首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
吕芳  潘丽  杨胜波 《解剖学杂志》2019,42(3):271-274
目的:利用螺旋CT准确定位成人前臂后群肌神经入肌点(NEP)的位置。方法:成人尸体上肢,俯卧。紧贴皮肤连接肱骨外上髁至桡骨茎突间的曲线为纵向参考线(L);肱骨外上髁与内上髁间的连线为横向参考线(H)。大体解剖暴露NEP,硫酸钡标记,螺旋CT扫描,三维重建图像。NEP在体表上的投影点定为P点,P点通过NEP后投射至前臂前面体表上的点为P'点。经P点垂于H的线、水平线与L线的交点分别记为PH和PL。Syngo系统下确定PH和PL在H和L线上的位置及NEP的深度。结果:指伸肌、小指伸肌、尺侧腕伸肌、旋后肌、拇长展肌、拇短伸肌、拇长伸肌、示指伸肌的NEP的PH分别位于H线上的54.47%、39.26%、42.5%、21.24%、42.03%、44.39%、42.65%和54.47%处,PL分别位于L线上的31.99%、35.34%、31.18%、11.47%、53.08%、51.88%、55.71%和64.75%处,穿刺深度分别位于PP'线的34.82%、34.70%、28.75%、30.87%、26.81%、24.15%、31.34%和20.69%处。结论:这些NEP的定位可为提高前臂后群肌靶点阻滞的效率与疗效提供指导。  相似文献   

2.
目的 准确定位小腿外侧群肌的神经入肌点(NEP)和肌梭丰度最高区中心(CHRMSA)的位置。 方法 12具成人尸体,侧卧。经皮肤连接股骨外上髁与内上髁和股骨外上髁与外踝的连线分别为横向参考线(H)和纵向参考线(L)。解剖暴露NEP;Sihler's染色显示肌内神经分支密集区;HE染色肌梭,计算肌梭丰度;硫酸钡标记NEP和CHRMSA,CT扫描。NEP在体表的投影点为P,P通过NEP后投射至相反侧皮肤上的点为P',经P的垂线与H线、水平线与L线的交点分别记为PH 和PL,确定PH和PL在H和L线上的百分位置及NEP的深度。 结果 腓骨长、短肌的NEP的PH分别位于H线的13.41%和10.35%处,PL分别位于L线的21.81%和52.6%处;深度分别位于PP'线的50.89%和25.7%处。腓骨长、短肌的CHRMSA的PH分别位于H线的14.45%和12.86%处,PL分别位于L线的35.11%和71.49%处;深度分别位于PP'线的18.16%和20.40%处。 结论 这些结果可为小腿外侧群肌痉挛治疗中准确定位阻滞靶点提供解剖学指导。  相似文献   

3.
目的 准确定位大圆肌神经入肌点(NEP)的体表位置和穿刺深度。 方法 12具中国成年人尸体。设计紧贴皮肤连接颈静脉切迹最低点至肩峰尖为横向参考线(H线)、颈静脉切迹最低点至剑胸结合处为纵向参考线(L线)。解剖暴露大圆肌NEP,涂抹硫酸钡,逐层复位缝合,CT扫描与三维重建。Syngo系统下确定大圆肌NEP的体表投影点(P);P通过NEP投影至背部皮肤上的点为P'点;经P的垂线与H线的交点记为PH,经P的水平线与L线的交点记为PL;分别测量PH和PL在H和L线上的百分位置及NEP的百分深度。 结果 大圆肌NEP的PH位于H线的(9.59±1.24)%处,PL位于L线的(39.37±2.45)%处;NEP深度位于PP'线的(41.83±2.98)%处。 结论 这些参数可为提高大圆肌痉挛的神经阻滞效率和疗效提供指导。  相似文献   

4.
目的准确地定位小腿前群肌神经入肌点(NEP)的体表位置和深度。方法 20具中国成年人尸体。设计紧贴皮肤连接股骨外上髁与腓骨外踝的曲线为纵向参考线(L),连接股骨外上髁与内上髁的曲线为横向参考线(H)。解剖暴露NEP,硫酸钡标记,螺旋CT扫描,三维重建,Syngo系统下确定NEP在体表前后的投影点(P和P'点),P点投射到L和H线上的位置(PL和PH点)及NEP的深度。结果胫骨前肌、长伸肌、趾长伸肌均有一个较为恒定的NEP,其中PL点分别位于L线的(23.63±2.43)%、(52.46±2.94)%和(36.07±2.99)%处;PH点分别位于体表H线上的(27.27±2.58)%、(34.41±2.38)%和(32.11±2.52)%处;深度分别位于PP'线的(45.32±3.06)%、(36.20±2.84)%和(33.72±3.18)%处。结论这些NEP的体表位置和深度的界定将为提高小腿前群肌痉挛肌外神经溶解术靶点定位的效率与疗效提供形态学指导。  相似文献   

5.
目的:借骨性标志确定肌皮神经肌支神经入肌点(N点)的位置。方法:成年尸体上肢,肩峰至颈静脉切迹连线为喙肱肌支N点的横向参考线(H_1),肱骨外上髁至内上髁连线为肱二头肌和肱肌支N点的横向参考线(H_2);肩峰至肱骨外上髁连线为纵向参考线(L)。解剖暴露N点,涂抹硫酸钡,CT扫描。N点在臂前体表上的投影点为P,P点通过N点后投射至臂后体表上的点为P′。经P的垂线与H线、水平线与L线的交点分别记为P_H和P_L。Syngo系统下确定P_H和P_L在H和L线上的位置及N点的深度。结果:喙肱肌支、肱二头肌短头、肱二头肌长头及肱肌支的P_H分别位于H_1的18.38%、H_2的56.85%、52.81%和57.52%处;P_L位于L的24.86%、50.20%、55.91%和64.31%处;经过P点的N点深度分别位于PP′线的23.16%、24.68%、26.32%和38.19%处。结论:这些神经入肌点的定位可提高臂前群肌痉挛神经溶解术的疗效和效率。  相似文献   

6.
目的 准确定位肩胛下肌神经入肌点(NEP)的体表位置和穿刺深度,为实现肩胛下肌痉挛乙醇或苯酚注射的化学神经溶解术提供指导。方法 20具中国成年人尸体,仰卧。紧贴皮肤连接颈静脉切迹最下点与肩峰尖和颈静脉切迹最下点与剑胸结合处的曲线分别为NEP的横向参考线(H线)和纵向参考线(L线)。解剖暴露肩胛下肌各神经肌支的NEP,涂抹硫酸钡,螺旋计算机断层扫描(CT)与三维重建。Syngo系统下确定NEP在体表的投影点(P),P通过NEP投射至背部皮肤上的P’点;经P的垂线与H线、经P的水平线与L线的交点分别记为PH和PL,测量PH和PL在H和L线上的百分位置及NEP的深度。结果 肩胛下肌上神经支和下神经支的PH分别位于H线的(46.89±2.73)%和(42.56±2.59)%处,PL分别位于L线的(7.58±2.88)%和(17.42±3.31)%处;NEP深度分别位于PP’线的(16.32±2.52)%和(29.93±2.89)%处。结论 上述结果可为提高肩胛下肌痉挛化学神经溶解术的疗效和效率提供指导。  相似文献   

7.
利用神经入肌点定位小腿三头肌痉挛的神经阻滞靶点   总被引:1,自引:0,他引:1  
目的 准确定位小腿三头肌的神经入肌点(N点)位置,为临床该肌痉挛神经阻滞提供解剖学基础。 方法 10具20侧成年人尸体下肢,俯卧。紧贴皮肤连接股骨外上髁与内上髁和股骨外上髁与外踝的线分别为N点的横向参考线(H线)和纵向参考线(L线)。解剖暴露小腿三头肌各神经肌支的N点,涂抹硫酸钡,CT扫描。Syngo系统下确定N点在体表的投影点(P点);P点通过N点后投射至对侧皮肤上的P'点;经P点的垂线与H线、水平线与L线的交点分别记为PH和PL。分别测量PH和PL在H和L线上的百分位置及N点的深度。 结果 腓肠肌内侧头、外侧头和比目鱼肌的PH分别位于H线的(46.89±2.73)%、(40.90±3.05)%和(42.56±2.59)%处,PL分别位于L线的(7.58±2.88)%、(8.15±2.52)%和(17.42±3.31)%处;N点深度分别位于PP'线的(16.32±2.52)%、(13.83±1.77)%和(29.93±2.89)%处。 结论 这些参数可提高小腿三头肌痉挛神经溶解术的疗效和效率。  相似文献   

8.
目的:定位缝匠肌的神经入肌点(NEP)和肌内神经密集区中心(CINDR)位置,为缝匠肌痉挛神经阻滞术提供形态学指导。方法:12具24侧成年尸体下肢。连接股骨大转子与耻骨结节和股骨外上髁间的曲线分别为NEP的横向参考线(H线)和纵向参考线(L1线);髂前上棘和股骨内上髁间的曲线为CINDR的纵向参考线(L2线)。Sihler染色CINDR,硫酸钡标记NEP和CINDR,CT扫描。NEP和CINDR在股前、后体表上的投影点分别为P和P′点,经P点的垂线与H线、水平线与L线的交点分别记为PH和PL点。结果:缝匠肌的2个NEP的PH点分别位于H线的51.57%、63.93%处;PL点位于L1线的1.71%、0.71%处;深度分别位于PP′线的7.32%、8.10%处。缝匠肌内5个CINDR的P点分别位于L2线的17.18%、26.56%、42.18%、56.25%和72.65%处;深度分别位于PP′线的5.1%、14.81%、19.23%、22.5%和45.45%处。结论:这些位置应为成人缝匠肌痉挛肌外和肌内神经阻滞术的最佳靶点部位。  相似文献   

9.
目的 确定大圆肌肌内神经密集区中心(centers of intramuscular nerve dense regions,CINDR)的位置和标记方法。 方法 选取24具成人尸体。设计紧贴皮肤连接肩胛上角和肩峰及肩胛下角的曲线分别为横向(H)和纵向(L)参考线。改良的Sihler’s染色法显示一侧大圆肌肌内神经密集区,解剖暴露另一侧肌的肌内神经密集区相应位置,硫酸钡标记其CINDR,螺旋CT扫描确定CINDR在背部和胸部的体表投影点(P和P'点)。Syngo系统确定通过P点的垂线分别与H和L线的交点(PH和PL点)的位置和CINDR的深度。 结果 大圆肌内仅有1个肌内神经密集区,其CINDR的PH位于H线的(86.71±0.85)%处,PL位于L线的(72.07±1.08)%处。CINDR的深度位于P-P'线的(40.06±2.44)%处。 结论 这些结果可作为肌内注射肉毒毒素A阻滞大圆肌痉挛的指导依据。  相似文献   

10.
目的 准确定位枕下肌的神经入肌点(NEP),为枕下肌肌张力增高所致疾病的肌外神经阻滞提供解剖学基础。方法 24具成人尸体。解剖暴露枕下肌(头后小直肌、头后大直肌、头上斜肌和头下斜肌)的NEP,硫酸钡标记,原位缝合。螺旋CT扫描与三维重建。经皮连接枕外隆突与第7颈椎棘突的曲线为纵向(L)参考线,乳突与第7颈椎棘突的曲线为横向(H)参考线,NEP在项部和相反侧皮肤上的点分别记为P点和P’点,经P点分别向H线和L线作垂线,其交点分别记为PH点和PL点。Syngo系统下确定PH点和PL点分别在H线和L线上的百分位置及NEP的深度。结果 每块枕下肌(头后小直肌、头后大直肌、头上斜肌和头下斜肌)常只有1个NEP,其NEP的PH分别位于H线上的46.29%、35.85%、28.88%和32.29%处;PL分别位于L线上的27.39%、39.06%、35.06%和40.42%处。NEP的深度分别位于PP’线上的21.21%、24.02%、14.59%和21.44%处。上述...  相似文献   

11.
To identify the optimal body surface puncture locations and the depths of nerve entry points (NEPs) in the deep posterior compartment muscles of the leg, 60 lower limbs of thirty adult cadavers were dissected in prone position. A curved line on the skin surface joining the lateral to the medial epicondyles of the femur was taken as a horizontal reference line (H). Another curved line joining the lateral epicondyle of the femur to the lateral malleolus was designated the longitudinal reference line (L). Following dissection, the NEPs were labeled with barium sulfate and then subjected to spiral computed tomography scanning. The projection point of the NEP on the posterior skin surface of the leg was designated P, and the projection in the opposite direction across the transverse plane was designated P'. The intersections of P on H and L were identified as PH and PL, and their positions and the depth of the NEP on PP' were measured using the Syngo system and expressed as percentages of H, L, and PP'. The PH points of the tibial posterior, flexor hallucis longus and flexor digitorum longus muscles were located at 38.10, 46.20, and 55.21% of H, respectively. The PL points were located at 25.35, 41.30, and 45.39% of L, respectively. The depths of the NEPs were 49.11, 54.64, and 55.95% of PP', respectively. The accurate location of these NEPs should improve the efficacy and efficiency of chemical neurolysis for treating spasticity of the deep posterior compartment muscles of the leg. Clin. Anat. 30:855–860, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
The median nerve is classically distributed to the medial epicondylar muscles by two branches (superior and inferior) for the pronator teres muscle, a common trunk for the flexor carpi radialis and palmaris longus muscles, and a branch for the flexor digitorum superficialis muscle. The 50 dissections were made by two workers on 30 upper limbs of formolized cadavers and 20 limbs from fresh-frozen cadavers. The innervation of the pronator teres m. was classical in only 26% of cases, and the “normal” pattern for the flexor carpi radialis and palmaris longus mm. was found in only 40% of cases. The innervation of the flexor digitorum superficialis m. was the least subject to variations, a single branch being observed in 68% of cases. We found a solitary medio-ulnar anastomosis of Martin-Gruber to the flexor carpi ulnaris muscle. This study confirmed the great variability of the branches of the median nerve at the elbow, and the importance of identifying them in surgical procedures for transposition of the medial epicondyle.  相似文献   

13.
The aim of this study was to determine the biometry of the muscular branches of the median nerve to the forearm in ten embalmed upper limbs. We measured the length of the forearm and the level of origin of each muscular branch of the median nerve to the forearm from the middle of a line between the medial and lateral epicondyles. The level of origin of each branch was then calculated as a percentage of the length of the forearm. Mean length of the forearm was 25 ± 2.36 cm (range: 22-29 cm). Although the levels of origin of the proximal and distal nerves to pronator teres, and of the nerves to palmaris longus, flexor carpi radialis and flexor digitorum superficialis, were quite variable (coefficient of variation: CV > 48.61%), the level of origin of the anterior interosseous nerve (CV = 31.24%) and its branches (nerves to flexor pollicis longus and flexor digitorum profundus, CV = 20.06%) was less variable. These results suggest that the anterior interosseous nerve of the forearm is probably the nerve to connect in muscular free transfers in order to restore flexion of the fingers after damage to the flexor tendons to the forearm. We observed Martin-Gruber communications in six out of ten dissections. Clin. Anat. 11:239–245, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.

Purpose

The purpose of this study was to anatomically investigate the proximal origin of flexor–pronator muscles (FPMs) and clarify their contribution to dynamic stabilization of the elbow joint during valgus stress.

Methods

52 elbows from 26 donated formalin-fixed cadavers were examined. The pronator teres muscle (PT), flexor carpi radialis muscle (FCR), palmaris longus muscle (PL), flexor digitorum superficialis muscle (FDS), and flexor carpi ulnaris muscle (FCU) were identified, and their proximal origin and relationship to the anterior bundle of the medial ulna collateral ligament (AOL) were macroscopically and histologically investigated.

Results

The PT, FCR, PL, and FDS converged and formed a common tendon at their proximal origin (the anterior common tendon: ACT). The ACT was attached to the medial epicondyle and the joint capsule, just anterior and parallel to the AOL. The histological morphology of the ACT was quite similar to that of the AOL. The ulnar head of the PT was observed in 48 of 52 elbows (92.3 %), just behind the humeral head of PT. It mainly originated from the anterior edge of the sublime tubercle, while the upper part of ulnar head transitioned directly into the thickened joint capsule just anterior to the AOL.

Conclusion

The proximal attachment of the FPMs had a characteristic morphology. According to our results, the ACT and PT might assist the AOL by sharing static and dynamic traction forces applied to the medial elbow joint.  相似文献   

15.

Purpose

The median nerve is responsible for the motor innervation of most of the muscles usually involved in upper limb spasticity. Selective neurectomy is one of the treatments utilized to reduce spasticity. The purpose of this study was to describe the variations of the motor branches of the median nerve in the forearm and draw recommendations for an appropriate planning of selective neurectomy.

Materials and methods

The median nerve was dissected in the forearm of 20 fresh cadaver upper limbs. Measurements included number, origin, division, and entry point of each motor branch into the muscles.

Results

One branch for the pronator teres was the most common pattern. In 9/20 cases, it arose as a common trunk with other branches. A single trunk innervated the flexor carpi radialis with a common origin with other branches in 17/20 cases. Two, three or four branches innervated the flexor digitorum superficialis, the first one frequently through a common trunk with other branches. They were very difficult to identify unless insertions of pronator teres and flexor digitorum superficialis were detached. The flexor digitorum profundus received one to five branches and flexor pollicis longus one to two branches from the anterior interosseous nerve.

Conclusions

There is no regular pattern of the motor branches of the median nerve in the forearm. Our findings differ in many points from the classical literature. Because of the frequency of common trunks for different muscles, we recommend the use of peroperative electrical stimulation. Selective neurotomy of flexor digitorum superficialis is technically difficult, because the entry point of some of their terminal branches occurs just below the arch and deep to the muscle belly.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号