans containing GABA and nattokinase may be helpful in controlling blood pressure levels in hypertensive model animals. The fermentation of beans with B. subtilis B060 may therefore constitute a successful strategy for producing a functional food with antihypertensive activity.  相似文献   

16.
Novel derivatives of α-truxillic acid with a camphor framework were synthesized and evaluated for their in vivo analgesic activity. α-Truxillic acid derivatives were prepared via solvent-free photocatalyzed [2+2] cyclodimerization of (E)-cinnamic acid. Target compounds were obtained through the substitution of –Cl or –OH groups in α-truxillic acid. The chemical structures of the synthesized compounds were elucidated by 1H, 13C-NMR, and mass spectrometry. Their analgesic activities were evaluated by the acetic acid-induced writhing test and the hot plate method. Compounds 7b and 7f containing the cyclobutane unit and natural fragments at 10 mg/kg exhibited analgesic activity in the acetic acid-induced writhing test, while α-truxillic acid (10 mg/kg, per os) did not show analgesic activity in the test. Intermediate 2 caused a decrease in the writhing with pain inhibition of 28 %. In the hot plate test, borneol showed high analgesic activity with pain inhibition of 60 %.  相似文献   

17.
Dibenzyl-g-butyrolactone and 1,2,3,4-tetrahydro-2-naphthoic acid gamma-lactone (TNL) derivatives were synthesized and evaluated for cytotoxic activity against some cancer cell lines. It was found that TNL derivatives with a shorter distance between C-4 in ring A and C'-2 in ring C were more cytotoxic, while dibenzyl-gamma-butyrolactones with a longer one were nearly inactive. In TNL series, presence of 3,4-dioxy group in ring A and 2-methoxy group in ring C was essential for the enhancement of the activity.  相似文献   

18.
Clozapine, an atypical neuroleptic, functionally antagonizes the -aminobutyric acid-induced chloride uptake via the main central inhibitory receptor, -aminobutyric acid type A (GABAA) receptor, in brain vesicles. GABAA antagonism by micromolar concentrations of clozapine is more efficient in rat cerebrocortical and hippocampal membranes than in cerebellar membranes, as evidenced by clozapine reversal GABA-inhibition of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding. A typical neuroleptic, haloperidol, failed to antagonize GABA in any of these brain regions, while the specific GABAA antagonist 2-(3-carboxy-2,3-propyl)-3-amino-6-p-methoxyphenylpyrazinium bromide (SR 95531) was efficient in all three brain regions. Clozapine action on [35S]TBPS binding was unaffected by the benzodiazepine receptor antagonist flumazenil. Clozapine inhibited the binding of [3H]muscimol and [3H]SR 95531 to the GABA recognition site, but this effect only partially correlated with the regional differences in and the potency of clozapine antagonism of GABA-inhibition of [35S]TBPS binding, suggesting that also other than GABA sites may mediate clozapine actions. Autoradiography of [35S]TBPS binding revealed GABA antagonism by clozapine in most brain regions. Main exceptions were cerebellar granule cell and molecular layers, olfactory bulb external plexiform and glomerular layers and primary olfactory cortex, where clozapine antagonized GABA inhibition less than average, and lateral hypothalamic and preoptic areas where its antagonism was greater than average. Recombinant 622 receptors, the predominant 6 subunit-containing receptor subtype in cerebellar granule cells, failed to show GABA antagonism by clozapine up to 100 M. In contrast, recombinant 122 receptors, forming the predominant receptor subtype in the brain, were clozapine sensitive. Recombinant 622 and 632 receptors resulted in clozapine-insensitive receptors, whereas 612 receptors were clozapine sensitive. The efficacy of clozapine to antagonize GABA in 1x2 receptors decreased in the order of 112>122>132. The results indicate that clozapine antagonizes the function of most GABAA receptor subtypes, and that the interaction is determined by the interaction of the and subunit variants. GABA antagonism is a unique property of clozapine, not shared by haloperidol, which might be involved in the pharmacological mechanism for the increased seizure susceptibility associated with clozapine treatment.  相似文献   

19.
20.
γ-Hydroxybutyric acid (GHB) is an endogenous compound and a substrate for the ubiquitous monocarboxylate transporter (MCT) family. GHB is also a drug of abuse due to its sedative/hypnotic and euphoric effects, with overdoses resulting in toxicity and death. The goal of this study was to characterize the distribution of GHB into the brain using in vivo microdialysis and in vitro uptake studies and to determine concentration-effect relationships for GHB in a rat animal model. GHB was administered to rats (400, 600, and 800 mg/kg i.v.), and blood, dialysate, and urine were collected for 6 h post-GHB administration. The GHB plasma and extracellular fluid (ECF) concentration-time profiles revealed that GHB concentrations in ECF closely followed plasma GHB concentrations. Sleep time increased in a dose-dependent manner (91 ± 18, 134 ± 11, and 168 ± 13 min, for GHB 400, 600, and 800 mg/kg, respectively). GHB partitioning into brain ECF was not significantly different at 400, 600, and 800 mg/kg. GHB uptake in rat and human brain endothelial cells exhibited concentration dependence. The concentration-dependent uptake of GHB at pH 7.4 was best-fit to a single-transporter model [K(m) = 18.1 mM (human), 23.3 mM (rat), V(max) = 248 and 258 pmol · mg(-1) · min(-1) for human and rat, respectively]. These findings indicate that although GHB distribution into the brain is mediated via MCT transporters, it is not capacity-limited over the range of doses studied in this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号