首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Epidemiological outbreak investigations were conducted in highly pathogenic avian influenza virus of the subtype H5N8 (HPAIV H5N8)‐affected poultry holdings and a zoo to identify potential routes of entry of the pathogen via water, feedstuffs, animals, people, bedding material, other fomites (equipment, vehicles etc.) and the presence of wild birds near affected holdings. Indirect introduction of HPAIV H5N8 via material contaminated by infected wild bird seems the most reasonable explanation for the observed outbreak series in three commercial holdings in Mecklenburg‐Western Pomerania and Lower Saxony, while direct contact to infected wild birds may have led to outbreaks in a zoo in Rostock and in two small free‐range holdings in Anklam, Mecklenburg‐Western Pomerania.  相似文献   

2.
3.
Outbreaks of highly pathogenic avian influenza (HPAI) H5N1 occurred in Nigeria between December 2005 and July 2008. We describe temporal and spatial characteristics of these outbreaks at State and Local Government Area (LGA) levels. A total of 25 of 37 States (67.6%; Exact 95% CI: 50.2–82.0%) and 81 of 774 LGAs (10.5%; Exact 95% CI: 8.4–12.8%) were affected by HPAI outbreaks over the period from 2005 to 2008. The incidence risk of HPAI outbreak occurrence at the State level was 5.6% (0.7–18.7%) for 2005, 50.0% (30.7–69.4%) for 2006, 54.5% (29.9–80.3%) for 2007 and 0% for 2008. Only very few LGAs experienced HPAI outbreaks within the affected States. The incidence risk of HPAI outbreak occurrence on a LGA level was 0.3% (0.0–0.9%) for 2005, 6.6% (4.9–8.6%) for 2006, 4.2% (2.9–6.0%) for 2007 and 0% for 2008. The mean period between farmers noticing HPAI outbreaks and reporting them to veterinary authorities, and between reporting HPAI outbreaks and the depopulation of infected premises, was for both 4.5 days; both periods also had medians of 1 day. We have estimated the spatially smoothed incidence risk for the whole outbreak period and identified the existence of a large corridor in the western part of Nigeria and a smaller corridor in south‐eastern part, where the risk of HPAI occurrence was lower than in the rest of the country. The effect of HPAI control policies on the outbreaks patterns are discussed, as well as possible reasons why HPAI did not become endemic in Nigeria.  相似文献   

4.
Risks of the introduction of highly pathogenic avian influenza (HPAI) H5N1 through migratory birds to the main wintering site for wild birds in southern Brazil and its consequences were assessed. Likelihoods were estimated by a qualitative scale ranging from negligible to high. Northern migrants that breed in Alaska and regularly migrate to South America (primary Charadriiformes) can have contact with birds from affected areas in Asia. The likelihood of the introduction of HPAI H5N1 through migratory birds was found to be very low as it is a probability conditioned to successful transmission in breeding areas and the probabilities of an infected bird migrating and shedding the virus as far as southern Brazil. The probability of wild species becoming exposed to H5N1‐infected birds is high as they nest with northern migrants from Alaska, whereas for backyard poultry it is moderate to high depending on proximity to wetlands and the presence of species that could increase the likelihood of contact with wild birds such as domestic duck. The magnitude of the biological and economic consequences of successful transmission to poultry or wild birds would be low to severe depending on the probability of the occurrence of outbreak scenarios described. As a result, the risk estimate is greater than negligible, and HPAI H5N1 prevention strategy in the region should always be carefully considered by the veterinary services in Brazil.  相似文献   

5.
Highly pathogenic avian influenza subtype H5N1 (H5N1) has contributed to substantial economic loss for backyard and large‐scale poultry farmers each year since 1997. While the distribution of domestic H5N1 outbreaks across Africa, Europe and Asia is extensive, those features of the landscape conferring greatest risk remain uncertain. Furthermore, the extent to which influential landscape features may vary by season has been inadequately described. The current investigation used World Organization for Animal Health surveillance data to (i) delineate areas at greatest risk of H5N1 epizootics among domestic poultry, (ii) identify those abiotic and biotic features of the landscape associated with outbreak risk and (iii) examine patterns of epizootic clustering by season. Inhomogeneous point process models were used to predict the intensity of H5N1 outbreaks and describe the spatial dependencies between them. During October through March, decreasing precipitation, increasing isothermality and the presence of H5N1 in wild birds were significantly associated with the increased risk of domestic H5N1 epizootics. Conversely, increasing precipitation and decreasing isothermality were associated with the increased risk during April through September. Increasing temperature during the coldest quarter, domestic poultry density and proximity to surface water were associated with the increased risk of domestic outbreaks throughout the year. Spatial dependencies between outbreaks appeared to vary seasonally, with substantial clustering at small and large scales identified during October through March even after accounting for inhomogeneity due to landscape factors. In contrast, during April to September, H5N1 outbreaks exhibited no clustering at small scale once accounting for landscape factors. This investigation has identified seasonal differences in risk and clustering patterns of H5N1 outbreaks in domestic poultry and may suggest strategies in high‐risk areas with features amenable to intervention such as controlling domestic bird movement in areas of high poultry density or preventing contact between poultry and wild birds and/or surface water features.  相似文献   

6.
The 2003 outbreak of Highly pathogenic avian influenza (HPAI) A(H7N7) in the Netherlands, Belgium and Germany resulted in significant genetic diversification that proved informative for tracing transmission events. Building on previous investigations on the Dutch outbreak, we focused on the potential transnational transmissions between the Netherlands and Belgium. Although no clear epidemiological links could be identified from the tracing data, the transmission network based on concatenated HA‐NA‐PB2 sequences supports at least three independent introductions from the Netherlands to Belgium and suggests one possible introduction form Belgium back to the Netherlands. Two introductions in the Belgian province of Limburg occurred from nearby farms in the Dutch province of Limburg. One introduction resulted in three secondary infected farms, while a second introduction did not cause secondary infections. The third introduction into Belgium occurred in the north of the Antwerp province, very close to the national border, and originated from the North of the Dutch province Brabant (long distance transmission, >65 km). The virus spread to two additional Belgian farms, one of which may be the source of a secondarily infected farm in the Netherlands. One infected turkey farm in the province of Antwerp (Westmalle) was geographically close to the latter introduction, but genetically clustered with the first introduction event in the Limburg province. Epidemiological tracing data could neither confirm nor exclude whether this outbreak was a result from long distance contacts within Belgium or whether this farm presented a fourth independent transboundary introduction. These multiple transnational transmissions of HPAI in spite of reinforced biosecurity measures and trade restrictions illustrate the importance of international cooperation, legislation and standardization of tools to combat transboundary diseases.  相似文献   

7.
Since early 2014, several outbreaks involving novel reassortant highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been detected in poultry and wild bird species in Asia, Europe and North America. These viruses have been detected in apparently healthy and dead wild migratory birds, as well as in domestic chickens, turkeys, geese and ducks. In this study, we describe the pathology of an outbreak of H5N8 HPAIV in breeder ducks in the UK. A holding with approximately 6000 breeder ducks, aged approximately 60 weeks, showed a gradual reduction in egg production and increased mortality over a 7‐day period. Post‐mortem examination revealed frequent fibrinous peritonitis, with severely haemorrhagic ovarian follicles and occasional splenic and pancreatic necrosis and high incidence of mycotic granulomas in the air sacs and lung. Low‐to‐moderate levels of HPAI H5N8 virus were detected mainly in respiratory and digestive tract, with minor involvement of other organs. Although histopathological examination confirmed the gross pathology findings, intralesional viral antigen detection by immunohistochemistry was not observed. Immunolabelled cells were rarely only present in inflamed air sacs and serosa, usually superficial to granulomatous inflammation. Abundant bacterial microcolonies were observed in haemorrhagic ovaries and oviduct. The limited viral tissue distribution and presence of inter‐current fungal and bacterial infections suggest a minor role for HPAIV H5N8 in clinical disease in layer ducks.  相似文献   

8.
We investigated episodes of suspected highly pathogenic avian influenza (HPAI)‐like illness among 12 meat duck flocks in two districts in Tien Giang province (Mekong Delta, Vietnam) in November 2013. In total, duck samples from 8 of 12 farms tested positive for HPAI virus subtype A/haemagglutinin 5 and neuraminidase 1 (H5N1) by real‐time RT‐PCR. Sequencing results confirmed clade of 2.3.2.1.c as the cause of the outbreaks. Most (7/8) laboratory‐confirmed positive flocks had been vaccinated with inactivated HPAI H5N1 clade 2.3.4 vaccines <6 days prior to onset of clinical signs. A review of vaccination data in relation to estimated production in the area suggested that vaccination efforts were biased towards larger flocks and that vaccination coverage was low [21.2% ducks vaccinated with two shots (range by district 7.4–34.9%)]. The low‐coverage data, the experimental evidence of lack of cross‐protection conferred by the currently used vaccines based on clade 2.3.4 together with the short lifespan of meat duck flocks (60–70 days), suggest that vaccination is not likely to be effective as a tool for control of H5N1 infection in meat duck flocks in the area.  相似文献   

9.
Highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in Bangladesh since its first isolation in February 2007. Phylogenetic analysis of the haemagglutinin (HA) gene of HPAI H5N1 viruses demonstrated that 25 Bangladeshi isolates including two human isolates from 2007–2011 along with some isolates from neighbouring Asian countries (India, Bhutan, Myanmar, Nepal, China and Vietnam) segregate into two distinct clades (2.2 and 2.3). There was clear evidence of introduction of clade 2.3.2 and 2.3.4 viruses in 2011 in addition to clade 2.2 viruses that had been in circulation in Bangladesh since 2007. The data clearly demonstrated the movement of H5N1 strains between Asian countries included in this study due to migration of wild birds and/or illegal movement of poultry across borders. Interestingly, the two human isolates were closely related to the clade 2.2 Bangladeshi chicken isolates indicating that they have originated from chickens. Furthermore, comparative amino acid sequence analysis revealed several substitutions (including 189R>K and 282I>V) in HA protein of some clade 2.2 Bangladeshi viruses including the human isolates, suggesting there was antigenic drift in clade 2.2.3 viruses that were circulating between 2008 and 2011. Overall, the data imply genetic diversity among circulating viruses and multiple introductions of H5N1 viruses with an increased risk of human infections in Bangladesh, and establishment of H5N1 virus in wild and domestic bird populations, which demands active surveillance.  相似文献   

10.
The aim of this work was to explore the comparative epidemiology of influenza viruses, H5N1 and H7N9, in both bird and human populations. Specifically, the article examines similarities and differences between the two viruses in their genetic characteristics, distribution patterns in human and bird populations and postulated mechanisms of global spread. In summary, H5N1 is pathogenic in birds, while H7N9 is not. Yet both have caused sporadic human cases, without evidence of sustained, human‐to‐human spread. The number of H7N9 human cases in the first year following its emergence far exceeded that of H5N1 over the same time frame. Despite the higher incidence of H7N9, the spatial distribution of H5N1 within a comparable time frame is considerably greater than that of H7N9, both within China and globally. The pattern of spread of H5N1 in humans and birds around the world is consistent with spread through wild bird migration and poultry trade activities. In contrast, human cases of H7N9 and isolations of H7N9 in birds and the environment have largely occurred in a number of contiguous provinces in south‐eastern China. Although rates of contact with birds appear to be similar in H5N1 and H7N9 cases, there is a predominance of incidental contact reported for H7N9 as opposed to close, high‐risk contact for H5N1. Despite the high number of human cases of H7N9 and the assumed transmission being from birds, the corresponding level of H7N9 virus in birds in surveillance studies has been low, particularly in poultry farms. H7N9 viruses are also diversifying at a much greater rate than H5N1 viruses. Analyses of certain H7N9 strains demonstrate similarities with engineered transmissible H5N1 viruses which make it more adaptable to the human respiratory tract. These differences in the human and bird epidemiology of H5N1 and H7N9 raise unanswered questions as to how H7N9 has spread, which should be investigated further.  相似文献   

11.
Highly Pathogenic Avian Influenza (HPAI ) subtype H5N8 outbreaks occurred in poultry farms in South Korea in 2014 resulting in significant damage to the poultry industry. Between 2014 and 2016, the pandemic disease caused significant economic loss and social disruption. To evaluate the risk factors for HPAI infection in broiler duck farms, we conducted a retrospective case–control study on broiler duck farms. Forty‐three farms with confirmed laboratories on premises were selected as the case group, and 43 HPAI ‐negative farms were designated as the control group. Control farms were matched based on farm location and were within a 3‐km radius from the case premises. Spatial and environmental factors were characterized by site visit and plotted through a geographic information system (GIS ). Univariable and multivariable logistic regression models were developed to assess possible risk factors associated with HPAI broiler duck farm infection. Four final variables were identified as risk factors in a final multivariable logistic model: “Farms with ≥7 flocks” (odds ratio [OR ] = 6.99, 95% confidence interval [CI ] 1.34–37.04), “Farm owner with ≥15 years of raising poultry career” (OR  = 7.91, 95% CI 1.69–37.14), “Presence of any poultry farms located within 500 m of the farm” (OR  = 6.30, 95% CI 1.08–36.93) and “Not using a faecal removal service” (OR  = 27.78, 95% CI 3.89–198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were associated with farm owner education, number of flocks and facilities and farm biosecurity. Awareness of these factors may help to reduce the spread of HPAI H5N8 across broiler duck farms in Korea during epidemics. Greater understanding of the risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes and help to establish policies to prevent re‐occurrence. These findings are relevant to global prevention recommendations and intervention protocols.  相似文献   

12.
Small‐scale commercial chicken farms (FAO‐defined system 3) with poor biosecurity predominate in developing countries including Bangladesh. By enroling fifteen highly pathogenic avian influenza (HPAI) cases occurring in such farms – (February – April 2008) and 45 control farms (March–May 2008) with similar set up, we conducted a case–control study to evaluate the risk factors associated with HPAI H5N1 virus infections in chickens reared in small‐scale commercial farms in a spatially high‐risk area in Bangladesh. Data collected by a questionnaire from the selected farms were analysed by univariable analysis and multivariable conditional logistic regression. The risk factors independently associated were ‘dead crow seen at or near farm’ [odds ratio (OR) 47.4, 95% confidence interval (CI) 4.7–480.3, P = 0.001], ‘exchanging eggtrays with market vendors’ (OR 20.4, 95% CI 1.9–225.5, P = 0.014) and ‘mortality seen in backyard chicken reared nearby’ (OR 19.4, 95% CI 2.8–131.9, P = 0.002). These observations suggest that improved biosecurity might reduce the occurrence of HPAI outbreaks in small‐scale commercial farms in Bangladesh.  相似文献   

13.
The hemagglutinin ectodomain (HA1 subunit) from highly pathogenic avian influenza (HPAI) isolate (A/chicken/Vietnam/14/2005) was cloned and expressed using a baculovirus expression vector. Biosynthesis, glycosylation and secretion of the HA1 proteins, with natural or a melittin signal peptide at the N‐terminus and a six‐histidine (6xHis) tag at the C‐terminus, were examined in insect cells. A 40‐kDa unglycosylated precursor and a fully processed, mature form of the HA1 protein migrated around 52 kDa were detected by SDS‐PAGE and confirmed by Western blot using H5N1‐specific antibody. Treatment of tunicamycin and peptide‐N‐glycosidase F (PNGase F) further revealed that the recombinant HA1 proteins produced in insect cells were indeed glycosylated with N‐linked oligosaccharide side chains. Time‐course experiments showed that substitution of the HA natural sequence with the signal sequence from honeybee melittin promoted a high level of expression and efficient secretion of the HA1. A high yield, 37 μg/ml, of HA1 protein was obtained from recombinant baculovirus‐infected cell culture supernatant. In addition, the cell surface expression of rHA1 was detected by indirect immunofluorescent staining and showed biological activity on hemadsorption assays. Recombinant HA1 protein‐based ELISA was evaluated and appeared to be sensitive and specific for the rapid detection of H5 subtype‐specific antibodies in serum samples. No cross‐reactivity to antibodies from 15 other influenza A subtypes was detected. Taken together, the newly developed recombinant HA1‐based ELISA could offer an alternative to other diagnostic approaches for the specific detection of H5 avian influenza virus infection.  相似文献   

14.
Quick diagnosis of H5N1 infection in cats is important because of the zoonotic and pandemic potential of this virus. Human rapid influenza antigen tests are also sold commercially to veterinarians for use in cats. The point‐of‐care test actim Influenza A&B (Medix Biochemica, Kauniainen, Finland) was evaluated for the diagnosis of H5N1 infection in cats. The test showed a very low sensitivity and did not detect virus in samples of experimentally infected cats, so that its application cannot be recommended for the diagnosis of H5N1 infection in cats.  相似文献   

15.
A number of genetic markers for virulence of avian influenza viruses (AIVs) in different hosts have been identified. However, we isolated two H5N1 AIVs, A/Chicken/Jiangsu/k0402/2010(CK/10) and A/Goose/Jiangsu/k0403/2010(GS/10) with similar genetic background, but most well‐defined molecular markers for virulence in mammals and avian species were not found in both viral genomes. In addition, pathogenicity of this pair of viruses in different hosts remains unclear. Therefore, we evaluated their pathogenicity in chickens, mice, ducks and guinea pigs. Infection of CK/10 and GS/10 in chickens caused 100% mortality within 24 h. Mouse experiment showed that CK/10 was highly pathogenic (MLD50 = 0.33 log10 EID50), whereas GS/10 was avirulent (MLD50 > 6.32 log10 EID50). Interestingly, the virulence of CK/10 in ducks (DLD50 = 3.83 log10 EID50) was higher than that of GS/10 (DLD50 = 7.7 log10 EID50), which correlated with viral pathogenicity in mice. Although CK/10 and GS/10 showed distinct pathogenicity in mice, they both were lethal to guinea pigs, with CK/10 replicating to higher titres in airways than GS/10. Collectively, these findings suggest that AIVs with similar genetic backgrounds may exhibit distinct pathogenicity in specific hosts and that some unknown molecular markers for virulence may exist and need to be identified.  相似文献   

16.
In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case–control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1‐infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12–0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97–15.64] compared to H5N1‐non‐infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio‐exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m.  相似文献   

17.
In Germany, two distinct episodes of outbreaks of highly pathogenic avian influenza virus of subtype H5N1 (HPAIV H5N1) in wild birds occurred at the beginning of 2006, and in summer 2007. High local densities of wild bird populations apparently sparked clinically detectable outbreaks. However, these remained restricted in (i) number of birds, (ii) species found to be affected, (iii) time, and (iv) location despite the presence of several hundred thousands of susceptible wild birds and further stressors (food shortage, harsh weather conditions and moulting). Northern and southern subpopulations of several migratory anseriform species can be distinguished with respect to their preference for wintering grounds in Germany. This corroborates viral genetic data by Starick et al. (2008) demonstrating the introduction of two geographically restricted virus subpopulations of Qinghai‐like lineage (cluster 2.2.A and 2.2.B) into northern and southern Germany, respectively, in 2006. The incursion of virus emerging in 2007, found to be distinct from the clusters detected in 2006 ( Starick et al., 2008 ), may have been associated with moulting movements. Intensive past‐outbreak investigations with negative results of live and dead wild birds and of terrestrial scavengers excluded continued circulation of virus on a larger scale. However, persistence of virus in small pockets of local wild bird populations could not be ruled out resiliently. 1.5% of investigated sera originating from cats sampled at the epicentres of the Ruegen 2006‐outbreak contained H5‐antibodies. Passive monitoring was found to be highly superior to live bird surveillance when aiming at the detection of HPAIV H5N1 in wild birds (P < 0.0001).  相似文献   

18.
Outbreaks of highly pathogenic avian influenza A virus (HPAIV) subtype H5N8, clade 2.3.4.4, were first reported in January 2014 from South Korea. These viruses spread rapidly to Europe and the North American continent during autumn 2014 and caused, in Germany, five outbreaks in poultry holdings until February 2015. In addition, birds kept in a zoo in north‐eastern Germany were affected. Only a few individual white storks (Ciconia ciconia) showed clinical symptoms and eventually died in the course of the infection, although subsequent in‐depth diagnostic investigations showed that other birds kept in the same compound of the white storks were acutely positive for or had undergone asymptomatic infection with HPAIV H5N8. An exception from culling all of the 500 remaining zoo birds was granted by the competent authority. Restriction measures included grouping the zoo birds into eight epidemiological units in which 60 birds of each unit tested repeatedly negative for H5N8. Epidemiological and phylogenetical investigations revealed that the most likely source of introduction was direct or indirect contact with infected wild birds as the white storks had access to a small pond frequented by wild mallards and other aquatic wild birds during a period of 10 days in December 2014. Median network analysis showed that the zoo bird viruses segregated into a distinct cluster of clade 2.3.4.4 with closest ties to H5N8 isolates obtained from mute swans (Cygnus olor) in Sweden in April 2015. This case demonstrates that alternatives to culling exist to rescue valuable avifaunistic collections after incursions of HPAIV.  相似文献   

19.
Highly pathogenic avian influenza HPAI H5N1 was first reported in Africa in 2006, in Nigeria. The country experienced severe outbreaks in 2006 and 2007, strongly affecting the poultry population. Current knowledge on potential risk factors for HPAI H5N1 occurrence in poultry farms in Nigeria is limited. Therefore, we conducted a case–control study to identify potential farm‐level risk factors for HPAI H5N1 occurrence in two areas of the country that were affected by the disease in 2006 and 2007, namely the States of Lagos and Kano. A case–control study was conducted at the farm level. A convenience sample of 110 farms was surveyed. Data on farm characteristics, farm management and trade practices were collected. Logistic regression was used to identify factors associated with farms that confirmed positive for HPAI. Having a neighbouring poultry farm was identified as a potential risk factor for disease occurrence [OR, 5.23; 95% CI, (0.88–30.97); P‐value = 0.048]. Farm staff washing their hands before handling birds was a protective factor [OR, 0.14; 95% CI, (0.05–0.37); P‐value <0.001], as well as not allowing traders to enter the farm [OR, 0.23; 95% CI, (0.08–0.70); P‐value = 0.008]. Our study highlighted the importance of trade and proximity between poultry farms in the epidemiology of HPAI H5N1 and the role of biosecurity in disease prevention in Kano and Lagos States. Despite the limitations owing to the sampling strategy, these results are consistent with other risk factor studies previously conducted on HPAI H5N1 in both Africa and other regions, suggesting similar risk factor patterns for HPAI H5N1 virus spread and substantiating current knowledge regarding the epidemiology of the disease. Finally, this study generated information from areas where data are difficult to obtain.  相似文献   

20.
Bangladesh has been considered as one of the five countries endemic with highly pathogenic avian influenza A subtype H5N1 (HPAI H5N1). Live‐bird markets (LBMs) in south Asian countries are believed to play important roles in the transmission of HPAI H5N1 and others due to its central location as a hub of the poultry trading. Food and Agriculture Organization (FAO) of the United Nations has been promoting improved biosecurity in LBMs in Bangladesh. In 2012, by enrolling 32 large LBMs: 10 with FAO interventions and 22 without assistance, we assessed the virus circulation in the selected LBMs by applying standard procedures to investigate market floors, poultry stall floors, poultry‐holding cases and slaughter areas and the overall biosecurity using a questionnaire‐based survey. Relative risk (RR) was examined to compare the prevalence of HPAI H5N1 in the intervened and non‐intervened LBMs. The measures practised in significantly more of the FAO‐intervened LBMs included keeping of slaughter remnants in a closed container; decontamination of poultry vehicles at market place; prevention of crows’ access to LBM, market/floor cleaning by market committee; wet cleaning; disinfection of floor/poultry stall after cleaning; and good supply of clean water at market (P < 0.05). Conversely, disposal of slaughter remnants elsewhere at market and dry cleaning were in operation in more of the FAO non‐intervened LBMs (P < 0.05). The RR for HPAI H5N1 in the intervened and non‐intervened LBMs was 1.1 (95% confidence interval 0.44–2.76), suggesting that the proportion positive of the virus in the two kinds of LBM did not vary significantly (P = 0.413). These observations suggest that the viruses are still maintained at the level of production in farms and circulating in LBMs in Bangladesh regardless of interventions, albeit at lower levels than in other endemic countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号